// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
*/
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <crypto/internal/hash.h>
#include "common.h"
#include "core.h"
#include "sha.h"
struct qce_sha_saved_state {
u8 pending_buf[QCE_SHA_MAX_BLOCKSIZE];
u8 partial_digest[QCE_SHA_MAX_DIGESTSIZE];
__be32 byte_count[2];
unsigned int pending_buflen;
unsigned int flags;
u64 count;
bool first_blk;
};
static LIST_HEAD(ahash_algs);
static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
};
static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
};
static void qce_ahash_done(void *data)
{
struct crypto_async_request *async_req = data;
struct ahash_request *req = ahash_request_cast(async_req);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
struct qce_device *qce = tmpl->qce;
struct qce_result_dump *result = qce->dma.result_buf;
unsigned int digestsize = crypto_ahash_digestsize(ahash);
int error;
u32 status;
error = qce_dma_terminate_all(&qce->dma);
if (error)
dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
memcpy(rctx->digest, result->auth_iv, digestsize);
if (req->result && rctx->last_blk)
memcpy(req->result, result->auth_iv, digestsize);
rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
error = qce_check_status(qce, &status);
if (error < 0)
dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
req->src = rctx->src_orig;
req->nbytes = rctx->nbytes_orig;
rctx->last_blk = false;
rctx->first_blk = false;
qce->async_req_done(tmpl->qce, error);
}
static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
{
struct ahash_request *req = ahash_request_cast(async_req);
struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
struct qce_device *qce = tmpl->qce;
unsigned long flags = rctx->flags;
int ret;
if (IS_SHA_HMAC(flags)) {
rctx->authkey = ctx->authkey;
rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
} else if (IS_CMAC(flags)) {
rctx->authkey = ctx->authkey;
rctx->authklen = AES_KEYSIZE_128;
}
rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
if (rctx->src_nents < 0) {
dev_err(qce->dev, "Invalid numbers of src SG.\n");
return rctx->src_nents;
}
ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
if (!ret)
return -EIO;
sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
if (!ret) {
ret = -EIO;
goto error_unmap_src;
}
ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
&rctx->result_sg, 1, qce_ahash_done, async_req);
if (ret)
goto error_unmap_dst;
qce_dma_issue_pending(&qce->dma);
ret = qce_start(async_req, tmpl->crypto_alg_type);
if (ret)
goto error_terminate;
return 0;
error_terminate:
qce_dma_terminate_all(&qce->dma);
error_unmap_dst:
dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
error_unmap_src:
dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
return ret;
}
static int qce_ahash_init(struct ahash_request *req)
{
struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
const u32 *std_iv = tmpl->std_iv;
memset(rctx, 0, sizeof(*rctx));
rctx->first_blk = true;
rctx->last_blk = false;
rctx->flags = tmpl->alg_flags;
memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
return 0;
}
static int qce_ahash_export(struct ahash_request *req, void *out)
{
struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
struct qce_sha_saved_state *export_state = out;
memcpy(export_state->pending_buf, rctx->buf, rctx->buflen);
memcpy(export_state->partial_digest, rctx->digest, sizeof(rctx->digest));
export_state->byte_count[0] = rctx->byte_count[0];
export_state->byte_count[1] = rctx->byte_count[1];
export_state->pending_buflen = rctx->buflen;
export_state->count = rctx->count;
export_state->first_blk = rctx->first_blk;
export_state->flags = rctx->flags;
return 0;
}
static int qce_ahash_import(struct ahash_request *req, const void *in)
{
struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
const struct qce_sha_saved_state *import_state = in;
memset(rctx, 0, sizeof(*rctx));
rctx->count = import_state->count;
rctx->buflen = import_state->pending_buflen;
rctx->first_blk = import_state->first_blk;
rctx->flags = import_state->flags;
rctx->byte_count[0] = import_state->byte_count[0];
rctx->byte_count[1] = import_state->byte_count[1];
memcpy(rctx->buf, import_state->pending_buf, rctx->buflen);
memcpy(rctx->digest, import_state->partial_digest, sizeof(rctx->digest));
return 0;
}
static int qce_ahash_update(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
struct qce_device *qce = tmpl->qce;
struct scatterlist *sg_last, *sg;
unsigned int total, len;
unsigned int hash_later;
unsigned int nbytes;
unsigned int blocksize;
blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
rctx->count += req->nbytes;
/* check for buffer from previous updates and append it */
total = req->nbytes + rctx->buflen;
if (total <= blocksize) {
scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
0, req->nbytes, 0);
rctx->buflen += req->nbytes;
return 0;
}
/* save the original req structure fields */
rctx->src_orig = req->src;
rctx->nbytes_orig = req->nbytes;
/*
* if we have data from previous update copy them on buffer. The old
* data will be combined with current request bytes.
*/
if (rctx->buflen)
memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
/* calculate how many bytes will be hashed later */
hash_later = total % blocksize;
/*
* At this point, there is more than one block size of data. If
* the available data to transfer is exactly a multiple of block
* size, save the last block to be transferred in qce_ahash_final
* (with the last block bit set) if this is indeed the end of data
* stream. If not this saved block will be transferred as part of
* next update. If this block is not held back and if this is
* indeed the end of data stream, the digest obtained will be wrong
* since qce_ahash_final will see that rctx->buflen is 0 and return
* doing nothing which in turn means that a digest will not be
* copied to the destination result buffer. qce_ahash_final cannot
* be made to alter this behavior and allowed to proceed if
* rctx->buflen is 0 because the crypto engine BAM does not allow
* for zero length transfers.
*/
if (!hash_later)
hash_later = blocksize;
if (hash_later) {
unsigned int src_offset = req->nbytes - hash_later;
scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
hash_later, 0);
}
/* here nbytes is multiple of blocksize */
nbytes = total - hash_later;
len = rctx->buflen;
sg = sg_last = req->src;
while (len < nbytes && sg) {
if (len + sg_dma_len(sg) > nbytes)
break;
len += sg_dma_len(sg);
sg_last = sg;
sg = sg_next(sg);
}
if (!sg_last)
return -EINVAL;
if (rctx->buflen) {
sg_init_table(rctx->sg, 2);
sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
sg_chain(rctx->sg, 2, req->src);
req->src = rctx->sg;
}
req->nbytes = nbytes;
rctx->buflen = hash_later;
return qce->async_req_enqueue(tmpl->qce, &req->base);
}
static int qce_ahash_final(struct ahash_request *req)
{
struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
struct qce_device *qce = tmpl->qce;
if (!rctx->buflen) {
if (tmpl->hash_zero)
memcpy(req->result, tmpl->hash_zero,
tmpl->alg.ahash.halg.digestsize);
return 0;
}
rctx->last_blk = true;
rctx->src_orig = req->src;
rctx->nbytes_orig = req->nbytes;
memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
req->src = rctx->sg;
req->nbytes = rctx->buflen;
return qce->async_req_enqueue(tmpl->qce, &req->base);
}
static int qce_ahash_digest(struct ahash_request *req)
{
struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
struct qce_device *qce = tmpl->qce;
int ret;
ret = qce_ahash_init(req);
if (ret)
return ret;
rctx->src_orig = req->src;
rctx->nbytes_orig = req->nbytes;
rctx->first_blk = true;
rctx->last_blk = true;
if (!rctx->nbytes_orig) {
if (tmpl->hash_zero)
memcpy(req->result, tmpl->hash_zero,
tmpl->alg.ahash.halg.digestsize);
return 0;
}
return qce->async_req_enqueue(tmpl->qce, &req->base);
}
static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
unsigned int digestsize = crypto_ahash_digestsize(tfm);
struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
struct crypto_wait wait;
struct ahash_request *req;
struct scatterlist sg;
unsigned int blocksize;
struct crypto_ahash *ahash_tfm;
u8 *buf;
int ret;
const char *alg_name;
blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
memset(ctx->authkey, 0, sizeof(ctx->authkey));
if (keylen <= blocksize) {
memcpy(ctx->authkey, key, keylen);
return 0;
}
if (digestsize == SHA1_DIGEST_SIZE)
alg_name = "sha1-qce";
else if (digestsize == SHA256_DIGEST_SIZE)
alg_name = "sha256-qce";
else
return -EINVAL;
ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
if (IS_ERR(ahash_tfm))
return PTR_ERR(ahash_tfm);
req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
if (!req) {
ret = -ENOMEM;
goto err_free_ahash;
}
crypto_init_wait(&wait);
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
crypto_ahash_clear_flags(ahash_tfm, ~0);
buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
if (!buf) {
ret = -ENOMEM;
goto err_free_req;
}
memcpy(buf, key, keylen);
sg_init_one(&sg, buf, keylen);
ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
kfree(buf);
err_free_req:
ahash_request_free(req);
err_free_ahash:
crypto_free_ahash(ahash_tfm);
return ret;
}
static int qce_ahash_cra_init(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_ahash_set_reqsize_dma(ahash, sizeof(struct qce_sha_reqctx));
memset(ctx, 0, sizeof(*ctx));
return 0;
}
struct qce_ahash_def {
unsigned long flags;
const char *name;
const char *drv_name;
unsigned int digestsize;
unsigned int blocksize;
unsigned int statesize;
const u32 *std_iv;
};
static const struct qce_ahash_def ahash_def[] = {
{
.flags = QCE_HASH_SHA1,
.name = "sha1",
.drv_name = "sha1-qce",
.digestsize = SHA1_DIGEST_SIZE,
.blocksize = SHA1_BLOCK_SIZE,
.statesize = sizeof(struct qce_sha_saved_state),
.std_iv = std_iv_sha1,
},
{
.flags = QCE_HASH_SHA256,
.name = "sha256",
.drv_name = "sha256-qce",
.digestsize = SHA256_DIGEST_SIZE,
.blocksize = SHA256_BLOCK_SIZE,
.statesize = sizeof(struct qce_sha_saved_state),
.std_iv = std_iv_sha256,
},
{
.flags = QCE_HASH_SHA1_HMAC,
.name = "hmac(sha1)",
.drv_name = "hmac-sha1-qce",
.digestsize = SHA1_DIGEST_SIZE,
.blocksize = SHA1_BLOCK_SIZE,
.statesize = sizeof(struct qce_sha_saved_state),
.std_iv = std_iv_sha1,
},
{
.flags = QCE_HASH_SHA256_HMAC,
.name = "hmac(sha256)",
.drv_name = "hmac-sha256-qce",
.digestsize = SHA256_DIGEST_SIZE,
.blocksize = SHA256_BLOCK_SIZE,
.statesize = sizeof(struct qce_sha_saved_state),
.std_iv = std_iv_sha256,
},
};
static int qce_ahash_register_one(const struct qce_ahash_def *def,
struct qce_device *qce)
{
struct qce_alg_template *tmpl;
struct ahash_alg *alg;
struct crypto_alg *base;
int ret;
tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
if (!tmpl)
return -ENOMEM;
tmpl->std_iv = def->std_iv;
alg = &tmpl->alg.ahash;
alg->init = qce_ahash_init;
alg->update = qce_ahash_update;
alg->final = qce_ahash_final;
alg->digest = qce_ahash_digest;
alg->export = qce_ahash_export;
alg->import = qce_ahash_import;
if (IS_SHA_HMAC(def->flags))
alg->setkey = qce_ahash_hmac_setkey;
alg->halg.digestsize = def->digestsize;
alg->halg.statesize = def->statesize;
if (IS_SHA1(def->flags))
tmpl->hash_zero = sha1_zero_message_hash;
else if (IS_SHA256(def->flags))
tmpl->hash_zero = sha256_zero_message_hash;
base = &alg->halg.base;
base->cra_blocksize = def->blocksize;
base->cra_priority = 300;
base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
base->cra_ctxsize = sizeof(struct qce_sha_ctx);
base->cra_alignmask = 0;
base->cra_module = THIS_MODULE;
base->cra_init = qce_ahash_cra_init;
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
def->drv_name);
INIT_LIST_HEAD(&tmpl->entry);
tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
tmpl->alg_flags = def->flags;
tmpl->qce = qce;
ret = crypto_register_ahash(alg);
if (ret) {
dev_err(qce->dev, "%s registration failed\n", base->cra_name);
kfree(tmpl);
return ret;
}
list_add_tail(&tmpl->entry, &ahash_algs);
dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
return 0;
}
static void qce_ahash_unregister(struct qce_device *qce)
{
struct qce_alg_template *tmpl, *n;
list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
crypto_unregister_ahash(&tmpl->alg.ahash);
list_del(&tmpl->entry);
kfree(tmpl);
}
}
static int qce_ahash_register(struct qce_device *qce)
{
int ret, i;
for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
ret = qce_ahash_register_one(&ahash_def[i], qce);
if (ret)
goto err;
}
return 0;
err:
qce_ahash_unregister(qce);
return ret;
}
const struct qce_algo_ops ahash_ops = {
.type = CRYPTO_ALG_TYPE_AHASH,
.register_algs = qce_ahash_register,
.unregister_algs = qce_ahash_unregister,
.async_req_handle = qce_ahash_async_req_handle,
};