Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | // SPDX-License-Identifier: GPL-2.0+ #define pr_fmt(fmt) "kprobes: " fmt #include <linux/kprobes.h> #include <linux/extable.h> #include <linux/slab.h> #include <linux/stop_machine.h> #include <asm/ptrace.h> #include <linux/uaccess.h> #include <asm/sections.h> #include <asm/cacheflush.h> #include <asm/bug.h> #include <asm/patch.h> #include "decode-insn.h" DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); static void __kprobes post_kprobe_handler(struct kprobe *, struct kprobe_ctlblk *, struct pt_regs *); static void __kprobes arch_prepare_ss_slot(struct kprobe *p) { u32 insn = __BUG_INSN_32; unsigned long offset = GET_INSN_LENGTH(p->opcode); p->ainsn.api.restore = (unsigned long)p->addr + offset; patch_text_nosync(p->ainsn.api.insn, &p->opcode, 1); patch_text_nosync(p->ainsn.api.insn + offset, &insn, 1); } static void __kprobes arch_prepare_simulate(struct kprobe *p) { p->ainsn.api.restore = 0; } static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (p->ainsn.api.handler) p->ainsn.api.handler((u32)p->opcode, (unsigned long)p->addr, regs); post_kprobe_handler(p, kcb, regs); } static bool __kprobes arch_check_kprobe(struct kprobe *p) { unsigned long tmp = (unsigned long)p->addr - p->offset; unsigned long addr = (unsigned long)p->addr; while (tmp <= addr) { if (tmp == addr) return true; tmp += GET_INSN_LENGTH(*(u16 *)tmp); } return false; } int __kprobes arch_prepare_kprobe(struct kprobe *p) { u16 *insn = (u16 *)p->addr; if ((unsigned long)insn & 0x1) return -EILSEQ; if (!arch_check_kprobe(p)) return -EILSEQ; /* copy instruction */ p->opcode = (kprobe_opcode_t)(*insn++); if (GET_INSN_LENGTH(p->opcode) == 4) p->opcode |= (kprobe_opcode_t)(*insn) << 16; /* decode instruction */ switch (riscv_probe_decode_insn(p->addr, &p->ainsn.api)) { case INSN_REJECTED: /* insn not supported */ return -EINVAL; case INSN_GOOD_NO_SLOT: /* insn need simulation */ p->ainsn.api.insn = NULL; break; case INSN_GOOD: /* instruction uses slot */ p->ainsn.api.insn = get_insn_slot(); if (!p->ainsn.api.insn) return -ENOMEM; break; } /* prepare the instruction */ if (p->ainsn.api.insn) arch_prepare_ss_slot(p); else arch_prepare_simulate(p); return 0; } #ifdef CONFIG_MMU void *alloc_insn_page(void) { return __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_READ_EXEC, VM_FLUSH_RESET_PERMS, NUMA_NO_NODE, __builtin_return_address(0)); } #endif /* install breakpoint in text */ void __kprobes arch_arm_kprobe(struct kprobe *p) { u32 insn = (p->opcode & __INSN_LENGTH_MASK) == __INSN_LENGTH_32 ? __BUG_INSN_32 : __BUG_INSN_16; patch_text(p->addr, &insn, 1); } /* remove breakpoint from text */ void __kprobes arch_disarm_kprobe(struct kprobe *p) { patch_text(p->addr, &p->opcode, 1); } void __kprobes arch_remove_kprobe(struct kprobe *p) { } static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; } static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; } static void __kprobes set_current_kprobe(struct kprobe *p) { __this_cpu_write(current_kprobe, p); } /* * Interrupts need to be disabled before single-step mode is set, and not * reenabled until after single-step mode ends. * Without disabling interrupt on local CPU, there is a chance of * interrupt occurrence in the period of exception return and start of * out-of-line single-step, that result in wrongly single stepping * into the interrupt handler. */ static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb, struct pt_regs *regs) { kcb->saved_status = regs->status; regs->status &= ~SR_SPIE; } static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb, struct pt_regs *regs) { regs->status = kcb->saved_status; } static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter) { unsigned long slot; if (reenter) { save_previous_kprobe(kcb); set_current_kprobe(p); kcb->kprobe_status = KPROBE_REENTER; } else { kcb->kprobe_status = KPROBE_HIT_SS; } if (p->ainsn.api.insn) { /* prepare for single stepping */ slot = (unsigned long)p->ainsn.api.insn; /* IRQs and single stepping do not mix well. */ kprobes_save_local_irqflag(kcb, regs); instruction_pointer_set(regs, slot); } else { /* insn simulation */ arch_simulate_insn(p, regs); } } static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { switch (kcb->kprobe_status) { case KPROBE_HIT_SSDONE: case KPROBE_HIT_ACTIVE: kprobes_inc_nmissed_count(p); setup_singlestep(p, regs, kcb, 1); break; case KPROBE_HIT_SS: case KPROBE_REENTER: pr_warn("Failed to recover from reentered kprobes.\n"); dump_kprobe(p); BUG(); break; default: WARN_ON(1); return 0; } return 1; } static void __kprobes post_kprobe_handler(struct kprobe *cur, struct kprobe_ctlblk *kcb, struct pt_regs *regs) { /* return addr restore if non-branching insn */ if (cur->ainsn.api.restore != 0) regs->epc = cur->ainsn.api.restore; /* restore back original saved kprobe variables and continue */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); return; } /* call post handler */ kcb->kprobe_status = KPROBE_HIT_SSDONE; if (cur->post_handler) { /* post_handler can hit breakpoint and single step * again, so we enable D-flag for recursive exception. */ cur->post_handler(cur, regs, 0); } reset_current_kprobe(); } int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); switch (kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the ip points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ regs->epc = (unsigned long) cur->addr; BUG_ON(!instruction_pointer(regs)); if (kcb->kprobe_status == KPROBE_REENTER) restore_previous_kprobe(kcb); else { kprobes_restore_local_irqflag(kcb, regs); reset_current_kprobe(); } break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * In case the user-specified fault handler returned * zero, try to fix up. */ if (fixup_exception(regs)) return 1; } return 0; } bool __kprobes kprobe_breakpoint_handler(struct pt_regs *regs) { struct kprobe *p, *cur_kprobe; struct kprobe_ctlblk *kcb; unsigned long addr = instruction_pointer(regs); kcb = get_kprobe_ctlblk(); cur_kprobe = kprobe_running(); p = get_kprobe((kprobe_opcode_t *) addr); if (p) { if (cur_kprobe) { if (reenter_kprobe(p, regs, kcb)) return true; } else { /* Probe hit */ set_current_kprobe(p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; /* * If we have no pre-handler or it returned 0, we * continue with normal processing. If we have a * pre-handler and it returned non-zero, it will * modify the execution path and no need to single * stepping. Let's just reset current kprobe and exit. * * pre_handler can hit a breakpoint and can step thru * before return. */ if (!p->pre_handler || !p->pre_handler(p, regs)) setup_singlestep(p, regs, kcb, 0); else reset_current_kprobe(); } return true; } /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. * Return back to original instruction, and continue. */ return false; } bool __kprobes kprobe_single_step_handler(struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); unsigned long addr = instruction_pointer(regs); struct kprobe *cur = kprobe_running(); if (cur && (kcb->kprobe_status & (KPROBE_HIT_SS | KPROBE_REENTER)) && ((unsigned long)&cur->ainsn.api.insn[0] + GET_INSN_LENGTH(cur->opcode) == addr)) { kprobes_restore_local_irqflag(kcb, regs); post_kprobe_handler(cur, kcb, regs); return true; } /* not ours, kprobes should ignore it */ return false; } /* * Provide a blacklist of symbols identifying ranges which cannot be kprobed. * This blacklist is exposed to userspace via debugfs (kprobes/blacklist). */ int __init arch_populate_kprobe_blacklist(void) { int ret; ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, (unsigned long)__irqentry_text_end); return ret; } int __kprobes arch_trampoline_kprobe(struct kprobe *p) { return 0; } int __init arch_init_kprobes(void) { return 0; } |