Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 | /* Copyright 2009 - 2016 Freescale Semiconductor, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "qman_test.h" #include <linux/dma-mapping.h> #include <linux/delay.h> /* * Algorithm: * * Each cpu will have HP_PER_CPU "handlers" set up, each of which incorporates * an rx/tx pair of FQ objects (both of which are stashed on dequeue). The * organisation of FQIDs is such that the HP_PER_CPU*NUM_CPUS handlers will * shuttle a "hot potato" frame around them such that every forwarding action * moves it from one cpu to another. (The use of more than one handler per cpu * is to allow enough handlers/FQs to truly test the significance of caching - * ie. when cache-expiries are occurring.) * * The "hot potato" frame content will be HP_NUM_WORDS*4 bytes in size, and the * first and last words of the frame data will undergo a transformation step on * each forwarding action. To achieve this, each handler will be assigned a * 32-bit "mixer", that is produced using a 32-bit LFSR. When a frame is * received by a handler, the mixer of the expected sender is XOR'd into all * words of the entire frame, which is then validated against the original * values. Then, before forwarding, the entire frame is XOR'd with the mixer of * the current handler. Apart from validating that the frame is taking the * expected path, this also provides some quasi-realistic overheads to each * forwarding action - dereferencing *all* the frame data, computation, and * conditional branching. There is a "special" handler designated to act as the * instigator of the test by creating an enqueuing the "hot potato" frame, and * to determine when the test has completed by counting HP_LOOPS iterations. * * Init phases: * * 1. prepare each cpu's 'hp_cpu' struct using on_each_cpu(,,1) and link them * into 'hp_cpu_list'. Specifically, set processor_id, allocate HP_PER_CPU * handlers and link-list them (but do no other handler setup). * * 2. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each * hp_cpu's 'iterator' to point to its first handler. With each loop, * allocate rx/tx FQIDs and mixer values to the hp_cpu's iterator handler * and advance the iterator for the next loop. This includes a final fixup, * which connects the last handler to the first (and which is why phase 2 * and 3 are separate). * * 3. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each * hp_cpu's 'iterator' to point to its first handler. With each loop, * initialise FQ objects and advance the iterator for the next loop. * Moreover, do this initialisation on the cpu it applies to so that Rx FQ * initialisation targets the correct cpu. */ /* * helper to run something on all cpus (can't use on_each_cpu(), as that invokes * the fn from irq context, which is too restrictive). */ struct bstrap { int (*fn)(void); atomic_t started; }; static int bstrap_fn(void *bs) { struct bstrap *bstrap = bs; int err; atomic_inc(&bstrap->started); err = bstrap->fn(); if (err) return err; while (!kthread_should_stop()) msleep(20); return 0; } static int on_all_cpus(int (*fn)(void)) { int cpu; for_each_cpu(cpu, cpu_online_mask) { struct bstrap bstrap = { .fn = fn, .started = ATOMIC_INIT(0) }; struct task_struct *k = kthread_create(bstrap_fn, &bstrap, "hotpotato%d", cpu); int ret; if (IS_ERR(k)) return -ENOMEM; kthread_bind(k, cpu); wake_up_process(k); /* * If we call kthread_stop() before the "wake up" has had an * effect, then the thread may exit with -EINTR without ever * running the function. So poll until it's started before * requesting it to stop. */ while (!atomic_read(&bstrap.started)) msleep(20); ret = kthread_stop(k); if (ret) return ret; } return 0; } struct hp_handler { /* The following data is stashed when 'rx' is dequeued; */ /* -------------- */ /* The Rx FQ, dequeues of which will stash the entire hp_handler */ struct qman_fq rx; /* The Tx FQ we should forward to */ struct qman_fq tx; /* The value we XOR post-dequeue, prior to validating */ u32 rx_mixer; /* The value we XOR pre-enqueue, after validating */ u32 tx_mixer; /* what the hotpotato address should be on dequeue */ dma_addr_t addr; u32 *frame_ptr; /* The following data isn't (necessarily) stashed on dequeue; */ /* -------------- */ u32 fqid_rx, fqid_tx; /* list node for linking us into 'hp_cpu' */ struct list_head node; /* Just to check ... */ unsigned int processor_id; } ____cacheline_aligned; struct hp_cpu { /* identify the cpu we run on; */ unsigned int processor_id; /* root node for the per-cpu list of handlers */ struct list_head handlers; /* list node for linking us into 'hp_cpu_list' */ struct list_head node; /* * when repeatedly scanning 'hp_list', each time linking the n'th * handlers together, this is used as per-cpu iterator state */ struct hp_handler *iterator; }; /* Each cpu has one of these */ static DEFINE_PER_CPU(struct hp_cpu, hp_cpus); /* links together the hp_cpu structs, in first-come first-serve order. */ static LIST_HEAD(hp_cpu_list); static DEFINE_SPINLOCK(hp_lock); static unsigned int hp_cpu_list_length; /* the "special" handler, that starts and terminates the test. */ static struct hp_handler *special_handler; static int loop_counter; /* handlers are allocated out of this, so they're properly aligned. */ static struct kmem_cache *hp_handler_slab; /* this is the frame data */ static void *__frame_ptr; static u32 *frame_ptr; static dma_addr_t frame_dma; /* needed for dma_map*() */ static const struct qm_portal_config *pcfg; /* the main function waits on this */ static DECLARE_WAIT_QUEUE_HEAD(queue); #define HP_PER_CPU 2 #define HP_LOOPS 8 /* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */ #define HP_NUM_WORDS 80 /* First word of the LFSR-based frame data */ #define HP_FIRST_WORD 0xabbaf00d static inline u32 do_lfsr(u32 prev) { return (prev >> 1) ^ (-(prev & 1u) & 0xd0000001u); } static int allocate_frame_data(void) { u32 lfsr = HP_FIRST_WORD; int loop; if (!qman_dma_portal) { pr_crit("portal not available\n"); return -EIO; } pcfg = qman_get_qm_portal_config(qman_dma_portal); __frame_ptr = kmalloc(4 * HP_NUM_WORDS, GFP_KERNEL); if (!__frame_ptr) return -ENOMEM; frame_ptr = PTR_ALIGN(__frame_ptr, 64); for (loop = 0; loop < HP_NUM_WORDS; loop++) { frame_ptr[loop] = lfsr; lfsr = do_lfsr(lfsr); } frame_dma = dma_map_single(pcfg->dev, frame_ptr, 4 * HP_NUM_WORDS, DMA_BIDIRECTIONAL); if (dma_mapping_error(pcfg->dev, frame_dma)) { pr_crit("dma mapping failure\n"); kfree(__frame_ptr); return -EIO; } return 0; } static void deallocate_frame_data(void) { dma_unmap_single(pcfg->dev, frame_dma, 4 * HP_NUM_WORDS, DMA_BIDIRECTIONAL); kfree(__frame_ptr); } static inline int process_frame_data(struct hp_handler *handler, const struct qm_fd *fd) { u32 *p = handler->frame_ptr; u32 lfsr = HP_FIRST_WORD; int loop; if (qm_fd_addr_get64(fd) != handler->addr) { pr_crit("bad frame address, [%llX != %llX]\n", qm_fd_addr_get64(fd), handler->addr); return -EIO; } for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) { *p ^= handler->rx_mixer; if (*p != lfsr) { pr_crit("corrupt frame data"); return -EIO; } *p ^= handler->tx_mixer; lfsr = do_lfsr(lfsr); } return 0; } static enum qman_cb_dqrr_result normal_dqrr(struct qman_portal *portal, struct qman_fq *fq, const struct qm_dqrr_entry *dqrr, bool sched_napi) { struct hp_handler *handler = (struct hp_handler *)fq; if (process_frame_data(handler, &dqrr->fd)) { WARN_ON(1); goto skip; } if (qman_enqueue(&handler->tx, &dqrr->fd)) { pr_crit("qman_enqueue() failed"); WARN_ON(1); } skip: return qman_cb_dqrr_consume; } static enum qman_cb_dqrr_result special_dqrr(struct qman_portal *portal, struct qman_fq *fq, const struct qm_dqrr_entry *dqrr, bool sched_napi) { struct hp_handler *handler = (struct hp_handler *)fq; process_frame_data(handler, &dqrr->fd); if (++loop_counter < HP_LOOPS) { if (qman_enqueue(&handler->tx, &dqrr->fd)) { pr_crit("qman_enqueue() failed"); WARN_ON(1); goto skip; } } else { pr_info("Received final (%dth) frame\n", loop_counter); wake_up(&queue); } skip: return qman_cb_dqrr_consume; } static int create_per_cpu_handlers(void) { struct hp_handler *handler; int loop; struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus); hp_cpu->processor_id = smp_processor_id(); spin_lock(&hp_lock); list_add_tail(&hp_cpu->node, &hp_cpu_list); hp_cpu_list_length++; spin_unlock(&hp_lock); INIT_LIST_HEAD(&hp_cpu->handlers); for (loop = 0; loop < HP_PER_CPU; loop++) { handler = kmem_cache_alloc(hp_handler_slab, GFP_KERNEL); if (!handler) { pr_crit("kmem_cache_alloc() failed"); WARN_ON(1); return -EIO; } handler->processor_id = hp_cpu->processor_id; handler->addr = frame_dma; handler->frame_ptr = frame_ptr; list_add_tail(&handler->node, &hp_cpu->handlers); } return 0; } static int destroy_per_cpu_handlers(void) { struct list_head *loop, *tmp; struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus); spin_lock(&hp_lock); list_del(&hp_cpu->node); spin_unlock(&hp_lock); list_for_each_safe(loop, tmp, &hp_cpu->handlers) { u32 flags = 0; struct hp_handler *handler = list_entry(loop, struct hp_handler, node); if (qman_retire_fq(&handler->rx, &flags) || (flags & QMAN_FQ_STATE_BLOCKOOS)) { pr_crit("qman_retire_fq(rx) failed, flags: %x", flags); WARN_ON(1); return -EIO; } if (qman_oos_fq(&handler->rx)) { pr_crit("qman_oos_fq(rx) failed"); WARN_ON(1); return -EIO; } qman_destroy_fq(&handler->rx); qman_destroy_fq(&handler->tx); qman_release_fqid(handler->fqid_rx); list_del(&handler->node); kmem_cache_free(hp_handler_slab, handler); } return 0; } static inline u8 num_cachelines(u32 offset) { u8 res = (offset + (L1_CACHE_BYTES - 1)) / (L1_CACHE_BYTES); if (res > 3) return 3; return res; } #define STASH_DATA_CL \ num_cachelines(HP_NUM_WORDS * 4) #define STASH_CTX_CL \ num_cachelines(offsetof(struct hp_handler, fqid_rx)) static int init_handler(void *h) { struct qm_mcc_initfq opts; struct hp_handler *handler = h; int err; if (handler->processor_id != smp_processor_id()) { err = -EIO; goto failed; } /* Set up rx */ memset(&handler->rx, 0, sizeof(handler->rx)); if (handler == special_handler) handler->rx.cb.dqrr = special_dqrr; else handler->rx.cb.dqrr = normal_dqrr; err = qman_create_fq(handler->fqid_rx, 0, &handler->rx); if (err) { pr_crit("qman_create_fq(rx) failed"); goto failed; } memset(&opts, 0, sizeof(opts)); opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_CONTEXTA); opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING); qm_fqd_set_stashing(&opts.fqd, 0, STASH_DATA_CL, STASH_CTX_CL); err = qman_init_fq(&handler->rx, QMAN_INITFQ_FLAG_SCHED | QMAN_INITFQ_FLAG_LOCAL, &opts); if (err) { pr_crit("qman_init_fq(rx) failed"); goto failed; } /* Set up tx */ memset(&handler->tx, 0, sizeof(handler->tx)); err = qman_create_fq(handler->fqid_tx, QMAN_FQ_FLAG_NO_MODIFY, &handler->tx); if (err) { pr_crit("qman_create_fq(tx) failed"); goto failed; } return 0; failed: return err; } static void init_handler_cb(void *h) { if (init_handler(h)) WARN_ON(1); } static int init_phase2(void) { int loop; u32 fqid = 0; u32 lfsr = 0xdeadbeef; struct hp_cpu *hp_cpu; struct hp_handler *handler; for (loop = 0; loop < HP_PER_CPU; loop++) { list_for_each_entry(hp_cpu, &hp_cpu_list, node) { int err; if (!loop) hp_cpu->iterator = list_first_entry( &hp_cpu->handlers, struct hp_handler, node); else hp_cpu->iterator = list_entry( hp_cpu->iterator->node.next, struct hp_handler, node); /* Rx FQID is the previous handler's Tx FQID */ hp_cpu->iterator->fqid_rx = fqid; /* Allocate new FQID for Tx */ err = qman_alloc_fqid(&fqid); if (err) { pr_crit("qman_alloc_fqid() failed"); return err; } hp_cpu->iterator->fqid_tx = fqid; /* Rx mixer is the previous handler's Tx mixer */ hp_cpu->iterator->rx_mixer = lfsr; /* Get new mixer for Tx */ lfsr = do_lfsr(lfsr); hp_cpu->iterator->tx_mixer = lfsr; } } /* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */ hp_cpu = list_first_entry(&hp_cpu_list, struct hp_cpu, node); handler = list_first_entry(&hp_cpu->handlers, struct hp_handler, node); if (handler->fqid_rx != 0 || handler->rx_mixer != 0xdeadbeef) return 1; handler->fqid_rx = fqid; handler->rx_mixer = lfsr; /* and tag it as our "special" handler */ special_handler = handler; return 0; } static int init_phase3(void) { int loop, err; struct hp_cpu *hp_cpu; for (loop = 0; loop < HP_PER_CPU; loop++) { list_for_each_entry(hp_cpu, &hp_cpu_list, node) { if (!loop) hp_cpu->iterator = list_first_entry( &hp_cpu->handlers, struct hp_handler, node); else hp_cpu->iterator = list_entry( hp_cpu->iterator->node.next, struct hp_handler, node); preempt_disable(); if (hp_cpu->processor_id == smp_processor_id()) { err = init_handler(hp_cpu->iterator); if (err) return err; } else { smp_call_function_single(hp_cpu->processor_id, init_handler_cb, hp_cpu->iterator, 1); } preempt_enable(); } } return 0; } static int send_first_frame(void *ignore) { u32 *p = special_handler->frame_ptr; u32 lfsr = HP_FIRST_WORD; int loop, err; struct qm_fd fd; if (special_handler->processor_id != smp_processor_id()) { err = -EIO; goto failed; } memset(&fd, 0, sizeof(fd)); qm_fd_addr_set64(&fd, special_handler->addr); qm_fd_set_contig_big(&fd, HP_NUM_WORDS * 4); for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) { if (*p != lfsr) { err = -EIO; pr_crit("corrupt frame data"); goto failed; } *p ^= special_handler->tx_mixer; lfsr = do_lfsr(lfsr); } pr_info("Sending first frame\n"); err = qman_enqueue(&special_handler->tx, &fd); if (err) { pr_crit("qman_enqueue() failed"); goto failed; } return 0; failed: return err; } static void send_first_frame_cb(void *ignore) { if (send_first_frame(NULL)) WARN_ON(1); } int qman_test_stash(void) { int err; if (cpumask_weight(cpu_online_mask) < 2) { pr_info("%s(): skip - only 1 CPU\n", __func__); return 0; } pr_info("%s(): Starting\n", __func__); hp_cpu_list_length = 0; loop_counter = 0; hp_handler_slab = kmem_cache_create("hp_handler_slab", sizeof(struct hp_handler), L1_CACHE_BYTES, SLAB_HWCACHE_ALIGN, NULL); if (!hp_handler_slab) { err = -EIO; pr_crit("kmem_cache_create() failed"); goto failed; } err = allocate_frame_data(); if (err) goto failed; /* Init phase 1 */ pr_info("Creating %d handlers per cpu...\n", HP_PER_CPU); if (on_all_cpus(create_per_cpu_handlers)) { err = -EIO; pr_crit("on_each_cpu() failed"); goto failed; } pr_info("Number of cpus: %d, total of %d handlers\n", hp_cpu_list_length, hp_cpu_list_length * HP_PER_CPU); err = init_phase2(); if (err) goto failed; err = init_phase3(); if (err) goto failed; preempt_disable(); if (special_handler->processor_id == smp_processor_id()) { err = send_first_frame(NULL); if (err) goto failed; } else { smp_call_function_single(special_handler->processor_id, send_first_frame_cb, NULL, 1); } preempt_enable(); wait_event(queue, loop_counter == HP_LOOPS); deallocate_frame_data(); if (on_all_cpus(destroy_per_cpu_handlers)) { err = -EIO; pr_crit("on_each_cpu() failed"); goto failed; } kmem_cache_destroy(hp_handler_slab); pr_info("%s(): Finished\n", __func__); return 0; failed: WARN_ON(1); return err; } |