Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
 * Copyright 2020-2021 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */
#include <linux/types.h>
#include <linux/hmm.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/migrate.h>
#include "amdgpu_sync.h"
#include "amdgpu_object.h"
#include "amdgpu_vm.h"
#include "amdgpu_res_cursor.h"
#include "kfd_priv.h"
#include "kfd_svm.h"
#include "kfd_migrate.h"
#include "kfd_smi_events.h"

#ifdef dev_fmt
#undef dev_fmt
#endif
#define dev_fmt(fmt) "kfd_migrate: " fmt

static uint64_t
svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr)
{
	return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM);
}

static int
svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages,
		     dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags)
{
	struct amdgpu_device *adev = ring->adev;
	struct amdgpu_job *job;
	unsigned int num_dw, num_bytes;
	struct dma_fence *fence;
	uint64_t src_addr, dst_addr;
	uint64_t pte_flags;
	void *cpu_addr;
	int r;

	/* use gart window 0 */
	*gart_addr = adev->gmc.gart_start;

	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
	num_bytes = npages * 8;

	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
				     AMDGPU_FENCE_OWNER_UNDEFINED,
				     num_dw * 4 + num_bytes,
				     AMDGPU_IB_POOL_DELAYED,
				     &job);
	if (r)
		return r;

	src_addr = num_dw * 4;
	src_addr += job->ibs[0].gpu_addr;

	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
				dst_addr, num_bytes, false);

	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
	WARN_ON(job->ibs[0].length_dw > num_dw);

	pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
	pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED;
	if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO))
		pte_flags |= AMDGPU_PTE_WRITEABLE;
	pte_flags |= adev->gart.gart_pte_flags;

	cpu_addr = &job->ibs[0].ptr[num_dw];

	amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr);
	fence = amdgpu_job_submit(job);
	dma_fence_put(fence);

	return r;
}

/**
 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram
 *
 * @adev: amdgpu device the sdma ring running
 * @sys: system DMA pointer to be copied
 * @vram: vram destination DMA pointer
 * @npages: number of pages to copy
 * @direction: enum MIGRATION_COPY_DIR
 * @mfence: output, sdma fence to signal after sdma is done
 *
 * ram address uses GART table continuous entries mapping to ram pages,
 * vram address uses direct mapping of vram pages, which must have npages
 * number of continuous pages.
 * GART update and sdma uses same buf copy function ring, sdma is splited to
 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for
 * the last sdma finish fence which is returned to check copy memory is done.
 *
 * Context: Process context, takes and releases gtt_window_lock
 *
 * Return:
 * 0 - OK, otherwise error code
 */

static int
svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys,
			     uint64_t *vram, uint64_t npages,
			     enum MIGRATION_COPY_DIR direction,
			     struct dma_fence **mfence)
{
	const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE;
	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
	uint64_t gart_s, gart_d;
	struct dma_fence *next;
	uint64_t size;
	int r;

	mutex_lock(&adev->mman.gtt_window_lock);

	while (npages) {
		size = min(GTT_MAX_PAGES, npages);

		if (direction == FROM_VRAM_TO_RAM) {
			gart_s = svm_migrate_direct_mapping_addr(adev, *vram);
			r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0);

		} else if (direction == FROM_RAM_TO_VRAM) {
			r = svm_migrate_gart_map(ring, size, sys, &gart_s,
						 KFD_IOCTL_SVM_FLAG_GPU_RO);
			gart_d = svm_migrate_direct_mapping_addr(adev, *vram);
		}
		if (r) {
			dev_err(adev->dev, "fail %d create gart mapping\n", r);
			goto out_unlock;
		}

		r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE,
				       NULL, &next, false, true, false);
		if (r) {
			dev_err(adev->dev, "fail %d to copy memory\n", r);
			goto out_unlock;
		}

		dma_fence_put(*mfence);
		*mfence = next;
		npages -= size;
		if (npages) {
			sys += size;
			vram += size;
		}
	}

out_unlock:
	mutex_unlock(&adev->mman.gtt_window_lock);

	return r;
}

/**
 * svm_migrate_copy_done - wait for memory copy sdma is done
 *
 * @adev: amdgpu device the sdma memory copy is executing on
 * @mfence: migrate fence
 *
 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma
 * operations, this is the last sdma operation fence.
 *
 * Context: called after svm_migrate_copy_memory
 *
 * Return:
 * 0		- success
 * otherwise	- error code from dma fence signal
 */
static int
svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence)
{
	int r = 0;

	if (mfence) {
		r = dma_fence_wait(mfence, false);
		dma_fence_put(mfence);
		pr_debug("sdma copy memory fence done\n");
	}

	return r;
}

unsigned long
svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr)
{
	return (addr + adev->kfd.pgmap.range.start) >> PAGE_SHIFT;
}

static void
svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn)
{
	struct page *page;

	page = pfn_to_page(pfn);
	svm_range_bo_ref(prange->svm_bo);
	page->zone_device_data = prange->svm_bo;
	zone_device_page_init(page);
}

static void
svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr)
{
	struct page *page;

	page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr));
	unlock_page(page);
	put_page(page);
}

static unsigned long
svm_migrate_addr(struct amdgpu_device *adev, struct page *page)
{
	unsigned long addr;

	addr = page_to_pfn(page) << PAGE_SHIFT;
	return (addr - adev->kfd.pgmap.range.start);
}

static struct page *
svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr)
{
	struct page *page;

	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
	if (page)
		lock_page(page);

	return page;
}

static void svm_migrate_put_sys_page(unsigned long addr)
{
	struct page *page;

	page = pfn_to_page(addr >> PAGE_SHIFT);
	unlock_page(page);
	put_page(page);
}

static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate)
{
	unsigned long cpages = 0;
	unsigned long i;

	for (i = 0; i < migrate->npages; i++) {
		if (migrate->src[i] & MIGRATE_PFN_VALID &&
		    migrate->src[i] & MIGRATE_PFN_MIGRATE)
			cpages++;
	}
	return cpages;
}

static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate)
{
	unsigned long upages = 0;
	unsigned long i;

	for (i = 0; i < migrate->npages; i++) {
		if (migrate->src[i] & MIGRATE_PFN_VALID &&
		    !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			upages++;
	}
	return upages;
}

static int
svm_migrate_copy_to_vram(struct kfd_node *node, struct svm_range *prange,
			 struct migrate_vma *migrate, struct dma_fence **mfence,
			 dma_addr_t *scratch, uint64_t ttm_res_offset)
{
	uint64_t npages = migrate->cpages;
	struct amdgpu_device *adev = node->adev;
	struct device *dev = adev->dev;
	struct amdgpu_res_cursor cursor;
	dma_addr_t *src;
	uint64_t *dst;
	uint64_t i, j;
	int r;

	pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start,
		 prange->last, ttm_res_offset);

	src = scratch;
	dst = (uint64_t *)(scratch + npages);

	amdgpu_res_first(prange->ttm_res, ttm_res_offset,
			 npages << PAGE_SHIFT, &cursor);
	for (i = j = 0; i < npages; i++) {
		struct page *spage;

		dst[i] = cursor.start + (j << PAGE_SHIFT);
		migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]);
		svm_migrate_get_vram_page(prange, migrate->dst[i]);
		migrate->dst[i] = migrate_pfn(migrate->dst[i]);

		spage = migrate_pfn_to_page(migrate->src[i]);
		if (spage && !is_zone_device_page(spage)) {
			src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE,
					      DMA_TO_DEVICE);
			r = dma_mapping_error(dev, src[i]);
			if (r) {
				dev_err(dev, "%s: fail %d dma_map_page\n",
					__func__, r);
				goto out_free_vram_pages;
			}
		} else {
			if (j) {
				r = svm_migrate_copy_memory_gart(
						adev, src + i - j,
						dst + i - j, j,
						FROM_RAM_TO_VRAM,
						mfence);
				if (r)
					goto out_free_vram_pages;
				amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT);
				j = 0;
			} else {
				amdgpu_res_next(&cursor, PAGE_SIZE);
			}
			continue;
		}

		pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n",
				     src[i] >> PAGE_SHIFT, page_to_pfn(spage));

		if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) {
			r = svm_migrate_copy_memory_gart(adev, src + i - j,
							 dst + i - j, j + 1,
							 FROM_RAM_TO_VRAM,
							 mfence);
			if (r)
				goto out_free_vram_pages;
			amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE);
			j = 0;
		} else {
			j++;
		}
	}

	r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j,
					 FROM_RAM_TO_VRAM, mfence);

out_free_vram_pages:
	if (r) {
		pr_debug("failed %d to copy memory to vram\n", r);
		while (i--) {
			svm_migrate_put_vram_page(adev, dst[i]);
			migrate->dst[i] = 0;
		}
	}

#ifdef DEBUG_FORCE_MIXED_DOMAINS
	for (i = 0, j = 0; i < npages; i += 4, j++) {
		if (j & 1)
			continue;
		svm_migrate_put_vram_page(adev, dst[i]);
		migrate->dst[i] = 0;
		svm_migrate_put_vram_page(adev, dst[i + 1]);
		migrate->dst[i + 1] = 0;
		svm_migrate_put_vram_page(adev, dst[i + 2]);
		migrate->dst[i + 2] = 0;
		svm_migrate_put_vram_page(adev, dst[i + 3]);
		migrate->dst[i + 3] = 0;
	}
#endif

	return r;
}

static long
svm_migrate_vma_to_vram(struct kfd_node *node, struct svm_range *prange,
			struct vm_area_struct *vma, uint64_t start,
			uint64_t end, uint32_t trigger, uint64_t ttm_res_offset)
{
	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
	uint64_t npages = (end - start) >> PAGE_SHIFT;
	struct amdgpu_device *adev = node->adev;
	struct kfd_process_device *pdd;
	struct dma_fence *mfence = NULL;
	struct migrate_vma migrate = { 0 };
	unsigned long cpages = 0;
	dma_addr_t *scratch;
	void *buf;
	int r = -ENOMEM;

	memset(&migrate, 0, sizeof(migrate));
	migrate.vma = vma;
	migrate.start = start;
	migrate.end = end;
	migrate.flags = MIGRATE_VMA_SELECT_SYSTEM;
	migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);

	buf = kvcalloc(npages,
		       2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t),
		       GFP_KERNEL);
	if (!buf)
		goto out;

	migrate.src = buf;
	migrate.dst = migrate.src + npages;
	scratch = (dma_addr_t *)(migrate.dst + npages);

	kfd_smi_event_migration_start(node, p->lead_thread->pid,
				      start >> PAGE_SHIFT, end >> PAGE_SHIFT,
				      0, node->id, prange->prefetch_loc,
				      prange->preferred_loc, trigger);

	r = migrate_vma_setup(&migrate);
	if (r) {
		dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
			__func__, r, prange->start, prange->last);
		goto out_free;
	}

	cpages = migrate.cpages;
	if (!cpages) {
		pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n",
			 prange->start, prange->last);
		goto out_free;
	}
	if (cpages != npages)
		pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n",
			 cpages, npages);
	else
		pr_debug("0x%lx pages migrated\n", cpages);

	r = svm_migrate_copy_to_vram(node, prange, &migrate, &mfence, scratch, ttm_res_offset);
	migrate_vma_pages(&migrate);

	pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n",
		svm_migrate_successful_pages(&migrate), cpages, migrate.npages);

	svm_migrate_copy_done(adev, mfence);
	migrate_vma_finalize(&migrate);

	kfd_smi_event_migration_end(node, p->lead_thread->pid,
				    start >> PAGE_SHIFT, end >> PAGE_SHIFT,
				    0, node->id, trigger);

	svm_range_dma_unmap(adev->dev, scratch, 0, npages);

out_free:
	kvfree(buf);
out:
	if (!r && cpages) {
		pdd = svm_range_get_pdd_by_node(prange, node);
		if (pdd)
			WRITE_ONCE(pdd->page_in, pdd->page_in + cpages);

		return cpages;
	}
	return r;
}

/**
 * svm_migrate_ram_to_vram - migrate svm range from system to device
 * @prange: range structure
 * @best_loc: the device to migrate to
 * @mm: the process mm structure
 * @trigger: reason of migration
 *
 * Context: Process context, caller hold mmap read lock, svms lock, prange lock
 *
 * Return:
 * 0 - OK, otherwise error code
 */
static int
svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc,
			struct mm_struct *mm, uint32_t trigger)
{
	unsigned long addr, start, end;
	struct vm_area_struct *vma;
	uint64_t ttm_res_offset;
	struct kfd_node *node;
	unsigned long cpages = 0;
	long r = 0;

	if (prange->actual_loc == best_loc) {
		pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n",
			 prange->svms, prange->start, prange->last, best_loc);
		return 0;
	}

	node = svm_range_get_node_by_id(prange, best_loc);
	if (!node) {
		pr_debug("failed to get kfd node by id 0x%x\n", best_loc);
		return -ENODEV;
	}

	pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms,
		 prange->start, prange->last, best_loc);

	start = prange->start << PAGE_SHIFT;
	end = (prange->last + 1) << PAGE_SHIFT;

	r = amdgpu_amdkfd_reserve_mem_limit(node->adev,
					prange->npages * PAGE_SIZE,
					KFD_IOC_ALLOC_MEM_FLAGS_VRAM,
					node->xcp ? node->xcp->id : 0);
	if (r) {
		dev_dbg(node->adev->dev, "failed to reserve VRAM, r: %ld\n", r);
		return -ENOSPC;
	}

	r = svm_range_vram_node_new(node, prange, true);
	if (r) {
		dev_dbg(node->adev->dev, "fail %ld to alloc vram\n", r);
		goto out;
	}
	ttm_res_offset = prange->offset << PAGE_SHIFT;

	for (addr = start; addr < end;) {
		unsigned long next;

		vma = vma_lookup(mm, addr);
		if (!vma)
			break;

		next = min(vma->vm_end, end);
		r = svm_migrate_vma_to_vram(node, prange, vma, addr, next, trigger, ttm_res_offset);
		if (r < 0) {
			pr_debug("failed %ld to migrate\n", r);
			break;
		} else {
			cpages += r;
		}
		ttm_res_offset += next - addr;
		addr = next;
	}

	if (cpages) {
		prange->actual_loc = best_loc;
		svm_range_free_dma_mappings(prange, true);
	} else {
		svm_range_vram_node_free(prange);
	}

out:
	amdgpu_amdkfd_unreserve_mem_limit(node->adev,
					prange->npages * PAGE_SIZE,
					KFD_IOC_ALLOC_MEM_FLAGS_VRAM,
					node->xcp ? node->xcp->id : 0);
	return r < 0 ? r : 0;
}

static void svm_migrate_page_free(struct page *page)
{
	struct svm_range_bo *svm_bo = page->zone_device_data;

	if (svm_bo) {
		pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref));
		svm_range_bo_unref_async(svm_bo);
	}
}

static int
svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange,
			struct migrate_vma *migrate, struct dma_fence **mfence,
			dma_addr_t *scratch, uint64_t npages)
{
	struct device *dev = adev->dev;
	uint64_t *src;
	dma_addr_t *dst;
	struct page *dpage;
	uint64_t i = 0, j;
	uint64_t addr;
	int r = 0;

	pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start,
		 prange->last);

	addr = prange->start << PAGE_SHIFT;

	src = (uint64_t *)(scratch + npages);
	dst = scratch;

	for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) {
		struct page *spage;

		spage = migrate_pfn_to_page(migrate->src[i]);
		if (!spage || !is_zone_device_page(spage)) {
			pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n",
				 prange->svms, prange->start, prange->last);
			if (j) {
				r = svm_migrate_copy_memory_gart(adev, dst + i - j,
								 src + i - j, j,
								 FROM_VRAM_TO_RAM,
								 mfence);
				if (r)
					goto out_oom;
				j = 0;
			}
			continue;
		}
		src[i] = svm_migrate_addr(adev, spage);
		if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) {
			r = svm_migrate_copy_memory_gart(adev, dst + i - j,
							 src + i - j, j,
							 FROM_VRAM_TO_RAM,
							 mfence);
			if (r)
				goto out_oom;
			j = 0;
		}

		dpage = svm_migrate_get_sys_page(migrate->vma, addr);
		if (!dpage) {
			pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n",
				 prange->svms, prange->start, prange->last);
			r = -ENOMEM;
			goto out_oom;
		}

		dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE);
		r = dma_mapping_error(dev, dst[i]);
		if (r) {
			dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r);
			goto out_oom;
		}

		pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n",
				     dst[i] >> PAGE_SHIFT, page_to_pfn(dpage));

		migrate->dst[i] = migrate_pfn(page_to_pfn(dpage));
		j++;
	}

	r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j,
					 FROM_VRAM_TO_RAM, mfence);

out_oom:
	if (r) {
		pr_debug("failed %d copy to ram\n", r);
		while (i--) {
			svm_migrate_put_sys_page(dst[i]);
			migrate->dst[i] = 0;
		}
	}

	return r;
}

/**
 * svm_migrate_vma_to_ram - migrate range inside one vma from device to system
 *
 * @prange: svm range structure
 * @vma: vm_area_struct that range [start, end] belongs to
 * @start: range start virtual address in pages
 * @end: range end virtual address in pages
 * @node: kfd node device to migrate from
 * @trigger: reason of migration
 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback
 *
 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex
 *
 * Return:
 *   0 - success with all pages migrated
 *   negative values - indicate error
 *   positive values - partial migration, number of pages not migrated
 */
static long
svm_migrate_vma_to_ram(struct kfd_node *node, struct svm_range *prange,
		       struct vm_area_struct *vma, uint64_t start, uint64_t end,
		       uint32_t trigger, struct page *fault_page)
{
	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
	uint64_t npages = (end - start) >> PAGE_SHIFT;
	unsigned long upages = npages;
	unsigned long cpages = 0;
	struct amdgpu_device *adev = node->adev;
	struct kfd_process_device *pdd;
	struct dma_fence *mfence = NULL;
	struct migrate_vma migrate = { 0 };
	dma_addr_t *scratch;
	void *buf;
	int r = -ENOMEM;

	memset(&migrate, 0, sizeof(migrate));
	migrate.vma = vma;
	migrate.start = start;
	migrate.end = end;
	migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);
	if (adev->gmc.xgmi.connected_to_cpu)
		migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT;
	else
		migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;

	buf = kvcalloc(npages,
		       2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t),
		       GFP_KERNEL);
	if (!buf)
		goto out;

	migrate.src = buf;
	migrate.dst = migrate.src + npages;
	migrate.fault_page = fault_page;
	scratch = (dma_addr_t *)(migrate.dst + npages);

	kfd_smi_event_migration_start(node, p->lead_thread->pid,
				      start >> PAGE_SHIFT, end >> PAGE_SHIFT,
				      node->id, 0, prange->prefetch_loc,
				      prange->preferred_loc, trigger);

	r = migrate_vma_setup(&migrate);
	if (r) {
		dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
			__func__, r, prange->start, prange->last);
		goto out_free;
	}

	cpages = migrate.cpages;
	if (!cpages) {
		pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n",
			 prange->start, prange->last);
		upages = svm_migrate_unsuccessful_pages(&migrate);
		goto out_free;
	}
	if (cpages != npages)
		pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n",
			 cpages, npages);
	else
		pr_debug("0x%lx pages migrated\n", cpages);

	r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence,
				    scratch, npages);
	migrate_vma_pages(&migrate);

	upages = svm_migrate_unsuccessful_pages(&migrate);
	pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n",
		 upages, cpages, migrate.npages);

	svm_migrate_copy_done(adev, mfence);
	migrate_vma_finalize(&migrate);

	kfd_smi_event_migration_end(node, p->lead_thread->pid,
				    start >> PAGE_SHIFT, end >> PAGE_SHIFT,
				    node->id, 0, trigger);

	svm_range_dma_unmap(adev->dev, scratch, 0, npages);

out_free:
	kvfree(buf);
out:
	if (!r && cpages) {
		pdd = svm_range_get_pdd_by_node(prange, node);
		if (pdd)
			WRITE_ONCE(pdd->page_out, pdd->page_out + cpages);
	}
	return r ? r : upages;
}

/**
 * svm_migrate_vram_to_ram - migrate svm range from device to system
 * @prange: range structure
 * @mm: process mm, use current->mm if NULL
 * @trigger: reason of migration
 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback
 *
 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex
 *
 * Return:
 * 0 - OK, otherwise error code
 */
int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm,
			    uint32_t trigger, struct page *fault_page)
{
	struct kfd_node *node;
	struct vm_area_struct *vma;
	unsigned long addr;
	unsigned long start;
	unsigned long end;
	unsigned long upages = 0;
	long r = 0;

	if (!prange->actual_loc) {
		pr_debug("[0x%lx 0x%lx] already migrated to ram\n",
			 prange->start, prange->last);
		return 0;
	}

	node = svm_range_get_node_by_id(prange, prange->actual_loc);
	if (!node) {
		pr_debug("failed to get kfd node by id 0x%x\n", prange->actual_loc);
		return -ENODEV;
	}
	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n",
		 prange->svms, prange, prange->start, prange->last,
		 prange->actual_loc);

	start = prange->start << PAGE_SHIFT;
	end = (prange->last + 1) << PAGE_SHIFT;

	for (addr = start; addr < end;) {
		unsigned long next;

		vma = vma_lookup(mm, addr);
		if (!vma) {
			pr_debug("failed to find vma for prange %p\n", prange);
			r = -EFAULT;
			break;
		}

		next = min(vma->vm_end, end);
		r = svm_migrate_vma_to_ram(node, prange, vma, addr, next, trigger,
			fault_page);
		if (r < 0) {
			pr_debug("failed %ld to migrate prange %p\n", r, prange);
			break;
		} else {
			upages += r;
		}
		addr = next;
	}

	if (r >= 0 && !upages) {
		svm_range_vram_node_free(prange);
		prange->actual_loc = 0;
	}

	return r < 0 ? r : 0;
}

/**
 * svm_migrate_vram_to_vram - migrate svm range from device to device
 * @prange: range structure
 * @best_loc: the device to migrate to
 * @mm: process mm, use current->mm if NULL
 * @trigger: reason of migration
 *
 * Context: Process context, caller hold mmap read lock, svms lock, prange lock
 *
 * Return:
 * 0 - OK, otherwise error code
 */
static int
svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc,
			 struct mm_struct *mm, uint32_t trigger)
{
	int r, retries = 3;

	/*
	 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip
	 * system memory as migration bridge
	 */

	pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc);

	do {
		r = svm_migrate_vram_to_ram(prange, mm, trigger, NULL);
		if (r)
			return r;
	} while (prange->actual_loc && --retries);

	if (prange->actual_loc)
		return -EDEADLK;

	return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger);
}

int
svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc,
		    struct mm_struct *mm, uint32_t trigger)
{
	if  (!prange->actual_loc)
		return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger);
	else
		return svm_migrate_vram_to_vram(prange, best_loc, mm, trigger);

}

/**
 * svm_migrate_to_ram - CPU page fault handler
 * @vmf: CPU vm fault vma, address
 *
 * Context: vm fault handler, caller holds the mmap read lock
 *
 * Return:
 * 0 - OK
 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault
 */
static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf)
{
	unsigned long addr = vmf->address;
	struct svm_range_bo *svm_bo;
	enum svm_work_list_ops op;
	struct svm_range *parent;
	struct svm_range *prange;
	struct kfd_process *p;
	struct mm_struct *mm;
	int r = 0;

	svm_bo = vmf->page->zone_device_data;
	if (!svm_bo) {
		pr_debug("failed get device page at addr 0x%lx\n", addr);
		return VM_FAULT_SIGBUS;
	}
	if (!mmget_not_zero(svm_bo->eviction_fence->mm)) {
		pr_debug("addr 0x%lx of process mm is destroyed\n", addr);
		return VM_FAULT_SIGBUS;
	}

	mm = svm_bo->eviction_fence->mm;
	if (mm != vmf->vma->vm_mm)
		pr_debug("addr 0x%lx is COW mapping in child process\n", addr);

	p = kfd_lookup_process_by_mm(mm);
	if (!p) {
		pr_debug("failed find process at fault address 0x%lx\n", addr);
		r = VM_FAULT_SIGBUS;
		goto out_mmput;
	}
	if (READ_ONCE(p->svms.faulting_task) == current) {
		pr_debug("skipping ram migration\n");
		r = 0;
		goto out_unref_process;
	}

	pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr);
	addr >>= PAGE_SHIFT;

	mutex_lock(&p->svms.lock);

	prange = svm_range_from_addr(&p->svms, addr, &parent);
	if (!prange) {
		pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr);
		r = -EFAULT;
		goto out_unlock_svms;
	}

	mutex_lock(&parent->migrate_mutex);
	if (prange != parent)
		mutex_lock_nested(&prange->migrate_mutex, 1);

	if (!prange->actual_loc)
		goto out_unlock_prange;

	svm_range_lock(parent);
	if (prange != parent)
		mutex_lock_nested(&prange->lock, 1);
	r = svm_range_split_by_granularity(p, mm, addr, parent, prange);
	if (prange != parent)
		mutex_unlock(&prange->lock);
	svm_range_unlock(parent);
	if (r) {
		pr_debug("failed %d to split range by granularity\n", r);
		goto out_unlock_prange;
	}

	r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm,
				    KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU,
				    vmf->page);
	if (r)
		pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n",
			 r, prange->svms, prange, prange->start, prange->last);

	/* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
	if (p->xnack_enabled && parent == prange)
		op = SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP;
	else
		op = SVM_OP_UPDATE_RANGE_NOTIFIER;
	svm_range_add_list_work(&p->svms, parent, mm, op);
	schedule_deferred_list_work(&p->svms);

out_unlock_prange:
	if (prange != parent)
		mutex_unlock(&prange->migrate_mutex);
	mutex_unlock(&parent->migrate_mutex);
out_unlock_svms:
	mutex_unlock(&p->svms.lock);
out_unref_process:
	pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr);
	kfd_unref_process(p);
out_mmput:
	mmput(mm);
	return r ? VM_FAULT_SIGBUS : 0;
}

static const struct dev_pagemap_ops svm_migrate_pgmap_ops = {
	.page_free		= svm_migrate_page_free,
	.migrate_to_ram		= svm_migrate_to_ram,
};

/* Each VRAM page uses sizeof(struct page) on system memory */
#define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page))

int kgd2kfd_init_zone_device(struct amdgpu_device *adev)
{
	struct amdgpu_kfd_dev *kfddev = &adev->kfd;
	struct dev_pagemap *pgmap;
	struct resource *res = NULL;
	unsigned long size;
	void *r;

	/* Page migration works on gfx9 or newer */
	if (adev->ip_versions[GC_HWIP][0] < IP_VERSION(9, 0, 1))
		return -EINVAL;

	if (adev->gmc.is_app_apu)
		return 0;

	pgmap = &kfddev->pgmap;
	memset(pgmap, 0, sizeof(*pgmap));

	/* TODO: register all vram to HMM for now.
	 * should remove reserved size
	 */
	size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20);
	if (adev->gmc.xgmi.connected_to_cpu) {
		pgmap->range.start = adev->gmc.aper_base;
		pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1;
		pgmap->type = MEMORY_DEVICE_COHERENT;
	} else {
		res = devm_request_free_mem_region(adev->dev, &iomem_resource, size);
		if (IS_ERR(res))
			return PTR_ERR(res);
		pgmap->range.start = res->start;
		pgmap->range.end = res->end;
		pgmap->type = MEMORY_DEVICE_PRIVATE;
	}

	pgmap->nr_range = 1;
	pgmap->ops = &svm_migrate_pgmap_ops;
	pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev);
	pgmap->flags = 0;
	/* Device manager releases device-specific resources, memory region and
	 * pgmap when driver disconnects from device.
	 */
	r = devm_memremap_pages(adev->dev, pgmap);
	if (IS_ERR(r)) {
		pr_err("failed to register HMM device memory\n");
		if (pgmap->type == MEMORY_DEVICE_PRIVATE)
			devm_release_mem_region(adev->dev, res->start, resource_size(res));
		/* Disable SVM support capability */
		pgmap->type = 0;
		return PTR_ERR(r);
	}

	pr_debug("reserve %ldMB system memory for VRAM pages struct\n",
		 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20);

	amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size));

	pr_info("HMM registered %ldMB device memory\n", size >> 20);

	return 0;
}