Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/mach-mmp/time.c * * Support for clocksource and clockevents * * Copyright (C) 2008 Marvell International Ltd. * All rights reserved. * * 2008-04-11: Jason Chagas <Jason.chagas@marvell.com> * 2008-10-08: Bin Yang <bin.yang@marvell.com> * * The timers module actually includes three timers, each timer with up to * three match comparators. Timer #0 is used here in free-running mode as * the clock source, and match comparator #1 used as clock event device. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/clockchips.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <asm/mach/time.h> #include "regs-timers.h" #include <linux/soc/mmp/cputype.h> #define MAX_DELTA (0xfffffffe) #define MIN_DELTA (16) static void __iomem *mmp_timer_base; /* * Read the timer through the CVWR register. Delay is required after requesting * a read. The CR register cannot be directly read due to metastability issues * documented in the PXA168 software manual. */ static inline uint32_t timer_read(void) { uint32_t val; int delay = 3; __raw_writel(1, mmp_timer_base + TMR_CVWR(1)); while (delay--) val = __raw_readl(mmp_timer_base + TMR_CVWR(1)); return val; } static u64 notrace mmp_read_sched_clock(void) { return timer_read(); } static irqreturn_t timer_interrupt(int irq, void *dev_id) { struct clock_event_device *c = dev_id; /* * Clear pending interrupt status. */ __raw_writel(0x01, mmp_timer_base + TMR_ICR(0)); /* * Disable timer 0. */ __raw_writel(0x02, mmp_timer_base + TMR_CER); c->event_handler(c); return IRQ_HANDLED; } static int timer_set_next_event(unsigned long delta, struct clock_event_device *dev) { unsigned long flags; local_irq_save(flags); /* * Disable timer 0. */ __raw_writel(0x02, mmp_timer_base + TMR_CER); /* * Clear and enable timer match 0 interrupt. */ __raw_writel(0x01, mmp_timer_base + TMR_ICR(0)); __raw_writel(0x01, mmp_timer_base + TMR_IER(0)); /* * Setup new clockevent timer value. */ __raw_writel(delta - 1, mmp_timer_base + TMR_TN_MM(0, 0)); /* * Enable timer 0. */ __raw_writel(0x03, mmp_timer_base + TMR_CER); local_irq_restore(flags); return 0; } static int timer_set_shutdown(struct clock_event_device *evt) { unsigned long flags; local_irq_save(flags); /* disable the matching interrupt */ __raw_writel(0x00, mmp_timer_base + TMR_IER(0)); local_irq_restore(flags); return 0; } static struct clock_event_device ckevt = { .name = "clockevent", .features = CLOCK_EVT_FEAT_ONESHOT, .rating = 200, .set_next_event = timer_set_next_event, .set_state_shutdown = timer_set_shutdown, .set_state_oneshot = timer_set_shutdown, }; static u64 clksrc_read(struct clocksource *cs) { return timer_read(); } static struct clocksource cksrc = { .name = "clocksource", .rating = 200, .read = clksrc_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static void __init timer_config(void) { uint32_t ccr = __raw_readl(mmp_timer_base + TMR_CCR); __raw_writel(0x0, mmp_timer_base + TMR_CER); /* disable */ ccr &= (cpu_is_mmp2() || cpu_is_mmp3()) ? (TMR_CCR_CS_0(0) | TMR_CCR_CS_1(0)) : (TMR_CCR_CS_0(3) | TMR_CCR_CS_1(3)); __raw_writel(ccr, mmp_timer_base + TMR_CCR); /* set timer 0 to periodic mode, and timer 1 to free-running mode */ __raw_writel(0x2, mmp_timer_base + TMR_CMR); __raw_writel(0x1, mmp_timer_base + TMR_PLCR(0)); /* periodic */ __raw_writel(0x7, mmp_timer_base + TMR_ICR(0)); /* clear status */ __raw_writel(0x0, mmp_timer_base + TMR_IER(0)); __raw_writel(0x0, mmp_timer_base + TMR_PLCR(1)); /* free-running */ __raw_writel(0x7, mmp_timer_base + TMR_ICR(1)); /* clear status */ __raw_writel(0x0, mmp_timer_base + TMR_IER(1)); /* enable timer 1 counter */ __raw_writel(0x2, mmp_timer_base + TMR_CER); } static void __init mmp_timer_init(int irq, unsigned long rate) { timer_config(); sched_clock_register(mmp_read_sched_clock, 32, rate); ckevt.cpumask = cpumask_of(0); if (request_irq(irq, timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "timer", &ckevt)) pr_err("Failed to request irq %d (timer)\n", irq); clocksource_register_hz(&cksrc, rate); clockevents_config_and_register(&ckevt, rate, MIN_DELTA, MAX_DELTA); } static int __init mmp_dt_init_timer(struct device_node *np) { struct clk *clk; int irq, ret; unsigned long rate; clk = of_clk_get(np, 0); if (!IS_ERR(clk)) { ret = clk_prepare_enable(clk); if (ret) return ret; rate = clk_get_rate(clk); } else if (cpu_is_pj4()) { rate = 6500000; } else { rate = 3250000; } irq = irq_of_parse_and_map(np, 0); if (!irq) return -EINVAL; mmp_timer_base = of_iomap(np, 0); if (!mmp_timer_base) return -ENOMEM; mmp_timer_init(irq, rate); return 0; } TIMER_OF_DECLARE(mmp_timer, "mrvl,mmp-timer", mmp_dt_init_timer); |