// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020-2023 Intel Corporation
*/
#include <linux/dma-buf.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/set_memory.h>
#include <linux/xarray.h>
#include <drm/drm_cache.h>
#include <drm/drm_debugfs.h>
#include <drm/drm_file.h>
#include <drm/drm_utils.h>
#include "ivpu_drv.h"
#include "ivpu_gem.h"
#include "ivpu_hw.h"
#include "ivpu_mmu.h"
#include "ivpu_mmu_context.h"
MODULE_IMPORT_NS(DMA_BUF);
static const struct drm_gem_object_funcs ivpu_gem_funcs;
static struct lock_class_key prime_bo_lock_class_key;
static int __must_check prime_alloc_pages_locked(struct ivpu_bo *bo)
{
/* Pages are managed by the underlying dma-buf */
return 0;
}
static void prime_free_pages_locked(struct ivpu_bo *bo)
{
/* Pages are managed by the underlying dma-buf */
}
static int prime_map_pages_locked(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
struct sg_table *sgt;
sgt = dma_buf_map_attachment_unlocked(bo->base.import_attach, DMA_BIDIRECTIONAL);
if (IS_ERR(sgt)) {
ivpu_err(vdev, "Failed to map attachment: %ld\n", PTR_ERR(sgt));
return PTR_ERR(sgt);
}
bo->sgt = sgt;
return 0;
}
static void prime_unmap_pages_locked(struct ivpu_bo *bo)
{
dma_buf_unmap_attachment_unlocked(bo->base.import_attach, bo->sgt, DMA_BIDIRECTIONAL);
bo->sgt = NULL;
}
static const struct ivpu_bo_ops prime_ops = {
.type = IVPU_BO_TYPE_PRIME,
.name = "prime",
.alloc_pages = prime_alloc_pages_locked,
.free_pages = prime_free_pages_locked,
.map_pages = prime_map_pages_locked,
.unmap_pages = prime_unmap_pages_locked,
};
static int __must_check shmem_alloc_pages_locked(struct ivpu_bo *bo)
{
int npages = bo->base.size >> PAGE_SHIFT;
struct page **pages;
pages = drm_gem_get_pages(&bo->base);
if (IS_ERR(pages))
return PTR_ERR(pages);
if (bo->flags & DRM_IVPU_BO_WC)
set_pages_array_wc(pages, npages);
else if (bo->flags & DRM_IVPU_BO_UNCACHED)
set_pages_array_uc(pages, npages);
bo->pages = pages;
return 0;
}
static void shmem_free_pages_locked(struct ivpu_bo *bo)
{
if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED)
set_pages_array_wb(bo->pages, bo->base.size >> PAGE_SHIFT);
drm_gem_put_pages(&bo->base, bo->pages, true, false);
bo->pages = NULL;
}
static int ivpu_bo_map_pages_locked(struct ivpu_bo *bo)
{
int npages = bo->base.size >> PAGE_SHIFT;
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
struct sg_table *sgt;
int ret;
sgt = drm_prime_pages_to_sg(&vdev->drm, bo->pages, npages);
if (IS_ERR(sgt)) {
ivpu_err(vdev, "Failed to allocate sgtable\n");
return PTR_ERR(sgt);
}
ret = dma_map_sgtable(vdev->drm.dev, sgt, DMA_BIDIRECTIONAL, 0);
if (ret) {
ivpu_err(vdev, "Failed to map BO in IOMMU: %d\n", ret);
goto err_free_sgt;
}
bo->sgt = sgt;
return 0;
err_free_sgt:
kfree(sgt);
return ret;
}
static void ivpu_bo_unmap_pages_locked(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
dma_unmap_sgtable(vdev->drm.dev, bo->sgt, DMA_BIDIRECTIONAL, 0);
sg_free_table(bo->sgt);
kfree(bo->sgt);
bo->sgt = NULL;
}
static const struct ivpu_bo_ops shmem_ops = {
.type = IVPU_BO_TYPE_SHMEM,
.name = "shmem",
.alloc_pages = shmem_alloc_pages_locked,
.free_pages = shmem_free_pages_locked,
.map_pages = ivpu_bo_map_pages_locked,
.unmap_pages = ivpu_bo_unmap_pages_locked,
};
static int __must_check internal_alloc_pages_locked(struct ivpu_bo *bo)
{
unsigned int i, npages = bo->base.size >> PAGE_SHIFT;
struct page **pages;
int ret;
pages = kvmalloc_array(npages, sizeof(*bo->pages), GFP_KERNEL);
if (!pages)
return -ENOMEM;
for (i = 0; i < npages; i++) {
pages[i] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
if (!pages[i]) {
ret = -ENOMEM;
goto err_free_pages;
}
cond_resched();
}
bo->pages = pages;
return 0;
err_free_pages:
while (i--)
put_page(pages[i]);
kvfree(pages);
return ret;
}
static void internal_free_pages_locked(struct ivpu_bo *bo)
{
unsigned int i, npages = bo->base.size >> PAGE_SHIFT;
if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED)
set_pages_array_wb(bo->pages, bo->base.size >> PAGE_SHIFT);
for (i = 0; i < npages; i++)
put_page(bo->pages[i]);
kvfree(bo->pages);
bo->pages = NULL;
}
static const struct ivpu_bo_ops internal_ops = {
.type = IVPU_BO_TYPE_INTERNAL,
.name = "internal",
.alloc_pages = internal_alloc_pages_locked,
.free_pages = internal_free_pages_locked,
.map_pages = ivpu_bo_map_pages_locked,
.unmap_pages = ivpu_bo_unmap_pages_locked,
};
static int __must_check ivpu_bo_alloc_and_map_pages_locked(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
int ret;
lockdep_assert_held(&bo->lock);
drm_WARN_ON(&vdev->drm, bo->sgt);
ret = bo->ops->alloc_pages(bo);
if (ret) {
ivpu_err(vdev, "Failed to allocate pages for BO: %d", ret);
return ret;
}
ret = bo->ops->map_pages(bo);
if (ret) {
ivpu_err(vdev, "Failed to map pages for BO: %d", ret);
goto err_free_pages;
}
return ret;
err_free_pages:
bo->ops->free_pages(bo);
return ret;
}
static void ivpu_bo_unmap_and_free_pages(struct ivpu_bo *bo)
{
mutex_lock(&bo->lock);
WARN_ON(!bo->sgt);
bo->ops->unmap_pages(bo);
WARN_ON(bo->sgt);
bo->ops->free_pages(bo);
WARN_ON(bo->pages);
mutex_unlock(&bo->lock);
}
/*
* ivpu_bo_pin() - pin the backing physical pages and map them to VPU.
*
* This function pins physical memory pages, then maps the physical pages
* to IOMMU address space and finally updates the VPU MMU page tables
* to allow the VPU to translate VPU address to IOMMU address.
*/
int __must_check ivpu_bo_pin(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
int ret = 0;
mutex_lock(&bo->lock);
if (!bo->vpu_addr) {
ivpu_err(vdev, "vpu_addr not set for BO ctx_id: %d handle: %d\n",
bo->ctx->id, bo->handle);
ret = -EINVAL;
goto unlock;
}
if (!bo->sgt) {
ret = ivpu_bo_alloc_and_map_pages_locked(bo);
if (ret)
goto unlock;
}
if (!bo->mmu_mapped) {
ret = ivpu_mmu_context_map_sgt(vdev, bo->ctx, bo->vpu_addr, bo->sgt,
ivpu_bo_is_snooped(bo));
if (ret) {
ivpu_err(vdev, "Failed to map BO in MMU: %d\n", ret);
goto unlock;
}
bo->mmu_mapped = true;
}
unlock:
mutex_unlock(&bo->lock);
return ret;
}
static int
ivpu_bo_alloc_vpu_addr(struct ivpu_bo *bo, struct ivpu_mmu_context *ctx,
const struct ivpu_addr_range *range)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
int ret;
if (!range) {
if (bo->flags & DRM_IVPU_BO_SHAVE_MEM)
range = &vdev->hw->ranges.shave;
else if (bo->flags & DRM_IVPU_BO_DMA_MEM)
range = &vdev->hw->ranges.dma;
else
range = &vdev->hw->ranges.user;
}
mutex_lock(&ctx->lock);
ret = ivpu_mmu_context_insert_node_locked(ctx, range, bo->base.size, &bo->mm_node);
if (!ret) {
bo->ctx = ctx;
bo->vpu_addr = bo->mm_node.start;
list_add_tail(&bo->ctx_node, &ctx->bo_list);
}
mutex_unlock(&ctx->lock);
return ret;
}
static void ivpu_bo_free_vpu_addr(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
struct ivpu_mmu_context *ctx = bo->ctx;
ivpu_dbg(vdev, BO, "remove from ctx: ctx %d vpu_addr 0x%llx allocated %d mmu_mapped %d\n",
ctx->id, bo->vpu_addr, (bool)bo->sgt, bo->mmu_mapped);
mutex_lock(&bo->lock);
if (bo->mmu_mapped) {
drm_WARN_ON(&vdev->drm, !bo->sgt);
ivpu_mmu_context_unmap_sgt(vdev, ctx, bo->vpu_addr, bo->sgt);
bo->mmu_mapped = false;
}
mutex_lock(&ctx->lock);
list_del(&bo->ctx_node);
bo->vpu_addr = 0;
bo->ctx = NULL;
ivpu_mmu_context_remove_node_locked(ctx, &bo->mm_node);
mutex_unlock(&ctx->lock);
mutex_unlock(&bo->lock);
}
void ivpu_bo_remove_all_bos_from_context(struct ivpu_mmu_context *ctx)
{
struct ivpu_bo *bo, *tmp;
list_for_each_entry_safe(bo, tmp, &ctx->bo_list, ctx_node)
ivpu_bo_free_vpu_addr(bo);
}
static struct ivpu_bo *
ivpu_bo_alloc(struct ivpu_device *vdev, struct ivpu_mmu_context *mmu_context,
u64 size, u32 flags, const struct ivpu_bo_ops *ops,
const struct ivpu_addr_range *range, u64 user_ptr)
{
struct ivpu_bo *bo;
int ret = 0;
if (drm_WARN_ON(&vdev->drm, size == 0 || !PAGE_ALIGNED(size)))
return ERR_PTR(-EINVAL);
switch (flags & DRM_IVPU_BO_CACHE_MASK) {
case DRM_IVPU_BO_CACHED:
case DRM_IVPU_BO_UNCACHED:
case DRM_IVPU_BO_WC:
break;
default:
return ERR_PTR(-EINVAL);
}
bo = kzalloc(sizeof(*bo), GFP_KERNEL);
if (!bo)
return ERR_PTR(-ENOMEM);
mutex_init(&bo->lock);
bo->base.funcs = &ivpu_gem_funcs;
bo->flags = flags;
bo->ops = ops;
bo->user_ptr = user_ptr;
if (ops->type == IVPU_BO_TYPE_SHMEM)
ret = drm_gem_object_init(&vdev->drm, &bo->base, size);
else
drm_gem_private_object_init(&vdev->drm, &bo->base, size);
if (ret) {
ivpu_err(vdev, "Failed to initialize drm object\n");
goto err_free;
}
if (flags & DRM_IVPU_BO_MAPPABLE) {
ret = drm_gem_create_mmap_offset(&bo->base);
if (ret) {
ivpu_err(vdev, "Failed to allocate mmap offset\n");
goto err_release;
}
}
if (mmu_context) {
ret = ivpu_bo_alloc_vpu_addr(bo, mmu_context, range);
if (ret) {
ivpu_err(vdev, "Failed to add BO to context: %d\n", ret);
goto err_release;
}
}
return bo;
err_release:
drm_gem_object_release(&bo->base);
err_free:
kfree(bo);
return ERR_PTR(ret);
}
static void ivpu_bo_free(struct drm_gem_object *obj)
{
struct ivpu_bo *bo = to_ivpu_bo(obj);
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
if (bo->ctx)
ivpu_dbg(vdev, BO, "free: ctx %d vpu_addr 0x%llx allocated %d mmu_mapped %d\n",
bo->ctx->id, bo->vpu_addr, (bool)bo->sgt, bo->mmu_mapped);
else
ivpu_dbg(vdev, BO, "free: ctx (released) allocated %d mmu_mapped %d\n",
(bool)bo->sgt, bo->mmu_mapped);
drm_WARN_ON(&vdev->drm, !dma_resv_test_signaled(obj->resv, DMA_RESV_USAGE_READ));
vunmap(bo->kvaddr);
if (bo->ctx)
ivpu_bo_free_vpu_addr(bo);
if (bo->sgt)
ivpu_bo_unmap_and_free_pages(bo);
if (bo->base.import_attach)
drm_prime_gem_destroy(&bo->base, bo->sgt);
drm_gem_object_release(&bo->base);
mutex_destroy(&bo->lock);
kfree(bo);
}
static int ivpu_bo_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
{
struct ivpu_bo *bo = to_ivpu_bo(obj);
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
ivpu_dbg(vdev, BO, "mmap: ctx %u handle %u vpu_addr 0x%llx size %zu type %s",
bo->ctx->id, bo->handle, bo->vpu_addr, bo->base.size, bo->ops->name);
if (obj->import_attach) {
/* Drop the reference drm_gem_mmap_obj() acquired.*/
drm_gem_object_put(obj);
vma->vm_private_data = NULL;
return dma_buf_mmap(obj->dma_buf, vma, 0);
}
vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND);
vma->vm_page_prot = ivpu_bo_pgprot(bo, vm_get_page_prot(vma->vm_flags));
return 0;
}
static struct sg_table *ivpu_bo_get_sg_table(struct drm_gem_object *obj)
{
struct ivpu_bo *bo = to_ivpu_bo(obj);
loff_t npages = obj->size >> PAGE_SHIFT;
int ret = 0;
mutex_lock(&bo->lock);
if (!bo->sgt)
ret = ivpu_bo_alloc_and_map_pages_locked(bo);
mutex_unlock(&bo->lock);
if (ret)
return ERR_PTR(ret);
return drm_prime_pages_to_sg(obj->dev, bo->pages, npages);
}
static vm_fault_t ivpu_vm_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct drm_gem_object *obj = vma->vm_private_data;
struct ivpu_bo *bo = to_ivpu_bo(obj);
loff_t npages = obj->size >> PAGE_SHIFT;
pgoff_t page_offset;
struct page *page;
vm_fault_t ret;
int err;
mutex_lock(&bo->lock);
if (!bo->sgt) {
err = ivpu_bo_alloc_and_map_pages_locked(bo);
if (err) {
ret = vmf_error(err);
goto unlock;
}
}
/* We don't use vmf->pgoff since that has the fake offset */
page_offset = (vmf->address - vma->vm_start) >> PAGE_SHIFT;
if (page_offset >= npages) {
ret = VM_FAULT_SIGBUS;
} else {
page = bo->pages[page_offset];
ret = vmf_insert_pfn(vma, vmf->address, page_to_pfn(page));
}
unlock:
mutex_unlock(&bo->lock);
return ret;
}
static const struct vm_operations_struct ivpu_vm_ops = {
.fault = ivpu_vm_fault,
.open = drm_gem_vm_open,
.close = drm_gem_vm_close,
};
static const struct drm_gem_object_funcs ivpu_gem_funcs = {
.free = ivpu_bo_free,
.mmap = ivpu_bo_mmap,
.vm_ops = &ivpu_vm_ops,
.get_sg_table = ivpu_bo_get_sg_table,
};
int
ivpu_bo_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct ivpu_file_priv *file_priv = file->driver_priv;
struct ivpu_device *vdev = file_priv->vdev;
struct drm_ivpu_bo_create *args = data;
u64 size = PAGE_ALIGN(args->size);
struct ivpu_bo *bo;
int ret;
if (args->flags & ~DRM_IVPU_BO_FLAGS)
return -EINVAL;
if (size == 0)
return -EINVAL;
bo = ivpu_bo_alloc(vdev, &file_priv->ctx, size, args->flags, &shmem_ops, NULL, 0);
if (IS_ERR(bo)) {
ivpu_err(vdev, "Failed to create BO: %pe (ctx %u size %llu flags 0x%x)",
bo, file_priv->ctx.id, args->size, args->flags);
return PTR_ERR(bo);
}
ret = drm_gem_handle_create(file, &bo->base, &bo->handle);
if (!ret) {
args->vpu_addr = bo->vpu_addr;
args->handle = bo->handle;
}
drm_gem_object_put(&bo->base);
ivpu_dbg(vdev, BO, "alloc shmem: ctx %u vpu_addr 0x%llx size %zu flags 0x%x\n",
file_priv->ctx.id, bo->vpu_addr, bo->base.size, bo->flags);
return ret;
}
struct ivpu_bo *
ivpu_bo_alloc_internal(struct ivpu_device *vdev, u64 vpu_addr, u64 size, u32 flags)
{
const struct ivpu_addr_range *range;
struct ivpu_addr_range fixed_range;
struct ivpu_bo *bo;
pgprot_t prot;
int ret;
drm_WARN_ON(&vdev->drm, !PAGE_ALIGNED(vpu_addr));
drm_WARN_ON(&vdev->drm, !PAGE_ALIGNED(size));
if (vpu_addr) {
fixed_range.start = vpu_addr;
fixed_range.end = vpu_addr + size;
range = &fixed_range;
} else {
range = &vdev->hw->ranges.global;
}
bo = ivpu_bo_alloc(vdev, &vdev->gctx, size, flags, &internal_ops, range, 0);
if (IS_ERR(bo)) {
ivpu_err(vdev, "Failed to create BO: %pe (vpu_addr 0x%llx size %llu flags 0x%x)",
bo, vpu_addr, size, flags);
return NULL;
}
ret = ivpu_bo_pin(bo);
if (ret)
goto err_put;
if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED)
drm_clflush_pages(bo->pages, bo->base.size >> PAGE_SHIFT);
if (bo->flags & DRM_IVPU_BO_WC)
set_pages_array_wc(bo->pages, bo->base.size >> PAGE_SHIFT);
else if (bo->flags & DRM_IVPU_BO_UNCACHED)
set_pages_array_uc(bo->pages, bo->base.size >> PAGE_SHIFT);
prot = ivpu_bo_pgprot(bo, PAGE_KERNEL);
bo->kvaddr = vmap(bo->pages, bo->base.size >> PAGE_SHIFT, VM_MAP, prot);
if (!bo->kvaddr) {
ivpu_err(vdev, "Failed to map BO into kernel virtual memory\n");
goto err_put;
}
ivpu_dbg(vdev, BO, "alloc internal: ctx 0 vpu_addr 0x%llx size %zu flags 0x%x\n",
bo->vpu_addr, bo->base.size, flags);
return bo;
err_put:
drm_gem_object_put(&bo->base);
return NULL;
}
void ivpu_bo_free_internal(struct ivpu_bo *bo)
{
drm_gem_object_put(&bo->base);
}
struct drm_gem_object *ivpu_gem_prime_import(struct drm_device *dev, struct dma_buf *buf)
{
struct ivpu_device *vdev = to_ivpu_device(dev);
struct dma_buf_attachment *attach;
struct ivpu_bo *bo;
attach = dma_buf_attach(buf, dev->dev);
if (IS_ERR(attach))
return ERR_CAST(attach);
get_dma_buf(buf);
bo = ivpu_bo_alloc(vdev, NULL, buf->size, DRM_IVPU_BO_MAPPABLE, &prime_ops, NULL, 0);
if (IS_ERR(bo)) {
ivpu_err(vdev, "Failed to import BO: %pe (size %lu)", bo, buf->size);
goto err_detach;
}
lockdep_set_class(&bo->lock, &prime_bo_lock_class_key);
bo->base.import_attach = attach;
return &bo->base;
err_detach:
dma_buf_detach(buf, attach);
dma_buf_put(buf);
return ERR_CAST(bo);
}
int ivpu_bo_info_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct ivpu_file_priv *file_priv = file->driver_priv;
struct ivpu_device *vdev = to_ivpu_device(dev);
struct drm_ivpu_bo_info *args = data;
struct drm_gem_object *obj;
struct ivpu_bo *bo;
int ret = 0;
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
bo = to_ivpu_bo(obj);
mutex_lock(&bo->lock);
if (!bo->ctx) {
ret = ivpu_bo_alloc_vpu_addr(bo, &file_priv->ctx, NULL);
if (ret) {
ivpu_err(vdev, "Failed to allocate vpu_addr: %d\n", ret);
goto unlock;
}
}
args->flags = bo->flags;
args->mmap_offset = drm_vma_node_offset_addr(&obj->vma_node);
args->vpu_addr = bo->vpu_addr;
args->size = obj->size;
unlock:
mutex_unlock(&bo->lock);
drm_gem_object_put(obj);
return ret;
}
int ivpu_bo_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct drm_ivpu_bo_wait *args = data;
struct drm_gem_object *obj;
unsigned long timeout;
long ret;
timeout = drm_timeout_abs_to_jiffies(args->timeout_ns);
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -EINVAL;
ret = dma_resv_wait_timeout(obj->resv, DMA_RESV_USAGE_READ, true, timeout);
if (ret == 0) {
ret = -ETIMEDOUT;
} else if (ret > 0) {
ret = 0;
args->job_status = to_ivpu_bo(obj)->job_status;
}
drm_gem_object_put(obj);
return ret;
}
static void ivpu_bo_print_info(struct ivpu_bo *bo, struct drm_printer *p)
{
unsigned long dma_refcount = 0;
if (bo->base.dma_buf && bo->base.dma_buf->file)
dma_refcount = atomic_long_read(&bo->base.dma_buf->file->f_count);
drm_printf(p, "%5u %6d %16llx %10lu %10u %12lu %14s\n",
bo->ctx->id, bo->handle, bo->vpu_addr, bo->base.size,
kref_read(&bo->base.refcount), dma_refcount, bo->ops->name);
}
void ivpu_bo_list(struct drm_device *dev, struct drm_printer *p)
{
struct ivpu_device *vdev = to_ivpu_device(dev);
struct ivpu_file_priv *file_priv;
unsigned long ctx_id;
struct ivpu_bo *bo;
drm_printf(p, "%5s %6s %16s %10s %10s %12s %14s\n",
"ctx", "handle", "vpu_addr", "size", "refcount", "dma_refcount", "type");
mutex_lock(&vdev->gctx.lock);
list_for_each_entry(bo, &vdev->gctx.bo_list, ctx_node)
ivpu_bo_print_info(bo, p);
mutex_unlock(&vdev->gctx.lock);
xa_for_each(&vdev->context_xa, ctx_id, file_priv) {
file_priv = ivpu_file_priv_get_by_ctx_id(vdev, ctx_id);
if (!file_priv)
continue;
mutex_lock(&file_priv->ctx.lock);
list_for_each_entry(bo, &file_priv->ctx.bo_list, ctx_node)
ivpu_bo_print_info(bo, p);
mutex_unlock(&file_priv->ctx.lock);
ivpu_file_priv_put(&file_priv);
}
}
void ivpu_bo_list_print(struct drm_device *dev)
{
struct drm_printer p = drm_info_printer(dev->dev);
ivpu_bo_list(dev, &p);
}