Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2023 Isovalent */

#include <errno.h>
#include <unistd.h>
#include <pthread.h>

#include <bpf/bpf.h>
#include <bpf/libbpf.h>

#include <bpf_util.h>
#include <test_maps.h>

#include "map_percpu_stats.skel.h"

#define MAX_ENTRIES			16384
#define MAX_ENTRIES_HASH_OF_MAPS	64
#define N_THREADS			8
#define MAX_MAP_KEY_SIZE		4

static void map_info(int map_fd, struct bpf_map_info *info)
{
	__u32 len = sizeof(*info);
	int ret;

	memset(info, 0, sizeof(*info));

	ret = bpf_obj_get_info_by_fd(map_fd, info, &len);
	CHECK(ret < 0, "bpf_obj_get_info_by_fd", "error: %s\n", strerror(errno));
}

static const char *map_type_to_s(__u32 type)
{
	switch (type) {
	case BPF_MAP_TYPE_HASH:
		return "HASH";
	case BPF_MAP_TYPE_PERCPU_HASH:
		return "PERCPU_HASH";
	case BPF_MAP_TYPE_LRU_HASH:
		return "LRU_HASH";
	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
		return "LRU_PERCPU_HASH";
	case BPF_MAP_TYPE_HASH_OF_MAPS:
		return "BPF_MAP_TYPE_HASH_OF_MAPS";
	default:
		return "<define-me>";
	}
}

static __u32 map_count_elements(__u32 type, int map_fd)
{
	__u32 key = -1;
	int n = 0;

	while (!bpf_map_get_next_key(map_fd, &key, &key))
		n++;
	return n;
}

#define BATCH	true

static void delete_and_lookup_batch(int map_fd, void *keys, __u32 count)
{
	static __u8 values[(8 << 10) * MAX_ENTRIES];
	void *in_batch = NULL, *out_batch;
	__u32 save_count = count;
	int ret;

	ret = bpf_map_lookup_and_delete_batch(map_fd,
					      &in_batch, &out_batch,
					      keys, values, &count,
					      NULL);

	/*
	 * Despite what uapi header says, lookup_and_delete_batch will return
	 * -ENOENT in case we successfully have deleted all elements, so check
	 * this separately
	 */
	CHECK(ret < 0 && (errno != ENOENT || !count), "bpf_map_lookup_and_delete_batch",
		       "error: %s\n", strerror(errno));

	CHECK(count != save_count,
			"bpf_map_lookup_and_delete_batch",
			"deleted not all elements: removed=%u expected=%u\n",
			count, save_count);
}

static void delete_all_elements(__u32 type, int map_fd, bool batch)
{
	static __u8 val[8 << 10]; /* enough for 1024 CPUs */
	__u32 key = -1;
	void *keys;
	__u32 i, n;
	int ret;

	keys = calloc(MAX_MAP_KEY_SIZE, MAX_ENTRIES);
	CHECK(!keys, "calloc", "error: %s\n", strerror(errno));

	for (n = 0; !bpf_map_get_next_key(map_fd, &key, &key); n++)
		memcpy(keys + n*MAX_MAP_KEY_SIZE, &key, MAX_MAP_KEY_SIZE);

	if (batch) {
		/* Can't mix delete_batch and delete_and_lookup_batch because
		 * they have different semantics in relation to the keys
		 * argument. However, delete_batch utilize map_delete_elem,
		 * so we actually test it in non-batch scenario */
		delete_and_lookup_batch(map_fd, keys, n);
	} else {
		/* Intentionally mix delete and lookup_and_delete so we can test both */
		for (i = 0; i < n; i++) {
			void *keyp = keys + i*MAX_MAP_KEY_SIZE;

			if (i % 2 || type == BPF_MAP_TYPE_HASH_OF_MAPS) {
				ret = bpf_map_delete_elem(map_fd, keyp);
				CHECK(ret < 0, "bpf_map_delete_elem",
					       "error: key %u: %s\n", i, strerror(errno));
			} else {
				ret = bpf_map_lookup_and_delete_elem(map_fd, keyp, val);
				CHECK(ret < 0, "bpf_map_lookup_and_delete_elem",
					       "error: key %u: %s\n", i, strerror(errno));
			}
		}
	}

	free(keys);
}

static bool is_lru(__u32 map_type)
{
	return map_type == BPF_MAP_TYPE_LRU_HASH ||
	       map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
}

struct upsert_opts {
	__u32 map_type;
	int map_fd;
	__u32 n;
};

static int create_small_hash(void)
{
	int map_fd;

	map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, "small", 4, 4, 4, NULL);
	CHECK(map_fd < 0, "bpf_map_create()", "error:%s (name=%s)\n",
			strerror(errno), "small");

	return map_fd;
}

static void *patch_map_thread(void *arg)
{
	struct upsert_opts *opts = arg;
	int val;
	int ret;
	int i;

	for (i = 0; i < opts->n; i++) {
		if (opts->map_type == BPF_MAP_TYPE_HASH_OF_MAPS)
			val = create_small_hash();
		else
			val = rand();
		ret = bpf_map_update_elem(opts->map_fd, &i, &val, 0);
		CHECK(ret < 0, "bpf_map_update_elem", "key=%d error: %s\n", i, strerror(errno));

		if (opts->map_type == BPF_MAP_TYPE_HASH_OF_MAPS)
			close(val);
	}
	return NULL;
}

static void upsert_elements(struct upsert_opts *opts)
{
	pthread_t threads[N_THREADS];
	int ret;
	int i;

	for (i = 0; i < ARRAY_SIZE(threads); i++) {
		ret = pthread_create(&i[threads], NULL, patch_map_thread, opts);
		CHECK(ret != 0, "pthread_create", "error: %s\n", strerror(ret));
	}

	for (i = 0; i < ARRAY_SIZE(threads); i++) {
		ret = pthread_join(i[threads], NULL);
		CHECK(ret != 0, "pthread_join", "error: %s\n", strerror(ret));
	}
}

static __u32 read_cur_elements(int iter_fd)
{
	char buf[64];
	ssize_t n;
	__u32 ret;

	n = read(iter_fd, buf, sizeof(buf)-1);
	CHECK(n <= 0, "read", "error: %s\n", strerror(errno));
	buf[n] = '\0';

	errno = 0;
	ret = (__u32)strtol(buf, NULL, 10);
	CHECK(errno != 0, "strtol", "error: %s\n", strerror(errno));

	return ret;
}

static __u32 get_cur_elements(int map_id)
{
	struct map_percpu_stats *skel;
	struct bpf_link *link;
	__u32 n_elements;
	int iter_fd;
	int ret;

	skel = map_percpu_stats__open();
	CHECK(skel == NULL, "map_percpu_stats__open", "error: %s", strerror(errno));

	skel->bss->target_id = map_id;

	ret = map_percpu_stats__load(skel);
	CHECK(ret != 0, "map_percpu_stats__load", "error: %s", strerror(errno));

	link = bpf_program__attach_iter(skel->progs.dump_bpf_map, NULL);
	CHECK(!link, "bpf_program__attach_iter", "error: %s\n", strerror(errno));

	iter_fd = bpf_iter_create(bpf_link__fd(link));
	CHECK(iter_fd < 0, "bpf_iter_create", "error: %s\n", strerror(errno));

	n_elements = read_cur_elements(iter_fd);

	close(iter_fd);
	bpf_link__destroy(link);
	map_percpu_stats__destroy(skel);

	return n_elements;
}

static void check_expected_number_elements(__u32 n_inserted, int map_fd,
					   struct bpf_map_info *info)
{
	__u32 n_real;
	__u32 n_iter;

	/* Count the current number of elements in the map by iterating through
	 * all the map keys via bpf_get_next_key
	 */
	n_real = map_count_elements(info->type, map_fd);

	/* The "real" number of elements should be the same as the inserted
	 * number of elements in all cases except LRU maps, where some elements
	 * may have been evicted
	 */
	if (n_inserted == 0 || !is_lru(info->type))
		CHECK(n_inserted != n_real, "map_count_elements",
		      "n_real(%u) != n_inserted(%u)\n", n_real, n_inserted);

	/* Count the current number of elements in the map using an iterator */
	n_iter = get_cur_elements(info->id);

	/* Both counts should be the same, as all updates are over */
	CHECK(n_iter != n_real, "get_cur_elements",
	      "n_iter=%u, expected %u (map_type=%s,map_flags=%08x)\n",
	      n_iter, n_real, map_type_to_s(info->type), info->map_flags);
}

static void __test(int map_fd)
{
	struct upsert_opts opts = {
		.map_fd = map_fd,
	};
	struct bpf_map_info info;

	map_info(map_fd, &info);
	opts.map_type = info.type;
	opts.n = info.max_entries;

	/* Reduce the number of elements we are updating such that we don't
	 * bump into -E2BIG from non-preallocated hash maps, but still will
	 * have some evictions for LRU maps  */
	if (opts.map_type != BPF_MAP_TYPE_HASH_OF_MAPS)
		opts.n -= 512;
	else
		opts.n /= 2;

	/*
	 * Upsert keys [0, n) under some competition: with random values from
	 * N_THREADS threads. Check values, then delete all elements and check
	 * values again.
	 */
	upsert_elements(&opts);
	check_expected_number_elements(opts.n, map_fd, &info);
	delete_all_elements(info.type, map_fd, !BATCH);
	check_expected_number_elements(0, map_fd, &info);

	/* Now do the same, but using batch delete operations */
	upsert_elements(&opts);
	check_expected_number_elements(opts.n, map_fd, &info);
	delete_all_elements(info.type, map_fd, BATCH);
	check_expected_number_elements(0, map_fd, &info);

	close(map_fd);
}

static int map_create_opts(__u32 type, const char *name,
			   struct bpf_map_create_opts *map_opts,
			   __u32 key_size, __u32 val_size)
{
	int max_entries;
	int map_fd;

	if (type == BPF_MAP_TYPE_HASH_OF_MAPS)
		max_entries = MAX_ENTRIES_HASH_OF_MAPS;
	else
		max_entries = MAX_ENTRIES;

	map_fd = bpf_map_create(type, name, key_size, val_size, max_entries, map_opts);
	CHECK(map_fd < 0, "bpf_map_create()", "error:%s (name=%s)\n",
			strerror(errno), name);

	return map_fd;
}

static int map_create(__u32 type, const char *name, struct bpf_map_create_opts *map_opts)
{
	return map_create_opts(type, name, map_opts, sizeof(int), sizeof(int));
}

static int create_hash(void)
{
	struct bpf_map_create_opts map_opts = {
		.sz = sizeof(map_opts),
		.map_flags = BPF_F_NO_PREALLOC,
	};

	return map_create(BPF_MAP_TYPE_HASH, "hash", &map_opts);
}

static int create_percpu_hash(void)
{
	struct bpf_map_create_opts map_opts = {
		.sz = sizeof(map_opts),
		.map_flags = BPF_F_NO_PREALLOC,
	};

	return map_create(BPF_MAP_TYPE_PERCPU_HASH, "percpu_hash", &map_opts);
}

static int create_hash_prealloc(void)
{
	return map_create(BPF_MAP_TYPE_HASH, "hash", NULL);
}

static int create_percpu_hash_prealloc(void)
{
	return map_create(BPF_MAP_TYPE_PERCPU_HASH, "percpu_hash_prealloc", NULL);
}

static int create_lru_hash(__u32 type, __u32 map_flags)
{
	struct bpf_map_create_opts map_opts = {
		.sz = sizeof(map_opts),
		.map_flags = map_flags,
	};

	return map_create(type, "lru_hash", &map_opts);
}

static int create_hash_of_maps(void)
{
	struct bpf_map_create_opts map_opts = {
		.sz = sizeof(map_opts),
		.map_flags = BPF_F_NO_PREALLOC,
		.inner_map_fd = create_small_hash(),
	};
	int ret;

	ret = map_create_opts(BPF_MAP_TYPE_HASH_OF_MAPS, "hash_of_maps",
			      &map_opts, sizeof(int), sizeof(int));
	close(map_opts.inner_map_fd);
	return ret;
}

static void map_percpu_stats_hash(void)
{
	__test(create_hash());
	printf("test_%s:PASS\n", __func__);
}

static void map_percpu_stats_percpu_hash(void)
{
	__test(create_percpu_hash());
	printf("test_%s:PASS\n", __func__);
}

static void map_percpu_stats_hash_prealloc(void)
{
	__test(create_hash_prealloc());
	printf("test_%s:PASS\n", __func__);
}

static void map_percpu_stats_percpu_hash_prealloc(void)
{
	__test(create_percpu_hash_prealloc());
	printf("test_%s:PASS\n", __func__);
}

static void map_percpu_stats_lru_hash(void)
{
	__test(create_lru_hash(BPF_MAP_TYPE_LRU_HASH, 0));
	printf("test_%s:PASS\n", __func__);
}

static void map_percpu_stats_lru_hash_no_common(void)
{
	__test(create_lru_hash(BPF_MAP_TYPE_LRU_HASH, BPF_F_NO_COMMON_LRU));
	printf("test_%s:PASS\n", __func__);
}

static void map_percpu_stats_percpu_lru_hash(void)
{
	__test(create_lru_hash(BPF_MAP_TYPE_LRU_PERCPU_HASH, 0));
	printf("test_%s:PASS\n", __func__);
}

static void map_percpu_stats_percpu_lru_hash_no_common(void)
{
	__test(create_lru_hash(BPF_MAP_TYPE_LRU_PERCPU_HASH, BPF_F_NO_COMMON_LRU));
	printf("test_%s:PASS\n", __func__);
}

static void map_percpu_stats_hash_of_maps(void)
{
	__test(create_hash_of_maps());
	printf("test_%s:PASS\n", __func__);
}

void test_map_percpu_stats(void)
{
	map_percpu_stats_hash();
	map_percpu_stats_percpu_hash();
	map_percpu_stats_hash_prealloc();
	map_percpu_stats_percpu_hash_prealloc();
	map_percpu_stats_lru_hash();
	map_percpu_stats_lru_hash_no_common();
	map_percpu_stats_percpu_lru_hash();
	map_percpu_stats_percpu_lru_hash_no_common();
	map_percpu_stats_hash_of_maps();
}