Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Implementation of POLYVAL using ARMv8 Crypto Extensions. * * Copyright 2021 Google LLC */ /* * This is an efficient implementation of POLYVAL using ARMv8 Crypto Extensions * It works on 8 blocks at a time, by precomputing the first 8 keys powers h^8, * ..., h^1 in the POLYVAL finite field. This precomputation allows us to split * finite field multiplication into two steps. * * In the first step, we consider h^i, m_i as normal polynomials of degree less * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication * is simply polynomial multiplication. * * In the second step, we compute the reduction of p(x) modulo the finite field * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1. * * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where * multiplication is finite field multiplication. The advantage is that the * two-step process only requires 1 finite field reduction for every 8 * polynomial multiplications. Further parallelism is gained by interleaving the * multiplications and polynomial reductions. */ #include <linux/linkage.h> #define STRIDE_BLOCKS 8 KEY_POWERS .req x0 MSG .req x1 BLOCKS_LEFT .req x2 ACCUMULATOR .req x3 KEY_START .req x10 EXTRA_BYTES .req x11 TMP .req x13 M0 .req v0 M1 .req v1 M2 .req v2 M3 .req v3 M4 .req v4 M5 .req v5 M6 .req v6 M7 .req v7 KEY8 .req v8 KEY7 .req v9 KEY6 .req v10 KEY5 .req v11 KEY4 .req v12 KEY3 .req v13 KEY2 .req v14 KEY1 .req v15 PL .req v16 PH .req v17 TMP_V .req v18 LO .req v20 MI .req v21 HI .req v22 SUM .req v23 GSTAR .req v24 .text .arch armv8-a+crypto .align 4 .Lgstar: .quad 0xc200000000000000, 0xc200000000000000 /* * Computes the product of two 128-bit polynomials in X and Y and XORs the * components of the 256-bit product into LO, MI, HI. * * Given: * X = [X_1 : X_0] * Y = [Y_1 : Y_0] * * We compute: * LO += X_0 * Y_0 * MI += (X_0 + X_1) * (Y_0 + Y_1) * HI += X_1 * Y_1 * * Later, the 256-bit result can be extracted as: * [HI_1 : HI_0 + HI_1 + MI_1 + LO_1 : LO_1 + HI_0 + MI_0 + LO_0 : LO_0] * This step is done when computing the polynomial reduction for efficiency * reasons. * * Karatsuba multiplication is used instead of Schoolbook multiplication because * it was found to be slightly faster on ARM64 CPUs. * */ .macro karatsuba1 X Y X .req \X Y .req \Y ext v25.16b, X.16b, X.16b, #8 ext v26.16b, Y.16b, Y.16b, #8 eor v25.16b, v25.16b, X.16b eor v26.16b, v26.16b, Y.16b pmull2 v28.1q, X.2d, Y.2d pmull v29.1q, X.1d, Y.1d pmull v27.1q, v25.1d, v26.1d eor HI.16b, HI.16b, v28.16b eor LO.16b, LO.16b, v29.16b eor MI.16b, MI.16b, v27.16b .unreq X .unreq Y .endm /* * Same as karatsuba1, except overwrites HI, LO, MI rather than XORing into * them. */ .macro karatsuba1_store X Y X .req \X Y .req \Y ext v25.16b, X.16b, X.16b, #8 ext v26.16b, Y.16b, Y.16b, #8 eor v25.16b, v25.16b, X.16b eor v26.16b, v26.16b, Y.16b pmull2 HI.1q, X.2d, Y.2d pmull LO.1q, X.1d, Y.1d pmull MI.1q, v25.1d, v26.1d .unreq X .unreq Y .endm /* * Computes the 256-bit polynomial represented by LO, HI, MI. Stores * the result in PL, PH. * [PH : PL] = * [HI_1 : HI_1 + HI_0 + MI_1 + LO_1 : HI_0 + MI_0 + LO_1 + LO_0 : LO_0] */ .macro karatsuba2 // v4 = [HI_1 + MI_1 : HI_0 + MI_0] eor v4.16b, HI.16b, MI.16b // v4 = [HI_1 + MI_1 + LO_1 : HI_0 + MI_0 + LO_0] eor v4.16b, v4.16b, LO.16b // v5 = [HI_0 : LO_1] ext v5.16b, LO.16b, HI.16b, #8 // v4 = [HI_1 + HI_0 + MI_1 + LO_1 : HI_0 + MI_0 + LO_1 + LO_0] eor v4.16b, v4.16b, v5.16b // HI = [HI_0 : HI_1] ext HI.16b, HI.16b, HI.16b, #8 // LO = [LO_0 : LO_1] ext LO.16b, LO.16b, LO.16b, #8 // PH = [HI_1 : HI_1 + HI_0 + MI_1 + LO_1] ext PH.16b, v4.16b, HI.16b, #8 // PL = [HI_0 + MI_0 + LO_1 + LO_0 : LO_0] ext PL.16b, LO.16b, v4.16b, #8 .endm /* * Computes the 128-bit reduction of PH : PL. Stores the result in dest. * * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) = * x^128 + x^127 + x^126 + x^121 + 1. * * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the * product of two 128-bit polynomials in Montgomery form. We need to reduce it * mod g(x). Also, since polynomials in Montgomery form have an "extra" factor * of x^128, this product has two extra factors of x^128. To get it back into * Montgomery form, we need to remove one of these factors by dividing by x^128. * * To accomplish both of these goals, we add multiples of g(x) that cancel out * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low * bits are zero, the polynomial division by x^128 can be done by right * shifting. * * Since the only nonzero term in the low 64 bits of g(x) is the constant term, * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 + * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191. * * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1 * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) * * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 : * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0). * * So our final computation is: * T = T_1 : T_0 = g*(x) * P_0 * V = V_1 : V_0 = g*(x) * (P_1 + T_0) * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0 * * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0 * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 : * T_1 into dest. This allows us to reuse P_1 + T_0 when computing V. */ .macro montgomery_reduction dest DEST .req \dest // TMP_V = T_1 : T_0 = P_0 * g*(x) pmull TMP_V.1q, PL.1d, GSTAR.1d // TMP_V = T_0 : T_1 ext TMP_V.16b, TMP_V.16b, TMP_V.16b, #8 // TMP_V = P_1 + T_0 : P_0 + T_1 eor TMP_V.16b, PL.16b, TMP_V.16b // PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1 eor PH.16b, PH.16b, TMP_V.16b // TMP_V = V_1 : V_0 = (P_1 + T_0) * g*(x) pmull2 TMP_V.1q, TMP_V.2d, GSTAR.2d eor DEST.16b, PH.16b, TMP_V.16b .unreq DEST .endm /* * Compute Polyval on 8 blocks. * * If reduce is set, also computes the montgomery reduction of the * previous full_stride call and XORs with the first message block. * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1. * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0. * * Sets PL, PH. */ .macro full_stride reduce eor LO.16b, LO.16b, LO.16b eor MI.16b, MI.16b, MI.16b eor HI.16b, HI.16b, HI.16b ld1 {M0.16b, M1.16b, M2.16b, M3.16b}, [MSG], #64 ld1 {M4.16b, M5.16b, M6.16b, M7.16b}, [MSG], #64 karatsuba1 M7 KEY1 .if \reduce pmull TMP_V.1q, PL.1d, GSTAR.1d .endif karatsuba1 M6 KEY2 .if \reduce ext TMP_V.16b, TMP_V.16b, TMP_V.16b, #8 .endif karatsuba1 M5 KEY3 .if \reduce eor TMP_V.16b, PL.16b, TMP_V.16b .endif karatsuba1 M4 KEY4 .if \reduce eor PH.16b, PH.16b, TMP_V.16b .endif karatsuba1 M3 KEY5 .if \reduce pmull2 TMP_V.1q, TMP_V.2d, GSTAR.2d .endif karatsuba1 M2 KEY6 .if \reduce eor SUM.16b, PH.16b, TMP_V.16b .endif karatsuba1 M1 KEY7 eor M0.16b, M0.16b, SUM.16b karatsuba1 M0 KEY8 karatsuba2 .endm /* * Handle any extra blocks after full_stride loop. */ .macro partial_stride add KEY_POWERS, KEY_START, #(STRIDE_BLOCKS << 4) sub KEY_POWERS, KEY_POWERS, BLOCKS_LEFT, lsl #4 ld1 {KEY1.16b}, [KEY_POWERS], #16 ld1 {TMP_V.16b}, [MSG], #16 eor SUM.16b, SUM.16b, TMP_V.16b karatsuba1_store KEY1 SUM sub BLOCKS_LEFT, BLOCKS_LEFT, #1 tst BLOCKS_LEFT, #4 beq .Lpartial4BlocksDone ld1 {M0.16b, M1.16b, M2.16b, M3.16b}, [MSG], #64 ld1 {KEY8.16b, KEY7.16b, KEY6.16b, KEY5.16b}, [KEY_POWERS], #64 karatsuba1 M0 KEY8 karatsuba1 M1 KEY7 karatsuba1 M2 KEY6 karatsuba1 M3 KEY5 .Lpartial4BlocksDone: tst BLOCKS_LEFT, #2 beq .Lpartial2BlocksDone ld1 {M0.16b, M1.16b}, [MSG], #32 ld1 {KEY8.16b, KEY7.16b}, [KEY_POWERS], #32 karatsuba1 M0 KEY8 karatsuba1 M1 KEY7 .Lpartial2BlocksDone: tst BLOCKS_LEFT, #1 beq .LpartialDone ld1 {M0.16b}, [MSG], #16 ld1 {KEY8.16b}, [KEY_POWERS], #16 karatsuba1 M0 KEY8 .LpartialDone: karatsuba2 montgomery_reduction SUM .endm /* * Perform montgomery multiplication in GF(2^128) and store result in op1. * * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1 * If op1, op2 are in montgomery form, this computes the montgomery * form of op1*op2. * * void pmull_polyval_mul(u8 *op1, const u8 *op2); */ SYM_FUNC_START(pmull_polyval_mul) adr TMP, .Lgstar ld1 {GSTAR.2d}, [TMP] ld1 {v0.16b}, [x0] ld1 {v1.16b}, [x1] karatsuba1_store v0 v1 karatsuba2 montgomery_reduction SUM st1 {SUM.16b}, [x0] ret SYM_FUNC_END(pmull_polyval_mul) /* * Perform polynomial evaluation as specified by POLYVAL. This computes: * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1} * where n=nblocks, h is the hash key, and m_i are the message blocks. * * x0 - pointer to precomputed key powers h^8 ... h^1 * x1 - pointer to message blocks * x2 - number of blocks to hash * x3 - pointer to accumulator * * void pmull_polyval_update(const struct polyval_ctx *ctx, const u8 *in, * size_t nblocks, u8 *accumulator); */ SYM_FUNC_START(pmull_polyval_update) adr TMP, .Lgstar mov KEY_START, KEY_POWERS ld1 {GSTAR.2d}, [TMP] ld1 {SUM.16b}, [ACCUMULATOR] subs BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS blt .LstrideLoopExit ld1 {KEY8.16b, KEY7.16b, KEY6.16b, KEY5.16b}, [KEY_POWERS], #64 ld1 {KEY4.16b, KEY3.16b, KEY2.16b, KEY1.16b}, [KEY_POWERS], #64 full_stride 0 subs BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS blt .LstrideLoopExitReduce .LstrideLoop: full_stride 1 subs BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS bge .LstrideLoop .LstrideLoopExitReduce: montgomery_reduction SUM .LstrideLoopExit: adds BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS beq .LskipPartial partial_stride .LskipPartial: st1 {SUM.16b}, [ACCUMULATOR] ret SYM_FUNC_END(pmull_polyval_update) |