Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | // SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2014-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* * KFD Interrupts. * * AMD GPUs deliver interrupts by pushing an interrupt description onto the * interrupt ring and then sending an interrupt. KGD receives the interrupt * in ISR and sends us a pointer to each new entry on the interrupt ring. * * We generally can't process interrupt-signaled events from ISR, so we call * out to each interrupt client module (currently only the scheduler) to ask if * each interrupt is interesting. If they return true, then it requires further * processing so we copy it to an internal interrupt ring and call each * interrupt client again from a work-queue. * * There's no acknowledgment for the interrupts we use. The hardware simply * queues a new interrupt each time without waiting. * * The fixed-size internal queue means that it's possible for us to lose * interrupts because we have no back-pressure to the hardware. */ #include <linux/slab.h> #include <linux/device.h> #include <linux/kfifo.h> #include "kfd_priv.h" #define KFD_IH_NUM_ENTRIES 8192 static void interrupt_wq(struct work_struct *); int kfd_interrupt_init(struct kfd_dev *kfd) { int r; r = kfifo_alloc(&kfd->ih_fifo, KFD_IH_NUM_ENTRIES * kfd->device_info.ih_ring_entry_size, GFP_KERNEL); if (r) { dev_err(kfd->adev->dev, "Failed to allocate IH fifo\n"); return r; } kfd->ih_wq = alloc_workqueue("KFD IH", WQ_HIGHPRI, 1); if (unlikely(!kfd->ih_wq)) { kfifo_free(&kfd->ih_fifo); dev_err(kfd->adev->dev, "Failed to allocate KFD IH workqueue\n"); return -ENOMEM; } spin_lock_init(&kfd->interrupt_lock); INIT_WORK(&kfd->interrupt_work, interrupt_wq); kfd->interrupts_active = true; /* * After this function returns, the interrupt will be enabled. This * barrier ensures that the interrupt running on a different processor * sees all the above writes. */ smp_wmb(); return 0; } void kfd_interrupt_exit(struct kfd_dev *kfd) { /* * Stop the interrupt handler from writing to the ring and scheduling * workqueue items. The spinlock ensures that any interrupt running * after we have unlocked sees interrupts_active = false. */ unsigned long flags; spin_lock_irqsave(&kfd->interrupt_lock, flags); kfd->interrupts_active = false; spin_unlock_irqrestore(&kfd->interrupt_lock, flags); /* * flush_work ensures that there are no outstanding * work-queue items that will access interrupt_ring. New work items * can't be created because we stopped interrupt handling above. */ flush_workqueue(kfd->ih_wq); kfifo_free(&kfd->ih_fifo); } /* * Assumption: single reader/writer. This function is not re-entrant */ bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry) { int count; count = kfifo_in(&kfd->ih_fifo, ih_ring_entry, kfd->device_info.ih_ring_entry_size); if (count != kfd->device_info.ih_ring_entry_size) { dev_dbg_ratelimited(kfd->adev->dev, "Interrupt ring overflow, dropping interrupt %d\n", count); return false; } return true; } /* * Assumption: single reader/writer. This function is not re-entrant */ static bool dequeue_ih_ring_entry(struct kfd_dev *kfd, void *ih_ring_entry) { int count; count = kfifo_out(&kfd->ih_fifo, ih_ring_entry, kfd->device_info.ih_ring_entry_size); WARN_ON(count && count != kfd->device_info.ih_ring_entry_size); return count == kfd->device_info.ih_ring_entry_size; } static void interrupt_wq(struct work_struct *work) { struct kfd_dev *dev = container_of(work, struct kfd_dev, interrupt_work); uint32_t ih_ring_entry[KFD_MAX_RING_ENTRY_SIZE]; unsigned long start_jiffies = jiffies; if (dev->device_info.ih_ring_entry_size > sizeof(ih_ring_entry)) { dev_err_once(dev->adev->dev, "Ring entry too small\n"); return; } while (dequeue_ih_ring_entry(dev, ih_ring_entry)) { dev->device_info.event_interrupt_class->interrupt_wq(dev, ih_ring_entry); if (time_is_before_jiffies(start_jiffies + HZ)) { /* If we spent more than a second processing signals, * reschedule the worker to avoid soft-lockup warnings */ queue_work(dev->ih_wq, &dev->interrupt_work); break; } } } bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry, uint32_t *patched_ihre, bool *flag) { /* integer and bitwise OR so there is no boolean short-circuiting */ unsigned int wanted = 0; wanted |= dev->device_info.event_interrupt_class->interrupt_isr(dev, ih_ring_entry, patched_ihre, flag); return wanted != 0; } |