Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 | // SPDX-License-Identifier: GPL-2.0-only /* * Suspend support specific for i386/x86-64. * * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> */ #include <linux/suspend.h> #include <linux/export.h> #include <linux/smp.h> #include <linux/perf_event.h> #include <linux/tboot.h> #include <linux/dmi.h> #include <linux/pgtable.h> #include <asm/proto.h> #include <asm/mtrr.h> #include <asm/page.h> #include <asm/mce.h> #include <asm/suspend.h> #include <asm/fpu/api.h> #include <asm/debugreg.h> #include <asm/cpu.h> #include <asm/cacheinfo.h> #include <asm/mmu_context.h> #include <asm/cpu_device_id.h> #include <asm/microcode.h> #ifdef CONFIG_X86_32 __visible unsigned long saved_context_ebx; __visible unsigned long saved_context_esp, saved_context_ebp; __visible unsigned long saved_context_esi, saved_context_edi; __visible unsigned long saved_context_eflags; #endif struct saved_context saved_context; static void msr_save_context(struct saved_context *ctxt) { struct saved_msr *msr = ctxt->saved_msrs.array; struct saved_msr *end = msr + ctxt->saved_msrs.num; while (msr < end) { if (msr->valid) rdmsrl(msr->info.msr_no, msr->info.reg.q); msr++; } } static void msr_restore_context(struct saved_context *ctxt) { struct saved_msr *msr = ctxt->saved_msrs.array; struct saved_msr *end = msr + ctxt->saved_msrs.num; while (msr < end) { if (msr->valid) wrmsrl(msr->info.msr_no, msr->info.reg.q); msr++; } } /** * __save_processor_state() - Save CPU registers before creating a * hibernation image and before restoring * the memory state from it * @ctxt: Structure to store the registers contents in. * * NOTE: If there is a CPU register the modification of which by the * boot kernel (ie. the kernel used for loading the hibernation image) * might affect the operations of the restored target kernel (ie. the one * saved in the hibernation image), then its contents must be saved by this * function. In other words, if kernel A is hibernated and different * kernel B is used for loading the hibernation image into memory, the * kernel A's __save_processor_state() function must save all registers * needed by kernel A, so that it can operate correctly after the resume * regardless of what kernel B does in the meantime. */ static void __save_processor_state(struct saved_context *ctxt) { #ifdef CONFIG_X86_32 mtrr_save_fixed_ranges(NULL); #endif kernel_fpu_begin(); /* * descriptor tables */ store_idt(&ctxt->idt); /* * We save it here, but restore it only in the hibernate case. * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit * mode in "secondary_startup_64". In 32-bit mode it is done via * 'pmode_gdt' in wakeup_start. */ ctxt->gdt_desc.size = GDT_SIZE - 1; ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); store_tr(ctxt->tr); /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ /* * segment registers */ savesegment(gs, ctxt->gs); #ifdef CONFIG_X86_64 savesegment(fs, ctxt->fs); savesegment(ds, ctxt->ds); savesegment(es, ctxt->es); rdmsrl(MSR_FS_BASE, ctxt->fs_base); rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); mtrr_save_fixed_ranges(NULL); rdmsrl(MSR_EFER, ctxt->efer); #endif /* * control registers */ ctxt->cr0 = read_cr0(); ctxt->cr2 = read_cr2(); ctxt->cr3 = __read_cr3(); ctxt->cr4 = __read_cr4(); ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, &ctxt->misc_enable); msr_save_context(ctxt); } /* Needed by apm.c */ void save_processor_state(void) { __save_processor_state(&saved_context); x86_platform.save_sched_clock_state(); } #ifdef CONFIG_X86_32 EXPORT_SYMBOL(save_processor_state); #endif static void do_fpu_end(void) { /* * Restore FPU regs if necessary. */ kernel_fpu_end(); } static void fix_processor_context(void) { int cpu = smp_processor_id(); #ifdef CONFIG_X86_64 struct desc_struct *desc = get_cpu_gdt_rw(cpu); tss_desc tss; #endif /* * We need to reload TR, which requires that we change the * GDT entry to indicate "available" first. * * XXX: This could probably all be replaced by a call to * force_reload_TR(). */ set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); #ifdef CONFIG_X86_64 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); syscall_init(); /* This sets MSR_*STAR and related */ #else if (boot_cpu_has(X86_FEATURE_SEP)) enable_sep_cpu(); #endif load_TR_desc(); /* This does ltr */ load_mm_ldt(current->active_mm); /* This does lldt */ initialize_tlbstate_and_flush(); fpu__resume_cpu(); /* The processor is back on the direct GDT, load back the fixmap */ load_fixmap_gdt(cpu); } /** * __restore_processor_state() - Restore the contents of CPU registers saved * by __save_processor_state() * @ctxt: Structure to load the registers contents from. * * The asm code that gets us here will have restored a usable GDT, although * it will be pointing to the wrong alias. */ static void notrace __restore_processor_state(struct saved_context *ctxt) { struct cpuinfo_x86 *c; if (ctxt->misc_enable_saved) wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); /* * control registers */ /* cr4 was introduced in the Pentium CPU */ #ifdef CONFIG_X86_32 if (ctxt->cr4) __write_cr4(ctxt->cr4); #else /* CONFIG X86_64 */ wrmsrl(MSR_EFER, ctxt->efer); __write_cr4(ctxt->cr4); #endif write_cr3(ctxt->cr3); write_cr2(ctxt->cr2); write_cr0(ctxt->cr0); /* Restore the IDT. */ load_idt(&ctxt->idt); /* * Just in case the asm code got us here with the SS, DS, or ES * out of sync with the GDT, update them. */ loadsegment(ss, __KERNEL_DS); loadsegment(ds, __USER_DS); loadsegment(es, __USER_DS); /* * Restore percpu access. Percpu access can happen in exception * handlers or in complicated helpers like load_gs_index(). */ #ifdef CONFIG_X86_64 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); #else loadsegment(fs, __KERNEL_PERCPU); #endif /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ fix_processor_context(); /* * Now that we have descriptor tables fully restored and working * exception handling, restore the usermode segments. */ #ifdef CONFIG_X86_64 loadsegment(ds, ctxt->es); loadsegment(es, ctxt->es); loadsegment(fs, ctxt->fs); load_gs_index(ctxt->gs); /* * Restore FSBASE and GSBASE after restoring the selectors, since * restoring the selectors clobbers the bases. Keep in mind * that MSR_KERNEL_GS_BASE is horribly misnamed. */ wrmsrl(MSR_FS_BASE, ctxt->fs_base); wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); #else loadsegment(gs, ctxt->gs); #endif do_fpu_end(); tsc_verify_tsc_adjust(true); x86_platform.restore_sched_clock_state(); cache_bp_restore(); perf_restore_debug_store(); c = &cpu_data(smp_processor_id()); if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL)) init_ia32_feat_ctl(c); microcode_bsp_resume(); /* * This needs to happen after the microcode has been updated upon resume * because some of the MSRs are "emulated" in microcode. */ msr_restore_context(ctxt); } /* Needed by apm.c */ void notrace restore_processor_state(void) { __restore_processor_state(&saved_context); } #ifdef CONFIG_X86_32 EXPORT_SYMBOL(restore_processor_state); #endif #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) static void __noreturn resume_play_dead(void) { play_dead_common(); tboot_shutdown(TB_SHUTDOWN_WFS); hlt_play_dead(); } int hibernate_resume_nonboot_cpu_disable(void) { void (*play_dead)(void) = smp_ops.play_dead; int ret; /* * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop * during hibernate image restoration, because it is likely that the * monitored address will be actually written to at that time and then * the "dead" CPU will attempt to execute instructions again, but the * address in its instruction pointer may not be possible to resolve * any more at that point (the page tables used by it previously may * have been overwritten by hibernate image data). * * First, make sure that we wake up all the potentially disabled SMT * threads which have been initially brought up and then put into * mwait/cpuidle sleep. * Those will be put to proper (not interfering with hibernation * resume) sleep afterwards, and the resumed kernel will decide itself * what to do with them. */ ret = cpuhp_smt_enable(); if (ret) return ret; smp_ops.play_dead = resume_play_dead; ret = freeze_secondary_cpus(0); smp_ops.play_dead = play_dead; return ret; } #endif /* * When bsp_check() is called in hibernate and suspend, cpu hotplug * is disabled already. So it's unnecessary to handle race condition between * cpumask query and cpu hotplug. */ static int bsp_check(void) { if (cpumask_first(cpu_online_mask) != 0) { pr_warn("CPU0 is offline.\n"); return -ENODEV; } return 0; } static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, void *ptr) { int ret = 0; switch (action) { case PM_SUSPEND_PREPARE: case PM_HIBERNATION_PREPARE: ret = bsp_check(); break; #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 case PM_RESTORE_PREPARE: /* * When system resumes from hibernation, online CPU0 because * 1. it's required for resume and * 2. the CPU was online before hibernation */ if (!cpu_online(0)) _debug_hotplug_cpu(0, 1); break; case PM_POST_RESTORE: /* * When a resume really happens, this code won't be called. * * This code is called only when user space hibernation software * prepares for snapshot device during boot time. So we just * call _debug_hotplug_cpu() to restore to CPU0's state prior to * preparing the snapshot device. * * This works for normal boot case in our CPU0 hotplug debug * mode, i.e. CPU0 is offline and user mode hibernation * software initializes during boot time. * * If CPU0 is online and user application accesses snapshot * device after boot time, this will offline CPU0 and user may * see different CPU0 state before and after accessing * the snapshot device. But hopefully this is not a case when * user debugging CPU0 hotplug. Even if users hit this case, * they can easily online CPU0 back. * * To simplify this debug code, we only consider normal boot * case. Otherwise we need to remember CPU0's state and restore * to that state and resolve racy conditions etc. */ _debug_hotplug_cpu(0, 0); break; #endif default: break; } return notifier_from_errno(ret); } static int __init bsp_pm_check_init(void) { /* * Set this bsp_pm_callback as lower priority than * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called * earlier to disable cpu hotplug before bsp online check. */ pm_notifier(bsp_pm_callback, -INT_MAX); return 0; } core_initcall(bsp_pm_check_init); static int msr_build_context(const u32 *msr_id, const int num) { struct saved_msrs *saved_msrs = &saved_context.saved_msrs; struct saved_msr *msr_array; int total_num; int i, j; total_num = saved_msrs->num + num; msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); if (!msr_array) { pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); return -ENOMEM; } if (saved_msrs->array) { /* * Multiple callbacks can invoke this function, so copy any * MSR save requests from previous invocations. */ memcpy(msr_array, saved_msrs->array, sizeof(struct saved_msr) * saved_msrs->num); kfree(saved_msrs->array); } for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { u64 dummy; msr_array[i].info.msr_no = msr_id[j]; msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy); msr_array[i].info.reg.q = 0; } saved_msrs->num = total_num; saved_msrs->array = msr_array; return 0; } /* * The following sections are a quirk framework for problematic BIOSen: * Sometimes MSRs are modified by the BIOSen after suspended to * RAM, this might cause unexpected behavior after wakeup. * Thus we save/restore these specified MSRs across suspend/resume * in order to work around it. * * For any further problematic BIOSen/platforms, * please add your own function similar to msr_initialize_bdw. */ static int msr_initialize_bdw(const struct dmi_system_id *d) { /* Add any extra MSR ids into this array. */ u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); } static const struct dmi_system_id msr_save_dmi_table[] = { { .callback = msr_initialize_bdw, .ident = "BROADWELL BDX_EP", .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), }, }, {} }; static int msr_save_cpuid_features(const struct x86_cpu_id *c) { u32 cpuid_msr_id[] = { MSR_AMD64_CPUID_FN_1, }; pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", c->family); return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); } static const struct x86_cpu_id msr_save_cpu_table[] = { X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features), X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features), {} }; typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); static int pm_cpu_check(const struct x86_cpu_id *c) { const struct x86_cpu_id *m; int ret = 0; m = x86_match_cpu(msr_save_cpu_table); if (m) { pm_cpu_match_t fn; fn = (pm_cpu_match_t)m->driver_data; ret = fn(m); } return ret; } static void pm_save_spec_msr(void) { struct msr_enumeration { u32 msr_no; u32 feature; } msr_enum[] = { { MSR_IA32_SPEC_CTRL, X86_FEATURE_MSR_SPEC_CTRL }, { MSR_IA32_TSX_CTRL, X86_FEATURE_MSR_TSX_CTRL }, { MSR_TSX_FORCE_ABORT, X86_FEATURE_TSX_FORCE_ABORT }, { MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL }, { MSR_AMD64_LS_CFG, X86_FEATURE_LS_CFG_SSBD }, { MSR_AMD64_DE_CFG, X86_FEATURE_LFENCE_RDTSC }, }; int i; for (i = 0; i < ARRAY_SIZE(msr_enum); i++) { if (boot_cpu_has(msr_enum[i].feature)) msr_build_context(&msr_enum[i].msr_no, 1); } } static int pm_check_save_msr(void) { dmi_check_system(msr_save_dmi_table); pm_cpu_check(msr_save_cpu_table); pm_save_spec_msr(); return 0; } device_initcall(pm_check_save_msr); |