Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 | // SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2018 Intel Corporation. */ #include "i40e.h" #include <linux/ptp_classify.h> #include <linux/posix-clock.h> /* The XL710 timesync is very much like Intel's 82599 design when it comes to * the fundamental clock design. However, the clock operations are much simpler * in the XL710 because the device supports a full 64 bits of nanoseconds. * Because the field is so wide, we can forgo the cycle counter and just * operate with the nanosecond field directly without fear of overflow. * * Much like the 82599, the update period is dependent upon the link speed: * At 40Gb, 25Gb, or no link, the period is 1.6ns. * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns) * At 1Gb link, the period is multiplied by 20. (32ns) * 1588 functionality is not supported at 100Mbps. */ #define I40E_PTP_40GB_INCVAL 0x0199999999ULL #define I40E_PTP_10GB_INCVAL_MULT 2 #define I40E_PTP_5GB_INCVAL_MULT 2 #define I40E_PTP_1GB_INCVAL_MULT 20 #define I40E_ISGN 0x80000000 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \ I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) #define I40E_SUBDEV_ID_25G_PTP_PIN 0xB enum i40e_ptp_pin { SDP3_2 = 0, SDP3_3, GPIO_4 }; enum i40e_can_set_pins_t { CANT_DO_PINS = -1, CAN_SET_PINS, CAN_DO_PINS }; static struct ptp_pin_desc sdp_desc[] = { /* name idx func chan */ {"SDP3_2", SDP3_2, PTP_PF_NONE, 0}, {"SDP3_3", SDP3_3, PTP_PF_NONE, 1}, {"GPIO_4", GPIO_4, PTP_PF_NONE, 1}, }; enum i40e_ptp_gpio_pin_state { end = -2, invalid, off, in_A, in_B, out_A, out_B, }; static const char * const i40e_ptp_gpio_pin_state2str[] = { "off", "in_A", "in_B", "out_A", "out_B" }; enum i40e_ptp_led_pin_state { led_end = -2, low = 0, high, }; struct i40e_ptp_pins_settings { enum i40e_ptp_gpio_pin_state sdp3_2; enum i40e_ptp_gpio_pin_state sdp3_3; enum i40e_ptp_gpio_pin_state gpio_4; enum i40e_ptp_led_pin_state led2_0; enum i40e_ptp_led_pin_state led2_1; enum i40e_ptp_led_pin_state led3_0; enum i40e_ptp_led_pin_state led3_1; }; static const struct i40e_ptp_pins_settings i40e_ptp_pin_led_allowed_states[] = { {off, off, off, high, high, high, high}, {off, in_A, off, high, high, high, low}, {off, out_A, off, high, low, high, high}, {off, in_B, off, high, high, high, low}, {off, out_B, off, high, low, high, high}, {in_A, off, off, high, high, high, low}, {in_A, in_B, off, high, high, high, low}, {in_A, out_B, off, high, low, high, high}, {out_A, off, off, high, low, high, high}, {out_A, in_B, off, high, low, high, high}, {in_B, off, off, high, high, high, low}, {in_B, in_A, off, high, high, high, low}, {in_B, out_A, off, high, low, high, high}, {out_B, off, off, high, low, high, high}, {out_B, in_A, off, high, low, high, high}, {off, off, in_A, high, high, low, high}, {off, out_A, in_A, high, low, low, high}, {off, in_B, in_A, high, high, low, low}, {off, out_B, in_A, high, low, low, high}, {out_A, off, in_A, high, low, low, high}, {out_A, in_B, in_A, high, low, low, high}, {in_B, off, in_A, high, high, low, low}, {in_B, out_A, in_A, high, low, low, high}, {out_B, off, in_A, high, low, low, high}, {off, off, out_A, low, high, high, high}, {off, in_A, out_A, low, high, high, low}, {off, in_B, out_A, low, high, high, low}, {off, out_B, out_A, low, low, high, high}, {in_A, off, out_A, low, high, high, low}, {in_A, in_B, out_A, low, high, high, low}, {in_A, out_B, out_A, low, low, high, high}, {in_B, off, out_A, low, high, high, low}, {in_B, in_A, out_A, low, high, high, low}, {out_B, off, out_A, low, low, high, high}, {out_B, in_A, out_A, low, low, high, high}, {off, off, in_B, high, high, low, high}, {off, in_A, in_B, high, high, low, low}, {off, out_A, in_B, high, low, low, high}, {off, out_B, in_B, high, low, low, high}, {in_A, off, in_B, high, high, low, low}, {in_A, out_B, in_B, high, low, low, high}, {out_A, off, in_B, high, low, low, high}, {out_B, off, in_B, high, low, low, high}, {out_B, in_A, in_B, high, low, low, high}, {off, off, out_B, low, high, high, high}, {off, in_A, out_B, low, high, high, low}, {off, out_A, out_B, low, low, high, high}, {off, in_B, out_B, low, high, high, low}, {in_A, off, out_B, low, high, high, low}, {in_A, in_B, out_B, low, high, high, low}, {out_A, off, out_B, low, low, high, high}, {out_A, in_B, out_B, low, low, high, high}, {in_B, off, out_B, low, high, high, low}, {in_B, in_A, out_B, low, high, high, low}, {in_B, out_A, out_B, low, low, high, high}, {end, end, end, led_end, led_end, led_end, led_end} }; static int i40e_ptp_set_pins(struct i40e_pf *pf, struct i40e_ptp_pins_settings *pins); /** * i40e_ptp_extts0_work - workqueue task function * @work: workqueue task structure * * Service for PTP external clock event **/ static void i40e_ptp_extts0_work(struct work_struct *work) { struct i40e_pf *pf = container_of(work, struct i40e_pf, ptp_extts0_work); struct i40e_hw *hw = &pf->hw; struct ptp_clock_event event; u32 hi, lo; /* Event time is captured by one of the two matched registers * PRTTSYN_EVNT_L: 32 LSB of sampled time event * PRTTSYN_EVNT_H: 32 MSB of sampled time event * Event is defined in PRTTSYN_EVNT_0 register */ lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0)); hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0)); event.timestamp = (((u64)hi) << 32) | lo; event.type = PTP_CLOCK_EXTTS; event.index = hw->pf_id; /* fire event */ ptp_clock_event(pf->ptp_clock, &event); } /** * i40e_is_ptp_pin_dev - check if device supports PTP pins * @hw: pointer to the hardware structure * * Return true if device supports PTP pins, false otherwise. **/ static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw) { return hw->device_id == I40E_DEV_ID_25G_SFP28 && hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN; } /** * i40e_can_set_pins - check possibility of manipulating the pins * @pf: board private structure * * Check if all conditions are satisfied to manipulate PTP pins. * Return CAN_SET_PINS if pins can be set on a specific PF or * return CAN_DO_PINS if pins can be manipulated within a NIC or * return CANT_DO_PINS otherwise. **/ static enum i40e_can_set_pins_t i40e_can_set_pins(struct i40e_pf *pf) { if (!i40e_is_ptp_pin_dev(&pf->hw)) { dev_warn(&pf->pdev->dev, "PTP external clock not supported.\n"); return CANT_DO_PINS; } if (!pf->ptp_pins) { dev_warn(&pf->pdev->dev, "PTP PIN manipulation not allowed.\n"); return CANT_DO_PINS; } if (pf->hw.pf_id) { dev_warn(&pf->pdev->dev, "PTP PINs should be accessed via PF0.\n"); return CAN_DO_PINS; } return CAN_SET_PINS; } /** * i40_ptp_reset_timing_events - Reset PTP timing events * @pf: Board private structure * * This function resets timing events for pf. **/ static void i40_ptp_reset_timing_events(struct i40e_pf *pf) { u32 i; spin_lock_bh(&pf->ptp_rx_lock); for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) { /* reading and automatically clearing timing events registers */ rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i)); rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i)); pf->latch_events[i] = 0; } /* reading and automatically clearing timing events registers */ rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L); rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H); pf->tx_hwtstamp_timeouts = 0; pf->tx_hwtstamp_skipped = 0; pf->rx_hwtstamp_cleared = 0; pf->latch_event_flags = 0; spin_unlock_bh(&pf->ptp_rx_lock); } /** * i40e_ptp_verify - check pins * @ptp: ptp clock * @pin: pin index * @func: assigned function * @chan: channel * * Check pins consistency. * Return 0 on success or error on failure. **/ static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { switch (func) { case PTP_PF_NONE: case PTP_PF_EXTTS: case PTP_PF_PEROUT: break; case PTP_PF_PHYSYNC: return -EOPNOTSUPP; } return 0; } /** * i40e_ptp_read - Read the PHC time from the device * @pf: Board private structure * @ts: timespec structure to hold the current time value * @sts: structure to hold the system time before and after reading the PHC * * This function reads the PRTTSYN_TIME registers and stores them in a * timespec. However, since the registers are 64 bits of nanoseconds, we must * convert the result to a timespec before we can return. **/ static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct i40e_hw *hw = &pf->hw; u32 hi, lo; u64 ns; /* The timer latches on the lowest register read. */ ptp_read_system_prets(sts); lo = rd32(hw, I40E_PRTTSYN_TIME_L); ptp_read_system_postts(sts); hi = rd32(hw, I40E_PRTTSYN_TIME_H); ns = (((u64)hi) << 32) | lo; *ts = ns_to_timespec64(ns); } /** * i40e_ptp_write - Write the PHC time to the device * @pf: Board private structure * @ts: timespec structure that holds the new time value * * This function writes the PRTTSYN_TIME registers with the user value. Since * we receive a timespec from the stack, we must convert that timespec into * nanoseconds before programming the registers. **/ static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts) { struct i40e_hw *hw = &pf->hw; u64 ns = timespec64_to_ns(ts); /* The timer will not update until the high register is written, so * write the low register first. */ wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF); wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32); } /** * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time * @hwtstamps: Timestamp structure to update * @timestamp: Timestamp from the hardware * * We need to convert the NIC clock value into a hwtstamp which can be used by * the upper level timestamping functions. Since the timestamp is simply a 64- * bit nanosecond value, we can call ns_to_ktime directly to handle this. **/ static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps, u64 timestamp) { memset(hwtstamps, 0, sizeof(*hwtstamps)); hwtstamps->hwtstamp = ns_to_ktime(timestamp); } /** * i40e_ptp_adjfine - Adjust the PHC frequency * @ptp: The PTP clock structure * @scaled_ppm: Scaled parts per million adjustment from base * * Adjust the frequency of the PHC by the indicated delta from the base * frequency. * * Scaled parts per million is ppm with a 16 bit binary fractional field. **/ static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); struct i40e_hw *hw = &pf->hw; u64 adj, base_adj; smp_mb(); /* Force any pending update before accessing. */ base_adj = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult); adj = adjust_by_scaled_ppm(base_adj, scaled_ppm); wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF); wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32); return 0; } /** * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins * @pf: the PF private data structure * * Configure 1PPS signal used for PTP pins **/ static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; struct timespec64 now; u64 ns; wr32(hw, I40E_PRTTSYN_AUX_0(1), 0); wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT); wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE); i40e_ptp_read(pf, &now, NULL); now.tv_sec += I40E_PTP_2_SEC_DELAY; now.tv_nsec = 0; ns = timespec64_to_ns(&now); /* I40E_PRTTSYN_TGT_L(1) */ wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF); /* I40E_PRTTSYN_TGT_H(1) */ wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32); wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND); wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT); wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD); } /** * i40e_ptp_adjtime - Adjust the PHC time * @ptp: The PTP clock structure * @delta: Offset in nanoseconds to adjust the PHC time by * * Adjust the current clock time by a delta specified in nanoseconds. **/ static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); struct i40e_hw *hw = &pf->hw; mutex_lock(&pf->tmreg_lock); if (delta > -999999900LL && delta < 999999900LL) { int neg_adj = 0; u32 timadj; u64 tohw; if (delta < 0) { neg_adj = 1; tohw = -delta; } else { tohw = delta; } timadj = tohw & 0x3FFFFFFF; if (neg_adj) timadj |= I40E_ISGN; wr32(hw, I40E_PRTTSYN_ADJ, timadj); } else { struct timespec64 then, now; then = ns_to_timespec64(delta); i40e_ptp_read(pf, &now, NULL); now = timespec64_add(now, then); i40e_ptp_write(pf, (const struct timespec64 *)&now); i40e_ptp_set_1pps_signal_hw(pf); } mutex_unlock(&pf->tmreg_lock); return 0; } /** * i40e_ptp_gettimex - Get the time of the PHC * @ptp: The PTP clock structure * @ts: timespec structure to hold the current time value * @sts: structure to hold the system time before and after reading the PHC * * Read the device clock and return the correct value on ns, after converting it * into a timespec struct. **/ static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); mutex_lock(&pf->tmreg_lock); i40e_ptp_read(pf, ts, sts); mutex_unlock(&pf->tmreg_lock); return 0; } /** * i40e_ptp_settime - Set the time of the PHC * @ptp: The PTP clock structure * @ts: timespec64 structure that holds the new time value * * Set the device clock to the user input value. The conversion from timespec * to ns happens in the write function. **/ static int i40e_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); mutex_lock(&pf->tmreg_lock); i40e_ptp_write(pf, ts); mutex_unlock(&pf->tmreg_lock); return 0; } /** * i40e_pps_configure - configure PPS events * @ptp: ptp clock * @rq: clock request * @on: status * * Configure PPS events for external clock source. * Return 0 on success or error on failure. **/ static int i40e_pps_configure(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); if (!!on) i40e_ptp_set_1pps_signal_hw(pf); return 0; } /** * i40e_pin_state - determine PIN state * @index: PIN index * @func: function assigned to PIN * * Determine PIN state based on PIN index and function assigned. * Return PIN state. **/ static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func) { enum i40e_ptp_gpio_pin_state state = off; if (index == 0 && func == PTP_PF_EXTTS) state = in_A; if (index == 1 && func == PTP_PF_EXTTS) state = in_B; if (index == 0 && func == PTP_PF_PEROUT) state = out_A; if (index == 1 && func == PTP_PF_PEROUT) state = out_B; return state; } /** * i40e_ptp_enable_pin - enable PINs. * @pf: private board structure * @chan: channel * @func: PIN function * @on: state * * Enable PTP pins for external clock source. * Return 0 on success or error code on failure. **/ static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan, enum ptp_pin_function func, int on) { enum i40e_ptp_gpio_pin_state *pin = NULL; struct i40e_ptp_pins_settings pins; int pin_index; /* Use PF0 to set pins. Return success for user space tools */ if (pf->hw.pf_id) return 0; /* Preserve previous state of pins that we don't touch */ pins.sdp3_2 = pf->ptp_pins->sdp3_2; pins.sdp3_3 = pf->ptp_pins->sdp3_3; pins.gpio_4 = pf->ptp_pins->gpio_4; /* To turn on the pin - find the corresponding one based on * the given index. To to turn the function off - find * which pin had it assigned. Don't use ptp_find_pin here * because it tries to lock the pincfg_mux which is locked by * ptp_pin_store() that calls here. */ if (on) { pin_index = ptp_find_pin(pf->ptp_clock, func, chan); if (pin_index < 0) return -EBUSY; switch (pin_index) { case SDP3_2: pin = &pins.sdp3_2; break; case SDP3_3: pin = &pins.sdp3_3; break; case GPIO_4: pin = &pins.gpio_4; break; default: return -EINVAL; } *pin = i40e_pin_state(chan, func); } else { pins.sdp3_2 = off; pins.sdp3_3 = off; pins.gpio_4 = off; } return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0; } /** * i40e_ptp_feature_enable - Enable external clock pins * @ptp: The PTP clock structure * @rq: The PTP clock request structure * @on: To turn feature on/off * * Setting on/off PTP PPS feature for pin. **/ static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); enum ptp_pin_function func; unsigned int chan; /* TODO: Implement flags handling for EXTTS and PEROUT */ switch (rq->type) { case PTP_CLK_REQ_EXTTS: func = PTP_PF_EXTTS; chan = rq->extts.index; break; case PTP_CLK_REQ_PEROUT: func = PTP_PF_PEROUT; chan = rq->perout.index; break; case PTP_CLK_REQ_PPS: return i40e_pps_configure(ptp, rq, on); default: return -EOPNOTSUPP; } return i40e_ptp_enable_pin(pf, chan, func, on); } /** * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events * @pf: the PF data structure * * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers * for noticed latch events. This allows the driver to keep track of the first * time a latch event was noticed which will be used to help clear out Rx * timestamps for packets that got dropped or lost. * * This function will return the current value of I40E_PRTTSYN_STAT_1 and is * expected to be called only while under the ptp_rx_lock. **/ static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; u32 prttsyn_stat, new_latch_events; int i; prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1); new_latch_events = prttsyn_stat & ~pf->latch_event_flags; /* Update the jiffies time for any newly latched timestamp. This * ensures that we store the time that we first discovered a timestamp * was latched by the hardware. The service task will later determine * if we should free the latch and drop that timestamp should too much * time pass. This flow ensures that we only update jiffies for new * events latched since the last time we checked, and not all events * currently latched, so that the service task accounting remains * accurate. */ for (i = 0; i < 4; i++) { if (new_latch_events & BIT(i)) pf->latch_events[i] = jiffies; } /* Finally, we store the current status of the Rx timestamp latches */ pf->latch_event_flags = prttsyn_stat; return prttsyn_stat; } /** * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung * @pf: The PF private data structure * * This watchdog task is scheduled to detect error case where hardware has * dropped an Rx packet that was timestamped when the ring is full. The * particular error is rare but leaves the device in a state unable to timestamp * any future packets. **/ void i40e_ptp_rx_hang(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; unsigned int i, cleared = 0; /* Since we cannot turn off the Rx timestamp logic if the device is * configured for Tx timestamping, we check if Rx timestamping is * configured. We don't want to spuriously warn about Rx timestamp * hangs if we don't care about the timestamps. */ if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) return; spin_lock_bh(&pf->ptp_rx_lock); /* Update current latch times for Rx events */ i40e_ptp_get_rx_events(pf); /* Check all the currently latched Rx events and see whether they have * been latched for over a second. It is assumed that any timestamp * should have been cleared within this time, or else it was captured * for a dropped frame that the driver never received. Thus, we will * clear any timestamp that has been latched for over 1 second. */ for (i = 0; i < 4; i++) { if ((pf->latch_event_flags & BIT(i)) && time_is_before_jiffies(pf->latch_events[i] + HZ)) { rd32(hw, I40E_PRTTSYN_RXTIME_H(i)); pf->latch_event_flags &= ~BIT(i); cleared++; } } spin_unlock_bh(&pf->ptp_rx_lock); /* Log a warning if more than 2 timestamps got dropped in the same * check. We don't want to warn about all drops because it can occur * in normal scenarios such as PTP frames on multicast addresses we * aren't listening to. However, administrator should know if this is * the reason packets aren't receiving timestamps. */ if (cleared > 2) dev_dbg(&pf->pdev->dev, "Dropped %d missed RXTIME timestamp events\n", cleared); /* Finally, update the rx_hwtstamp_cleared counter */ pf->rx_hwtstamp_cleared += cleared; } /** * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung * @pf: The PF private data structure * * This watchdog task is run periodically to make sure that we clear the Tx * timestamp logic if we don't obtain a timestamp in a reasonable amount of * time. It is unexpected in the normal case but if it occurs it results in * permanently preventing timestamps of future packets. **/ void i40e_ptp_tx_hang(struct i40e_pf *pf) { struct sk_buff *skb; if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx) return; /* Nothing to do if we're not already waiting for a timestamp */ if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state)) return; /* We already have a handler routine which is run when we are notified * of a Tx timestamp in the hardware. If we don't get an interrupt * within a second it is reasonable to assume that we never will. */ if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) { skb = pf->ptp_tx_skb; pf->ptp_tx_skb = NULL; clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); /* Free the skb after we clear the bitlock */ dev_kfree_skb_any(skb); pf->tx_hwtstamp_timeouts++; } } /** * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp * @pf: Board private structure * * Read the value of the Tx timestamp from the registers, convert it into a * value consumable by the stack, and store that result into the shhwtstamps * struct before returning it up the stack. **/ void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf) { struct skb_shared_hwtstamps shhwtstamps; struct sk_buff *skb = pf->ptp_tx_skb; struct i40e_hw *hw = &pf->hw; u32 hi, lo; u64 ns; if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx) return; /* don't attempt to timestamp if we don't have an skb */ if (!pf->ptp_tx_skb) return; lo = rd32(hw, I40E_PRTTSYN_TXTIME_L); hi = rd32(hw, I40E_PRTTSYN_TXTIME_H); ns = (((u64)hi) << 32) | lo; i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns); /* Clear the bit lock as soon as possible after reading the register, * and prior to notifying the stack via skb_tstamp_tx(). Otherwise * applications might wake up and attempt to request another transmit * timestamp prior to the bit lock being cleared. */ pf->ptp_tx_skb = NULL; clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); /* Notify the stack and free the skb after we've unlocked */ skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } /** * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp * @pf: Board private structure * @skb: Particular skb to send timestamp with * @index: Index into the receive timestamp registers for the timestamp * * The XL710 receives a notification in the receive descriptor with an offset * into the set of RXTIME registers where the timestamp is for that skb. This * function goes and fetches the receive timestamp from that offset, if a valid * one exists. The RXTIME registers are in ns, so we must convert the result * first. **/ void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index) { u32 prttsyn_stat, hi, lo; struct i40e_hw *hw; u64 ns; /* Since we cannot turn off the Rx timestamp logic if the device is * doing Tx timestamping, check if Rx timestamping is configured. */ if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) return; hw = &pf->hw; spin_lock_bh(&pf->ptp_rx_lock); /* Get current Rx events and update latch times */ prttsyn_stat = i40e_ptp_get_rx_events(pf); /* TODO: Should we warn about missing Rx timestamp event? */ if (!(prttsyn_stat & BIT(index))) { spin_unlock_bh(&pf->ptp_rx_lock); return; } /* Clear the latched event since we're about to read its register */ pf->latch_event_flags &= ~BIT(index); lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index)); hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index)); spin_unlock_bh(&pf->ptp_rx_lock); ns = (((u64)hi) << 32) | lo; i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns); } /** * i40e_ptp_set_increment - Utility function to update clock increment rate * @pf: Board private structure * * During a link change, the DMA frequency that drives the 1588 logic will * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds, * we must update the increment value per clock tick. **/ void i40e_ptp_set_increment(struct i40e_pf *pf) { struct i40e_link_status *hw_link_info; struct i40e_hw *hw = &pf->hw; u64 incval; u32 mult; hw_link_info = &hw->phy.link_info; i40e_aq_get_link_info(&pf->hw, true, NULL, NULL); switch (hw_link_info->link_speed) { case I40E_LINK_SPEED_10GB: mult = I40E_PTP_10GB_INCVAL_MULT; break; case I40E_LINK_SPEED_5GB: mult = I40E_PTP_5GB_INCVAL_MULT; break; case I40E_LINK_SPEED_1GB: mult = I40E_PTP_1GB_INCVAL_MULT; break; case I40E_LINK_SPEED_100MB: { static int warn_once; if (!warn_once) { dev_warn(&pf->pdev->dev, "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n"); warn_once++; } mult = 0; break; } case I40E_LINK_SPEED_40GB: default: mult = 1; break; } /* The increment value is calculated by taking the base 40GbE incvalue * and multiplying it by a factor based on the link speed. */ incval = I40E_PTP_40GB_INCVAL * mult; /* Write the new increment value into the increment register. The * hardware will not update the clock until both registers have been * written. */ wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF); wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32); /* Update the base adjustement value. */ WRITE_ONCE(pf->ptp_adj_mult, mult); smp_mb(); /* Force the above update. */ } /** * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping * @pf: Board private structure * @ifr: ioctl data * * Obtain the current hardware timestamping settigs as requested. To do this, * keep a shadow copy of the timestamp settings rather than attempting to * deconstruct it from the registers. **/ int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr) { struct hwtstamp_config *config = &pf->tstamp_config; if (!(pf->flags & I40E_FLAG_PTP)) return -EOPNOTSUPP; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /** * i40e_ptp_free_pins - free memory used by PTP pins * @pf: Board private structure * * Release memory allocated for PTP pins. **/ static void i40e_ptp_free_pins(struct i40e_pf *pf) { if (i40e_is_ptp_pin_dev(&pf->hw)) { kfree(pf->ptp_pins); kfree(pf->ptp_caps.pin_config); pf->ptp_pins = NULL; } } /** * i40e_ptp_set_pin_hw - Set HW GPIO pin * @hw: pointer to the hardware structure * @pin: pin index * @state: pin state * * Set status of GPIO pin for external clock handling. **/ static void i40e_ptp_set_pin_hw(struct i40e_hw *hw, unsigned int pin, enum i40e_ptp_gpio_pin_state state) { switch (state) { case off: wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0); break; case in_A: wr32(hw, I40E_GLGEN_GPIO_CTL(pin), I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0); break; case in_B: wr32(hw, I40E_GLGEN_GPIO_CTL(pin), I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0); break; case out_A: wr32(hw, I40E_GLGEN_GPIO_CTL(pin), I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1); break; case out_B: wr32(hw, I40E_GLGEN_GPIO_CTL(pin), I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1); break; default: break; } } /** * i40e_ptp_set_led_hw - Set HW GPIO led * @hw: pointer to the hardware structure * @led: led index * @state: led state * * Set status of GPIO led for external clock handling. **/ static void i40e_ptp_set_led_hw(struct i40e_hw *hw, unsigned int led, enum i40e_ptp_led_pin_state state) { switch (state) { case low: wr32(hw, I40E_GLGEN_GPIO_SET, I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led); break; case high: wr32(hw, I40E_GLGEN_GPIO_SET, I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led); break; default: break; } } /** * i40e_ptp_init_leds_hw - init LEDs * @hw: pointer to a hardware structure * * Set initial state of LEDs **/ static void i40e_ptp_init_leds_hw(struct i40e_hw *hw) { wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0), I40E_GLGEN_GPIO_CTL_LED_INIT); wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1), I40E_GLGEN_GPIO_CTL_LED_INIT); wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0), I40E_GLGEN_GPIO_CTL_LED_INIT); wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1), I40E_GLGEN_GPIO_CTL_LED_INIT); } /** * i40e_ptp_set_pins_hw - Set HW GPIO pins * @pf: Board private structure * * This function sets GPIO pins for PTP **/ static void i40e_ptp_set_pins_hw(struct i40e_pf *pf) { const struct i40e_ptp_pins_settings *pins = pf->ptp_pins; struct i40e_hw *hw = &pf->hw; /* pin must be disabled before it may be used */ i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off); i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off); i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off); i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2); i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3); i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4); i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0); i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1); i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0); i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1); dev_info(&pf->pdev->dev, "PTP configuration set to: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n", i40e_ptp_gpio_pin_state2str[pins->sdp3_2], i40e_ptp_gpio_pin_state2str[pins->sdp3_3], i40e_ptp_gpio_pin_state2str[pins->gpio_4]); } /** * i40e_ptp_set_pins - set PTP pins in HW * @pf: Board private structure * @pins: PTP pins to be applied * * Validate and set PTP pins in HW for specific PF. * Return 0 on success or negative value on error. **/ static int i40e_ptp_set_pins(struct i40e_pf *pf, struct i40e_ptp_pins_settings *pins) { enum i40e_can_set_pins_t pin_caps = i40e_can_set_pins(pf); int i = 0; if (pin_caps == CANT_DO_PINS) return -EOPNOTSUPP; else if (pin_caps == CAN_DO_PINS) return 0; if (pins->sdp3_2 == invalid) pins->sdp3_2 = pf->ptp_pins->sdp3_2; if (pins->sdp3_3 == invalid) pins->sdp3_3 = pf->ptp_pins->sdp3_3; if (pins->gpio_4 == invalid) pins->gpio_4 = pf->ptp_pins->gpio_4; while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) { if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 && pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 && pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) { pins->led2_0 = i40e_ptp_pin_led_allowed_states[i].led2_0; pins->led2_1 = i40e_ptp_pin_led_allowed_states[i].led2_1; pins->led3_0 = i40e_ptp_pin_led_allowed_states[i].led3_0; pins->led3_1 = i40e_ptp_pin_led_allowed_states[i].led3_1; break; } i++; } if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) { dev_warn(&pf->pdev->dev, "Unsupported PTP pin configuration: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n", i40e_ptp_gpio_pin_state2str[pins->sdp3_2], i40e_ptp_gpio_pin_state2str[pins->sdp3_3], i40e_ptp_gpio_pin_state2str[pins->gpio_4]); return -EPERM; } memcpy(pf->ptp_pins, pins, sizeof(*pins)); i40e_ptp_set_pins_hw(pf); i40_ptp_reset_timing_events(pf); return 0; } /** * i40e_ptp_alloc_pins - allocate PTP pins structure * @pf: Board private structure * * allocate PTP pins structure **/ int i40e_ptp_alloc_pins(struct i40e_pf *pf) { if (!i40e_is_ptp_pin_dev(&pf->hw)) return 0; pf->ptp_pins = kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL); if (!pf->ptp_pins) { dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n"); return -I40E_ERR_NO_MEMORY; } pf->ptp_pins->sdp3_2 = off; pf->ptp_pins->sdp3_3 = off; pf->ptp_pins->gpio_4 = off; pf->ptp_pins->led2_0 = high; pf->ptp_pins->led2_1 = high; pf->ptp_pins->led3_0 = high; pf->ptp_pins->led3_1 = high; /* Use PF0 to set pins in HW. Return success for user space tools */ if (pf->hw.pf_id) return 0; i40e_ptp_init_leds_hw(&pf->hw); i40e_ptp_set_pins_hw(pf); return 0; } /** * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode * @pf: Board private structure * @config: hwtstamp settings requested or saved * * Control hardware registers to enter the specific mode requested by the * user. Also used during reset path to ensure that timestamp settings are * maintained. * * Note: modifies config in place, and may update the requested mode to be * more broad if the specific filter is not directly supported. **/ static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf, struct hwtstamp_config *config) { struct i40e_hw *hw = &pf->hw; u32 tsyntype, regval; /* Selects external trigger to cause event */ regval = rd32(hw, I40E_PRTTSYN_AUX_0(0)); /* Bit 17:16 is EVNTLVL, 01B rising edge */ regval &= 0; regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT); /* regval: 0001 0000 0000 0000 0000 */ wr32(hw, I40E_PRTTSYN_AUX_0(0), regval); /* Enabel interrupts */ regval = rd32(hw, I40E_PRTTSYN_CTL0); regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT; wr32(hw, I40E_PRTTSYN_CTL0, regval); INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work); switch (config->tx_type) { case HWTSTAMP_TX_OFF: pf->ptp_tx = false; break; case HWTSTAMP_TX_ON: pf->ptp_tx = true; break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: pf->ptp_rx = false; /* We set the type to V1, but do not enable UDP packet * recognition. In this way, we should be as close to * disabling PTP Rx timestamps as possible since V1 packets * are always UDP, since L2 packets are a V2 feature. */ tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1; break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE)) return -ERANGE; pf->ptp_rx = true; tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK | I40E_PRTTSYN_CTL1_TSYNTYPE_V1 | I40E_PRTTSYN_CTL1_UDP_ENA_MASK; config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE)) return -ERANGE; fallthrough; case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: pf->ptp_rx = true; tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK | I40E_PRTTSYN_CTL1_TSYNTYPE_V2; if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) { tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK; config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; } else { config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; } break; case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: default: return -ERANGE; } /* Clear out all 1588-related registers to clear and unlatch them. */ spin_lock_bh(&pf->ptp_rx_lock); rd32(hw, I40E_PRTTSYN_STAT_0); rd32(hw, I40E_PRTTSYN_TXTIME_H); rd32(hw, I40E_PRTTSYN_RXTIME_H(0)); rd32(hw, I40E_PRTTSYN_RXTIME_H(1)); rd32(hw, I40E_PRTTSYN_RXTIME_H(2)); rd32(hw, I40E_PRTTSYN_RXTIME_H(3)); pf->latch_event_flags = 0; spin_unlock_bh(&pf->ptp_rx_lock); /* Enable/disable the Tx timestamp interrupt based on user input. */ regval = rd32(hw, I40E_PRTTSYN_CTL0); if (pf->ptp_tx) regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; else regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; wr32(hw, I40E_PRTTSYN_CTL0, regval); regval = rd32(hw, I40E_PFINT_ICR0_ENA); if (pf->ptp_tx) regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; else regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; wr32(hw, I40E_PFINT_ICR0_ENA, regval); /* Although there is no simple on/off switch for Rx, we "disable" Rx * timestamps by setting to V1 only mode and clear the UDP * recognition. This ought to disable all PTP Rx timestamps as V1 * packets are always over UDP. Note that software is configured to * ignore Rx timestamps via the pf->ptp_rx flag. */ regval = rd32(hw, I40E_PRTTSYN_CTL1); /* clear everything but the enable bit */ regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK; /* now enable bits for desired Rx timestamps */ regval |= tsyntype; wr32(hw, I40E_PRTTSYN_CTL1, regval); return 0; } /** * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping * @pf: Board private structure * @ifr: ioctl data * * Respond to the user filter requests and make the appropriate hardware * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping * logic, so keep track in software of whether to indicate these timestamps * or not. * * It is permissible to "upgrade" the user request to a broader filter, as long * as the user receives the timestamps they care about and the user is notified * the filter has been broadened. **/ int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr) { struct hwtstamp_config config; int err; if (!(pf->flags & I40E_FLAG_PTP)) return -EOPNOTSUPP; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; err = i40e_ptp_set_timestamp_mode(pf, &config); if (err) return err; /* save these settings for future reference */ pf->tstamp_config = config; return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /** * i40e_init_pin_config - initialize pins. * @pf: private board structure * * Initialize pins for external clock source. * Return 0 on success or error code on failure. **/ static int i40e_init_pin_config(struct i40e_pf *pf) { int i; pf->ptp_caps.n_pins = 3; pf->ptp_caps.n_ext_ts = 2; pf->ptp_caps.pps = 1; pf->ptp_caps.n_per_out = 2; pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins, sizeof(*pf->ptp_caps.pin_config), GFP_KERNEL); if (!pf->ptp_caps.pin_config) return -ENOMEM; for (i = 0; i < pf->ptp_caps.n_pins; i++) { snprintf(pf->ptp_caps.pin_config[i].name, sizeof(pf->ptp_caps.pin_config[i].name), "%s", sdp_desc[i].name); pf->ptp_caps.pin_config[i].index = sdp_desc[i].index; pf->ptp_caps.pin_config[i].func = PTP_PF_NONE; pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan; } pf->ptp_caps.verify = i40e_ptp_verify; pf->ptp_caps.enable = i40e_ptp_feature_enable; pf->ptp_caps.pps = 1; return 0; } /** * i40e_ptp_create_clock - Create PTP clock device for userspace * @pf: Board private structure * * This function creates a new PTP clock device. It only creates one if we * don't already have one, so it is safe to call. Will return error if it * can't create one, but success if we already have a device. Should be used * by i40e_ptp_init to create clock initially, and prevent global resets from * creating new clock devices. **/ static long i40e_ptp_create_clock(struct i40e_pf *pf) { /* no need to create a clock device if we already have one */ if (!IS_ERR_OR_NULL(pf->ptp_clock)) return 0; strscpy(pf->ptp_caps.name, i40e_driver_name, sizeof(pf->ptp_caps.name) - 1); pf->ptp_caps.owner = THIS_MODULE; pf->ptp_caps.max_adj = 999999999; pf->ptp_caps.adjfine = i40e_ptp_adjfine; pf->ptp_caps.adjtime = i40e_ptp_adjtime; pf->ptp_caps.gettimex64 = i40e_ptp_gettimex; pf->ptp_caps.settime64 = i40e_ptp_settime; if (i40e_is_ptp_pin_dev(&pf->hw)) { int err = i40e_init_pin_config(pf); if (err) return err; } /* Attempt to register the clock before enabling the hardware. */ pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev); if (IS_ERR(pf->ptp_clock)) return PTR_ERR(pf->ptp_clock); /* clear the hwtstamp settings here during clock create, instead of * during regular init, so that we can maintain settings across a * reset or suspend. */ pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF; /* Set the previous "reset" time to the current Kernel clock time */ ktime_get_real_ts64(&pf->ptp_prev_hw_time); pf->ptp_reset_start = ktime_get(); return 0; } /** * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time * @pf: Board private structure * * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should * be called at the end of preparing to reset, just before hardware reset * occurs, in order to preserve the PTP time as close as possible across * resets. */ void i40e_ptp_save_hw_time(struct i40e_pf *pf) { /* don't try to access the PTP clock if it's not enabled */ if (!(pf->flags & I40E_FLAG_PTP)) return; i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL); /* Get a monotonic starting time for this reset */ pf->ptp_reset_start = ktime_get(); } /** * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs * @pf: Board private structure * * Restore the PTP hardware clock registers. We previously cached the PTP * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible, * update this value based on the time delta since the time was saved, using * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference. * * This ensures that the hardware clock is restored to nearly what it should * have been if a reset had not occurred. */ void i40e_ptp_restore_hw_time(struct i40e_pf *pf) { ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start); /* Update the previous HW time with the ktime delta */ timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta)); /* Restore the hardware clock registers */ i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time); } /** * i40e_ptp_init - Initialize the 1588 support after device probe or reset * @pf: Board private structure * * This function sets device up for 1588 support. The first time it is run, it * will create a PHC clock device. It does not create a clock device if one * already exists. It also reconfigures the device after a reset. * * The first time a clock is created, i40e_ptp_create_clock will set * pf->ptp_prev_hw_time to the current system time. During resets, it is * expected that this timespec will be set to the last known PTP clock time, * in order to preserve the clock time as close as possible across a reset. **/ void i40e_ptp_init(struct i40e_pf *pf) { struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev; struct i40e_hw *hw = &pf->hw; u32 pf_id; long err; /* Only one PF is assigned to control 1588 logic per port. Do not * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID */ pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >> I40E_PRTTSYN_CTL0_PF_ID_SHIFT; if (hw->pf_id != pf_id) { pf->flags &= ~I40E_FLAG_PTP; dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n", __func__, netdev->name); return; } mutex_init(&pf->tmreg_lock); spin_lock_init(&pf->ptp_rx_lock); /* ensure we have a clock device */ err = i40e_ptp_create_clock(pf); if (err) { pf->ptp_clock = NULL; dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n", __func__); } else if (pf->ptp_clock) { u32 regval; if (pf->hw.debug_mask & I40E_DEBUG_LAN) dev_info(&pf->pdev->dev, "PHC enabled\n"); pf->flags |= I40E_FLAG_PTP; /* Ensure the clocks are running. */ regval = rd32(hw, I40E_PRTTSYN_CTL0); regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK; wr32(hw, I40E_PRTTSYN_CTL0, regval); regval = rd32(hw, I40E_PRTTSYN_CTL1); regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK; wr32(hw, I40E_PRTTSYN_CTL1, regval); /* Set the increment value per clock tick. */ i40e_ptp_set_increment(pf); /* reset timestamping mode */ i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config); /* Restore the clock time based on last known value */ i40e_ptp_restore_hw_time(pf); } i40e_ptp_set_1pps_signal_hw(pf); } /** * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC * @pf: Board private structure * * This function handles the cleanup work required from the initialization by * clearing out the important information and unregistering the PHC. **/ void i40e_ptp_stop(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; u32 regval; pf->flags &= ~I40E_FLAG_PTP; pf->ptp_tx = false; pf->ptp_rx = false; if (pf->ptp_tx_skb) { struct sk_buff *skb = pf->ptp_tx_skb; pf->ptp_tx_skb = NULL; clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); dev_kfree_skb_any(skb); } if (pf->ptp_clock) { ptp_clock_unregister(pf->ptp_clock); pf->ptp_clock = NULL; dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__, pf->vsi[pf->lan_vsi]->netdev->name); } if (i40e_is_ptp_pin_dev(&pf->hw)) { i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off); i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off); i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off); } regval = rd32(hw, I40E_PRTTSYN_AUX_0(0)); regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK; wr32(hw, I40E_PRTTSYN_AUX_0(0), regval); /* Disable interrupts */ regval = rd32(hw, I40E_PRTTSYN_CTL0); regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK; wr32(hw, I40E_PRTTSYN_CTL0, regval); i40e_ptp_free_pins(pf); } |