Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2018 Intel Corporation. */

#include "i40e.h"
#include <linux/ptp_classify.h>
#include <linux/posix-clock.h>

/* The XL710 timesync is very much like Intel's 82599 design when it comes to
 * the fundamental clock design. However, the clock operations are much simpler
 * in the XL710 because the device supports a full 64 bits of nanoseconds.
 * Because the field is so wide, we can forgo the cycle counter and just
 * operate with the nanosecond field directly without fear of overflow.
 *
 * Much like the 82599, the update period is dependent upon the link speed:
 * At 40Gb, 25Gb, or no link, the period is 1.6ns.
 * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
 * At 1Gb link, the period is multiplied by 20. (32ns)
 * 1588 functionality is not supported at 100Mbps.
 */
#define I40E_PTP_40GB_INCVAL		0x0199999999ULL
#define I40E_PTP_10GB_INCVAL_MULT	2
#define I40E_PTP_5GB_INCVAL_MULT	2
#define I40E_PTP_1GB_INCVAL_MULT	20
#define I40E_ISGN			0x80000000

#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
#define I40E_SUBDEV_ID_25G_PTP_PIN	0xB

enum i40e_ptp_pin {
	SDP3_2 = 0,
	SDP3_3,
	GPIO_4
};

enum i40e_can_set_pins_t {
	CANT_DO_PINS = -1,
	CAN_SET_PINS,
	CAN_DO_PINS
};

static struct ptp_pin_desc sdp_desc[] = {
	/* name     idx      func      chan */
	{"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
	{"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
	{"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
};

enum i40e_ptp_gpio_pin_state {
	end = -2,
	invalid,
	off,
	in_A,
	in_B,
	out_A,
	out_B,
};

static const char * const i40e_ptp_gpio_pin_state2str[] = {
	"off", "in_A", "in_B", "out_A", "out_B"
};

enum i40e_ptp_led_pin_state {
	led_end = -2,
	low = 0,
	high,
};

struct i40e_ptp_pins_settings {
	enum i40e_ptp_gpio_pin_state sdp3_2;
	enum i40e_ptp_gpio_pin_state sdp3_3;
	enum i40e_ptp_gpio_pin_state gpio_4;
	enum i40e_ptp_led_pin_state led2_0;
	enum i40e_ptp_led_pin_state led2_1;
	enum i40e_ptp_led_pin_state led3_0;
	enum i40e_ptp_led_pin_state led3_1;
};

static const struct i40e_ptp_pins_settings
	i40e_ptp_pin_led_allowed_states[] = {
	{off,	off,	off,		high,	high,	high,	high},
	{off,	in_A,	off,		high,	high,	high,	low},
	{off,	out_A,	off,		high,	low,	high,	high},
	{off,	in_B,	off,		high,	high,	high,	low},
	{off,	out_B,	off,		high,	low,	high,	high},
	{in_A,	off,	off,		high,	high,	high,	low},
	{in_A,	in_B,	off,		high,	high,	high,	low},
	{in_A,	out_B,	off,		high,	low,	high,	high},
	{out_A,	off,	off,		high,	low,	high,	high},
	{out_A,	in_B,	off,		high,	low,	high,	high},
	{in_B,	off,	off,		high,	high,	high,	low},
	{in_B,	in_A,	off,		high,	high,	high,	low},
	{in_B,	out_A,	off,		high,	low,	high,	high},
	{out_B,	off,	off,		high,	low,	high,	high},
	{out_B,	in_A,	off,		high,	low,	high,	high},
	{off,	off,	in_A,		high,	high,	low,	high},
	{off,	out_A,	in_A,		high,	low,	low,	high},
	{off,	in_B,	in_A,		high,	high,	low,	low},
	{off,	out_B,	in_A,		high,	low,	low,	high},
	{out_A,	off,	in_A,		high,	low,	low,	high},
	{out_A,	in_B,	in_A,		high,	low,	low,	high},
	{in_B,	off,	in_A,		high,	high,	low,	low},
	{in_B,	out_A,	in_A,		high,	low,	low,	high},
	{out_B,	off,	in_A,		high,	low,	low,	high},
	{off,	off,	out_A,		low,	high,	high,	high},
	{off,	in_A,	out_A,		low,	high,	high,	low},
	{off,	in_B,	out_A,		low,	high,	high,	low},
	{off,	out_B,	out_A,		low,	low,	high,	high},
	{in_A,	off,	out_A,		low,	high,	high,	low},
	{in_A,	in_B,	out_A,		low,	high,	high,	low},
	{in_A,	out_B,	out_A,		low,	low,	high,	high},
	{in_B,	off,	out_A,		low,	high,	high,	low},
	{in_B,	in_A,	out_A,		low,	high,	high,	low},
	{out_B,	off,	out_A,		low,	low,	high,	high},
	{out_B,	in_A,	out_A,		low,	low,	high,	high},
	{off,	off,	in_B,		high,	high,	low,	high},
	{off,	in_A,	in_B,		high,	high,	low,	low},
	{off,	out_A,	in_B,		high,	low,	low,	high},
	{off,	out_B,	in_B,		high,	low,	low,	high},
	{in_A,	off,	in_B,		high,	high,	low,	low},
	{in_A,	out_B,	in_B,		high,	low,	low,	high},
	{out_A,	off,	in_B,		high,	low,	low,	high},
	{out_B,	off,	in_B,		high,	low,	low,	high},
	{out_B,	in_A,	in_B,		high,	low,	low,	high},
	{off,	off,	out_B,		low,	high,	high,	high},
	{off,	in_A,	out_B,		low,	high,	high,	low},
	{off,	out_A,	out_B,		low,	low,	high,	high},
	{off,	in_B,	out_B,		low,	high,	high,	low},
	{in_A,	off,	out_B,		low,	high,	high,	low},
	{in_A,	in_B,	out_B,		low,	high,	high,	low},
	{out_A,	off,	out_B,		low,	low,	high,	high},
	{out_A,	in_B,	out_B,		low,	low,	high,	high},
	{in_B,	off,	out_B,		low,	high,	high,	low},
	{in_B,	in_A,	out_B,		low,	high,	high,	low},
	{in_B,	out_A,	out_B,		low,	low,	high,	high},
	{end,	end,	end,	led_end, led_end, led_end, led_end}
};

static int i40e_ptp_set_pins(struct i40e_pf *pf,
			     struct i40e_ptp_pins_settings *pins);

/**
 * i40e_ptp_extts0_work - workqueue task function
 * @work: workqueue task structure
 *
 * Service for PTP external clock event
 **/
static void i40e_ptp_extts0_work(struct work_struct *work)
{
	struct i40e_pf *pf = container_of(work, struct i40e_pf,
					  ptp_extts0_work);
	struct i40e_hw *hw = &pf->hw;
	struct ptp_clock_event event;
	u32 hi, lo;

	/* Event time is captured by one of the two matched registers
	 *      PRTTSYN_EVNT_L: 32 LSB of sampled time event
	 *      PRTTSYN_EVNT_H: 32 MSB of sampled time event
	 * Event is defined in PRTTSYN_EVNT_0 register
	 */
	lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
	hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));

	event.timestamp = (((u64)hi) << 32) | lo;

	event.type = PTP_CLOCK_EXTTS;
	event.index = hw->pf_id;

	/* fire event */
	ptp_clock_event(pf->ptp_clock, &event);
}

/**
 * i40e_is_ptp_pin_dev - check if device supports PTP pins
 * @hw: pointer to the hardware structure
 *
 * Return true if device supports PTP pins, false otherwise.
 **/
static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
{
	return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
	       hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
}

/**
 * i40e_can_set_pins - check possibility of manipulating the pins
 * @pf: board private structure
 *
 * Check if all conditions are satisfied to manipulate PTP pins.
 * Return CAN_SET_PINS if pins can be set on a specific PF or
 * return CAN_DO_PINS if pins can be manipulated within a NIC or
 * return CANT_DO_PINS otherwise.
 **/
static enum i40e_can_set_pins_t i40e_can_set_pins(struct i40e_pf *pf)
{
	if (!i40e_is_ptp_pin_dev(&pf->hw)) {
		dev_warn(&pf->pdev->dev,
			 "PTP external clock not supported.\n");
		return CANT_DO_PINS;
	}

	if (!pf->ptp_pins) {
		dev_warn(&pf->pdev->dev,
			 "PTP PIN manipulation not allowed.\n");
		return CANT_DO_PINS;
	}

	if (pf->hw.pf_id) {
		dev_warn(&pf->pdev->dev,
			 "PTP PINs should be accessed via PF0.\n");
		return CAN_DO_PINS;
	}

	return CAN_SET_PINS;
}

/**
 * i40_ptp_reset_timing_events - Reset PTP timing events
 * @pf: Board private structure
 *
 * This function resets timing events for pf.
 **/
static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
{
	u32 i;

	spin_lock_bh(&pf->ptp_rx_lock);
	for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
		/* reading and automatically clearing timing events registers */
		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
		pf->latch_events[i] = 0;
	}
	/* reading and automatically clearing timing events registers */
	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);

	pf->tx_hwtstamp_timeouts = 0;
	pf->tx_hwtstamp_skipped = 0;
	pf->rx_hwtstamp_cleared = 0;
	pf->latch_event_flags = 0;
	spin_unlock_bh(&pf->ptp_rx_lock);
}

/**
 * i40e_ptp_verify - check pins
 * @ptp: ptp clock
 * @pin: pin index
 * @func: assigned function
 * @chan: channel
 *
 * Check pins consistency.
 * Return 0 on success or error on failure.
 **/
static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
			   enum ptp_pin_function func, unsigned int chan)
{
	switch (func) {
	case PTP_PF_NONE:
	case PTP_PF_EXTTS:
	case PTP_PF_PEROUT:
		break;
	case PTP_PF_PHYSYNC:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * i40e_ptp_read - Read the PHC time from the device
 * @pf: Board private structure
 * @ts: timespec structure to hold the current time value
 * @sts: structure to hold the system time before and after reading the PHC
 *
 * This function reads the PRTTSYN_TIME registers and stores them in a
 * timespec. However, since the registers are 64 bits of nanoseconds, we must
 * convert the result to a timespec before we can return.
 **/
static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
			  struct ptp_system_timestamp *sts)
{
	struct i40e_hw *hw = &pf->hw;
	u32 hi, lo;
	u64 ns;

	/* The timer latches on the lowest register read. */
	ptp_read_system_prets(sts);
	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
	ptp_read_system_postts(sts);
	hi = rd32(hw, I40E_PRTTSYN_TIME_H);

	ns = (((u64)hi) << 32) | lo;

	*ts = ns_to_timespec64(ns);
}

/**
 * i40e_ptp_write - Write the PHC time to the device
 * @pf: Board private structure
 * @ts: timespec structure that holds the new time value
 *
 * This function writes the PRTTSYN_TIME registers with the user value. Since
 * we receive a timespec from the stack, we must convert that timespec into
 * nanoseconds before programming the registers.
 **/
static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
{
	struct i40e_hw *hw = &pf->hw;
	u64 ns = timespec64_to_ns(ts);

	/* The timer will not update until the high register is written, so
	 * write the low register first.
	 */
	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
}

/**
 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
 * @hwtstamps: Timestamp structure to update
 * @timestamp: Timestamp from the hardware
 *
 * We need to convert the NIC clock value into a hwtstamp which can be used by
 * the upper level timestamping functions. Since the timestamp is simply a 64-
 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
 **/
static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
					 u64 timestamp)
{
	memset(hwtstamps, 0, sizeof(*hwtstamps));

	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
}

/**
 * i40e_ptp_adjfine - Adjust the PHC frequency
 * @ptp: The PTP clock structure
 * @scaled_ppm: Scaled parts per million adjustment from base
 *
 * Adjust the frequency of the PHC by the indicated delta from the base
 * frequency.
 *
 * Scaled parts per million is ppm with a 16 bit binary fractional field.
 **/
static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
	struct i40e_hw *hw = &pf->hw;
	u64 adj, base_adj;

	smp_mb(); /* Force any pending update before accessing. */
	base_adj = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult);

	adj = adjust_by_scaled_ppm(base_adj, scaled_ppm);

	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);

	return 0;
}

/**
 * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
 * @pf: the PF private data structure
 *
 * Configure 1PPS signal used for PTP pins
 **/
static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
{
	struct i40e_hw *hw = &pf->hw;
	struct timespec64 now;
	u64 ns;

	wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
	wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);

	i40e_ptp_read(pf, &now, NULL);
	now.tv_sec += I40E_PTP_2_SEC_DELAY;
	now.tv_nsec = 0;
	ns = timespec64_to_ns(&now);

	/* I40E_PRTTSYN_TGT_L(1) */
	wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
	/* I40E_PRTTSYN_TGT_H(1) */
	wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
	wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
	wr32(hw, I40E_PRTTSYN_AUX_0(1),
	     I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
}

/**
 * i40e_ptp_adjtime - Adjust the PHC time
 * @ptp: The PTP clock structure
 * @delta: Offset in nanoseconds to adjust the PHC time by
 *
 * Adjust the current clock time by a delta specified in nanoseconds.
 **/
static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
	struct i40e_hw *hw = &pf->hw;

	mutex_lock(&pf->tmreg_lock);

	if (delta > -999999900LL && delta < 999999900LL) {
		int neg_adj = 0;
		u32 timadj;
		u64 tohw;

		if (delta < 0) {
			neg_adj = 1;
			tohw = -delta;
		} else {
			tohw = delta;
		}

		timadj = tohw & 0x3FFFFFFF;
		if (neg_adj)
			timadj |= I40E_ISGN;
		wr32(hw, I40E_PRTTSYN_ADJ, timadj);
	} else {
		struct timespec64 then, now;

		then = ns_to_timespec64(delta);
		i40e_ptp_read(pf, &now, NULL);
		now = timespec64_add(now, then);
		i40e_ptp_write(pf, (const struct timespec64 *)&now);
		i40e_ptp_set_1pps_signal_hw(pf);
	}

	mutex_unlock(&pf->tmreg_lock);

	return 0;
}

/**
 * i40e_ptp_gettimex - Get the time of the PHC
 * @ptp: The PTP clock structure
 * @ts: timespec structure to hold the current time value
 * @sts: structure to hold the system time before and after reading the PHC
 *
 * Read the device clock and return the correct value on ns, after converting it
 * into a timespec struct.
 **/
static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
			     struct ptp_system_timestamp *sts)
{
	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);

	mutex_lock(&pf->tmreg_lock);
	i40e_ptp_read(pf, ts, sts);
	mutex_unlock(&pf->tmreg_lock);

	return 0;
}

/**
 * i40e_ptp_settime - Set the time of the PHC
 * @ptp: The PTP clock structure
 * @ts: timespec64 structure that holds the new time value
 *
 * Set the device clock to the user input value. The conversion from timespec
 * to ns happens in the write function.
 **/
static int i40e_ptp_settime(struct ptp_clock_info *ptp,
			    const struct timespec64 *ts)
{
	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);

	mutex_lock(&pf->tmreg_lock);
	i40e_ptp_write(pf, ts);
	mutex_unlock(&pf->tmreg_lock);

	return 0;
}

/**
 * i40e_pps_configure - configure PPS events
 * @ptp: ptp clock
 * @rq: clock request
 * @on: status
 *
 * Configure PPS events for external clock source.
 * Return 0 on success or error on failure.
 **/
static int i40e_pps_configure(struct ptp_clock_info *ptp,
			      struct ptp_clock_request *rq,
			      int on)
{
	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);

	if (!!on)
		i40e_ptp_set_1pps_signal_hw(pf);

	return 0;
}

/**
 * i40e_pin_state - determine PIN state
 * @index: PIN index
 * @func: function assigned to PIN
 *
 * Determine PIN state based on PIN index and function assigned.
 * Return PIN state.
 **/
static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
{
	enum i40e_ptp_gpio_pin_state state = off;

	if (index == 0 && func == PTP_PF_EXTTS)
		state = in_A;
	if (index == 1 && func == PTP_PF_EXTTS)
		state = in_B;
	if (index == 0 && func == PTP_PF_PEROUT)
		state = out_A;
	if (index == 1 && func == PTP_PF_PEROUT)
		state = out_B;

	return state;
}

/**
 * i40e_ptp_enable_pin - enable PINs.
 * @pf: private board structure
 * @chan: channel
 * @func: PIN function
 * @on: state
 *
 * Enable PTP pins for external clock source.
 * Return 0 on success or error code on failure.
 **/
static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
			       enum ptp_pin_function func, int on)
{
	enum i40e_ptp_gpio_pin_state *pin = NULL;
	struct i40e_ptp_pins_settings pins;
	int pin_index;

	/* Use PF0 to set pins. Return success for user space tools */
	if (pf->hw.pf_id)
		return 0;

	/* Preserve previous state of pins that we don't touch */
	pins.sdp3_2 = pf->ptp_pins->sdp3_2;
	pins.sdp3_3 = pf->ptp_pins->sdp3_3;
	pins.gpio_4 = pf->ptp_pins->gpio_4;

	/* To turn on the pin - find the corresponding one based on
	 * the given index. To to turn the function off - find
	 * which pin had it assigned. Don't use ptp_find_pin here
	 * because it tries to lock the pincfg_mux which is locked by
	 * ptp_pin_store() that calls here.
	 */
	if (on) {
		pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
		if (pin_index < 0)
			return -EBUSY;

		switch (pin_index) {
		case SDP3_2:
			pin = &pins.sdp3_2;
			break;
		case SDP3_3:
			pin = &pins.sdp3_3;
			break;
		case GPIO_4:
			pin = &pins.gpio_4;
			break;
		default:
			return -EINVAL;
		}

		*pin = i40e_pin_state(chan, func);
	} else {
		pins.sdp3_2 = off;
		pins.sdp3_3 = off;
		pins.gpio_4 = off;
	}

	return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
}

/**
 * i40e_ptp_feature_enable - Enable external clock pins
 * @ptp: The PTP clock structure
 * @rq: The PTP clock request structure
 * @on: To turn feature on/off
 *
 * Setting on/off PTP PPS feature for pin.
 **/
static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
				   struct ptp_clock_request *rq,
				   int on)
{
	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);

	enum ptp_pin_function func;
	unsigned int chan;

	/* TODO: Implement flags handling for EXTTS and PEROUT */
	switch (rq->type) {
	case PTP_CLK_REQ_EXTTS:
		func = PTP_PF_EXTTS;
		chan = rq->extts.index;
		break;
	case PTP_CLK_REQ_PEROUT:
		func = PTP_PF_PEROUT;
		chan = rq->perout.index;
		break;
	case PTP_CLK_REQ_PPS:
		return i40e_pps_configure(ptp, rq, on);
	default:
		return -EOPNOTSUPP;
	}

	return i40e_ptp_enable_pin(pf, chan, func, on);
}

/**
 * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
 * @pf: the PF data structure
 *
 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
 * for noticed latch events. This allows the driver to keep track of the first
 * time a latch event was noticed which will be used to help clear out Rx
 * timestamps for packets that got dropped or lost.
 *
 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
 * expected to be called only while under the ptp_rx_lock.
 **/
static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
{
	struct i40e_hw *hw = &pf->hw;
	u32 prttsyn_stat, new_latch_events;
	int  i;

	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;

	/* Update the jiffies time for any newly latched timestamp. This
	 * ensures that we store the time that we first discovered a timestamp
	 * was latched by the hardware. The service task will later determine
	 * if we should free the latch and drop that timestamp should too much
	 * time pass. This flow ensures that we only update jiffies for new
	 * events latched since the last time we checked, and not all events
	 * currently latched, so that the service task accounting remains
	 * accurate.
	 */
	for (i = 0; i < 4; i++) {
		if (new_latch_events & BIT(i))
			pf->latch_events[i] = jiffies;
	}

	/* Finally, we store the current status of the Rx timestamp latches */
	pf->latch_event_flags = prttsyn_stat;

	return prttsyn_stat;
}

/**
 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
 * @pf: The PF private data structure
 *
 * This watchdog task is scheduled to detect error case where hardware has
 * dropped an Rx packet that was timestamped when the ring is full. The
 * particular error is rare but leaves the device in a state unable to timestamp
 * any future packets.
 **/
void i40e_ptp_rx_hang(struct i40e_pf *pf)
{
	struct i40e_hw *hw = &pf->hw;
	unsigned int i, cleared = 0;

	/* Since we cannot turn off the Rx timestamp logic if the device is
	 * configured for Tx timestamping, we check if Rx timestamping is
	 * configured. We don't want to spuriously warn about Rx timestamp
	 * hangs if we don't care about the timestamps.
	 */
	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
		return;

	spin_lock_bh(&pf->ptp_rx_lock);

	/* Update current latch times for Rx events */
	i40e_ptp_get_rx_events(pf);

	/* Check all the currently latched Rx events and see whether they have
	 * been latched for over a second. It is assumed that any timestamp
	 * should have been cleared within this time, or else it was captured
	 * for a dropped frame that the driver never received. Thus, we will
	 * clear any timestamp that has been latched for over 1 second.
	 */
	for (i = 0; i < 4; i++) {
		if ((pf->latch_event_flags & BIT(i)) &&
		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
			pf->latch_event_flags &= ~BIT(i);
			cleared++;
		}
	}

	spin_unlock_bh(&pf->ptp_rx_lock);

	/* Log a warning if more than 2 timestamps got dropped in the same
	 * check. We don't want to warn about all drops because it can occur
	 * in normal scenarios such as PTP frames on multicast addresses we
	 * aren't listening to. However, administrator should know if this is
	 * the reason packets aren't receiving timestamps.
	 */
	if (cleared > 2)
		dev_dbg(&pf->pdev->dev,
			"Dropped %d missed RXTIME timestamp events\n",
			cleared);

	/* Finally, update the rx_hwtstamp_cleared counter */
	pf->rx_hwtstamp_cleared += cleared;
}

/**
 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
 * @pf: The PF private data structure
 *
 * This watchdog task is run periodically to make sure that we clear the Tx
 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
 * time. It is unexpected in the normal case but if it occurs it results in
 * permanently preventing timestamps of future packets.
 **/
void i40e_ptp_tx_hang(struct i40e_pf *pf)
{
	struct sk_buff *skb;

	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
		return;

	/* Nothing to do if we're not already waiting for a timestamp */
	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
		return;

	/* We already have a handler routine which is run when we are notified
	 * of a Tx timestamp in the hardware. If we don't get an interrupt
	 * within a second it is reasonable to assume that we never will.
	 */
	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
		skb = pf->ptp_tx_skb;
		pf->ptp_tx_skb = NULL;
		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);

		/* Free the skb after we clear the bitlock */
		dev_kfree_skb_any(skb);
		pf->tx_hwtstamp_timeouts++;
	}
}

/**
 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
 * @pf: Board private structure
 *
 * Read the value of the Tx timestamp from the registers, convert it into a
 * value consumable by the stack, and store that result into the shhwtstamps
 * struct before returning it up the stack.
 **/
void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
{
	struct skb_shared_hwtstamps shhwtstamps;
	struct sk_buff *skb = pf->ptp_tx_skb;
	struct i40e_hw *hw = &pf->hw;
	u32 hi, lo;
	u64 ns;

	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
		return;

	/* don't attempt to timestamp if we don't have an skb */
	if (!pf->ptp_tx_skb)
		return;

	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);

	ns = (((u64)hi) << 32) | lo;
	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);

	/* Clear the bit lock as soon as possible after reading the register,
	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
	 * applications might wake up and attempt to request another transmit
	 * timestamp prior to the bit lock being cleared.
	 */
	pf->ptp_tx_skb = NULL;
	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);

	/* Notify the stack and free the skb after we've unlocked */
	skb_tstamp_tx(skb, &shhwtstamps);
	dev_kfree_skb_any(skb);
}

/**
 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
 * @pf: Board private structure
 * @skb: Particular skb to send timestamp with
 * @index: Index into the receive timestamp registers for the timestamp
 *
 * The XL710 receives a notification in the receive descriptor with an offset
 * into the set of RXTIME registers where the timestamp is for that skb. This
 * function goes and fetches the receive timestamp from that offset, if a valid
 * one exists. The RXTIME registers are in ns, so we must convert the result
 * first.
 **/
void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
{
	u32 prttsyn_stat, hi, lo;
	struct i40e_hw *hw;
	u64 ns;

	/* Since we cannot turn off the Rx timestamp logic if the device is
	 * doing Tx timestamping, check if Rx timestamping is configured.
	 */
	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
		return;

	hw = &pf->hw;

	spin_lock_bh(&pf->ptp_rx_lock);

	/* Get current Rx events and update latch times */
	prttsyn_stat = i40e_ptp_get_rx_events(pf);

	/* TODO: Should we warn about missing Rx timestamp event? */
	if (!(prttsyn_stat & BIT(index))) {
		spin_unlock_bh(&pf->ptp_rx_lock);
		return;
	}

	/* Clear the latched event since we're about to read its register */
	pf->latch_event_flags &= ~BIT(index);

	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));

	spin_unlock_bh(&pf->ptp_rx_lock);

	ns = (((u64)hi) << 32) | lo;

	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
}

/**
 * i40e_ptp_set_increment - Utility function to update clock increment rate
 * @pf: Board private structure
 *
 * During a link change, the DMA frequency that drives the 1588 logic will
 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
 * we must update the increment value per clock tick.
 **/
void i40e_ptp_set_increment(struct i40e_pf *pf)
{
	struct i40e_link_status *hw_link_info;
	struct i40e_hw *hw = &pf->hw;
	u64 incval;
	u32 mult;

	hw_link_info = &hw->phy.link_info;

	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);

	switch (hw_link_info->link_speed) {
	case I40E_LINK_SPEED_10GB:
		mult = I40E_PTP_10GB_INCVAL_MULT;
		break;
	case I40E_LINK_SPEED_5GB:
		mult = I40E_PTP_5GB_INCVAL_MULT;
		break;
	case I40E_LINK_SPEED_1GB:
		mult = I40E_PTP_1GB_INCVAL_MULT;
		break;
	case I40E_LINK_SPEED_100MB:
	{
		static int warn_once;

		if (!warn_once) {
			dev_warn(&pf->pdev->dev,
				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
			warn_once++;
		}
		mult = 0;
		break;
	}
	case I40E_LINK_SPEED_40GB:
	default:
		mult = 1;
		break;
	}

	/* The increment value is calculated by taking the base 40GbE incvalue
	 * and multiplying it by a factor based on the link speed.
	 */
	incval = I40E_PTP_40GB_INCVAL * mult;

	/* Write the new increment value into the increment register. The
	 * hardware will not update the clock until both registers have been
	 * written.
	 */
	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);

	/* Update the base adjustement value. */
	WRITE_ONCE(pf->ptp_adj_mult, mult);
	smp_mb(); /* Force the above update. */
}

/**
 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
 * @pf: Board private structure
 * @ifr: ioctl data
 *
 * Obtain the current hardware timestamping settigs as requested. To do this,
 * keep a shadow copy of the timestamp settings rather than attempting to
 * deconstruct it from the registers.
 **/
int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
{
	struct hwtstamp_config *config = &pf->tstamp_config;

	if (!(pf->flags & I40E_FLAG_PTP))
		return -EOPNOTSUPP;

	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
		-EFAULT : 0;
}

/**
 * i40e_ptp_free_pins - free memory used by PTP pins
 * @pf: Board private structure
 *
 * Release memory allocated for PTP pins.
 **/
static void i40e_ptp_free_pins(struct i40e_pf *pf)
{
	if (i40e_is_ptp_pin_dev(&pf->hw)) {
		kfree(pf->ptp_pins);
		kfree(pf->ptp_caps.pin_config);
		pf->ptp_pins = NULL;
	}
}

/**
 * i40e_ptp_set_pin_hw - Set HW GPIO pin
 * @hw: pointer to the hardware structure
 * @pin: pin index
 * @state: pin state
 *
 * Set status of GPIO pin for external clock handling.
 **/
static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
				unsigned int pin,
				enum i40e_ptp_gpio_pin_state state)
{
	switch (state) {
	case off:
		wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
		break;
	case in_A:
		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
		     I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
		break;
	case in_B:
		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
		     I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
		break;
	case out_A:
		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
		     I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
		break;
	case out_B:
		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
		     I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
		break;
	default:
		break;
	}
}

/**
 * i40e_ptp_set_led_hw - Set HW GPIO led
 * @hw: pointer to the hardware structure
 * @led: led index
 * @state: led state
 *
 * Set status of GPIO led for external clock handling.
 **/
static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
				unsigned int led,
				enum i40e_ptp_led_pin_state state)
{
	switch (state) {
	case low:
		wr32(hw, I40E_GLGEN_GPIO_SET,
		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
		break;
	case high:
		wr32(hw, I40E_GLGEN_GPIO_SET,
		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
		     I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
		break;
	default:
		break;
	}
}

/**
 * i40e_ptp_init_leds_hw - init LEDs
 * @hw: pointer to a hardware structure
 *
 * Set initial state of LEDs
 **/
static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
{
	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
	     I40E_GLGEN_GPIO_CTL_LED_INIT);
	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
	     I40E_GLGEN_GPIO_CTL_LED_INIT);
	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
	     I40E_GLGEN_GPIO_CTL_LED_INIT);
	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
	     I40E_GLGEN_GPIO_CTL_LED_INIT);
}

/**
 * i40e_ptp_set_pins_hw - Set HW GPIO pins
 * @pf: Board private structure
 *
 * This function sets GPIO pins for PTP
 **/
static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
{
	const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
	struct i40e_hw *hw = &pf->hw;

	/* pin must be disabled before it may be used */
	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);

	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);

	i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
	i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
	i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
	i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);

	dev_info(&pf->pdev->dev,
		 "PTP configuration set to: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
		 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
		 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
		 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
}

/**
 * i40e_ptp_set_pins - set PTP pins in HW
 * @pf: Board private structure
 * @pins: PTP pins to be applied
 *
 * Validate and set PTP pins in HW for specific PF.
 * Return 0 on success or negative value on error.
 **/
static int i40e_ptp_set_pins(struct i40e_pf *pf,
			     struct i40e_ptp_pins_settings *pins)
{
	enum i40e_can_set_pins_t pin_caps = i40e_can_set_pins(pf);
	int i = 0;

	if (pin_caps == CANT_DO_PINS)
		return -EOPNOTSUPP;
	else if (pin_caps == CAN_DO_PINS)
		return 0;

	if (pins->sdp3_2 == invalid)
		pins->sdp3_2 = pf->ptp_pins->sdp3_2;
	if (pins->sdp3_3 == invalid)
		pins->sdp3_3 = pf->ptp_pins->sdp3_3;
	if (pins->gpio_4 == invalid)
		pins->gpio_4 = pf->ptp_pins->gpio_4;
	while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
		if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
		    pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
		    pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
			pins->led2_0 =
				i40e_ptp_pin_led_allowed_states[i].led2_0;
			pins->led2_1 =
				i40e_ptp_pin_led_allowed_states[i].led2_1;
			pins->led3_0 =
				i40e_ptp_pin_led_allowed_states[i].led3_0;
			pins->led3_1 =
				i40e_ptp_pin_led_allowed_states[i].led3_1;
			break;
		}
		i++;
	}
	if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
		dev_warn(&pf->pdev->dev,
			 "Unsupported PTP pin configuration: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
			 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
			 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
			 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);

		return -EPERM;
	}
	memcpy(pf->ptp_pins, pins, sizeof(*pins));
	i40e_ptp_set_pins_hw(pf);
	i40_ptp_reset_timing_events(pf);

	return 0;
}

/**
 * i40e_ptp_alloc_pins - allocate PTP pins structure
 * @pf: Board private structure
 *
 * allocate PTP pins structure
 **/
int i40e_ptp_alloc_pins(struct i40e_pf *pf)
{
	if (!i40e_is_ptp_pin_dev(&pf->hw))
		return 0;

	pf->ptp_pins =
		kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);

	if (!pf->ptp_pins) {
		dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
		return -I40E_ERR_NO_MEMORY;
	}

	pf->ptp_pins->sdp3_2 = off;
	pf->ptp_pins->sdp3_3 = off;
	pf->ptp_pins->gpio_4 = off;
	pf->ptp_pins->led2_0 = high;
	pf->ptp_pins->led2_1 = high;
	pf->ptp_pins->led3_0 = high;
	pf->ptp_pins->led3_1 = high;

	/* Use PF0 to set pins in HW. Return success for user space tools */
	if (pf->hw.pf_id)
		return 0;

	i40e_ptp_init_leds_hw(&pf->hw);
	i40e_ptp_set_pins_hw(pf);

	return 0;
}

/**
 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
 * @pf: Board private structure
 * @config: hwtstamp settings requested or saved
 *
 * Control hardware registers to enter the specific mode requested by the
 * user. Also used during reset path to ensure that timestamp settings are
 * maintained.
 *
 * Note: modifies config in place, and may update the requested mode to be
 * more broad if the specific filter is not directly supported.
 **/
static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
				       struct hwtstamp_config *config)
{
	struct i40e_hw *hw = &pf->hw;
	u32 tsyntype, regval;

	/* Selects external trigger to cause event */
	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
	/* Bit 17:16 is EVNTLVL, 01B rising edge */
	regval &= 0;
	regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
	/* regval: 0001 0000 0000 0000 0000 */
	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);

	/* Enabel interrupts */
	regval = rd32(hw, I40E_PRTTSYN_CTL0);
	regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
	wr32(hw, I40E_PRTTSYN_CTL0, regval);

	INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);

	switch (config->tx_type) {
	case HWTSTAMP_TX_OFF:
		pf->ptp_tx = false;
		break;
	case HWTSTAMP_TX_ON:
		pf->ptp_tx = true;
		break;
	default:
		return -ERANGE;
	}

	switch (config->rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		pf->ptp_rx = false;
		/* We set the type to V1, but do not enable UDP packet
		 * recognition. In this way, we should be as close to
		 * disabling PTP Rx timestamps as possible since V1 packets
		 * are always UDP, since L2 packets are a V2 feature.
		 */
		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
			return -ERANGE;
		pf->ptp_rx = true;
		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
			return -ERANGE;
		fallthrough;
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
		pf->ptp_rx = true;
		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		} else {
			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
		}
		break;
	case HWTSTAMP_FILTER_NTP_ALL:
	case HWTSTAMP_FILTER_ALL:
	default:
		return -ERANGE;
	}

	/* Clear out all 1588-related registers to clear and unlatch them. */
	spin_lock_bh(&pf->ptp_rx_lock);
	rd32(hw, I40E_PRTTSYN_STAT_0);
	rd32(hw, I40E_PRTTSYN_TXTIME_H);
	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
	pf->latch_event_flags = 0;
	spin_unlock_bh(&pf->ptp_rx_lock);

	/* Enable/disable the Tx timestamp interrupt based on user input. */
	regval = rd32(hw, I40E_PRTTSYN_CTL0);
	if (pf->ptp_tx)
		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
	else
		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
	wr32(hw, I40E_PRTTSYN_CTL0, regval);

	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
	if (pf->ptp_tx)
		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
	else
		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
	wr32(hw, I40E_PFINT_ICR0_ENA, regval);

	/* Although there is no simple on/off switch for Rx, we "disable" Rx
	 * timestamps by setting to V1 only mode and clear the UDP
	 * recognition. This ought to disable all PTP Rx timestamps as V1
	 * packets are always over UDP. Note that software is configured to
	 * ignore Rx timestamps via the pf->ptp_rx flag.
	 */
	regval = rd32(hw, I40E_PRTTSYN_CTL1);
	/* clear everything but the enable bit */
	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
	/* now enable bits for desired Rx timestamps */
	regval |= tsyntype;
	wr32(hw, I40E_PRTTSYN_CTL1, regval);

	return 0;
}

/**
 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
 * @pf: Board private structure
 * @ifr: ioctl data
 *
 * Respond to the user filter requests and make the appropriate hardware
 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
 * logic, so keep track in software of whether to indicate these timestamps
 * or not.
 *
 * It is permissible to "upgrade" the user request to a broader filter, as long
 * as the user receives the timestamps they care about and the user is notified
 * the filter has been broadened.
 **/
int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
{
	struct hwtstamp_config config;
	int err;

	if (!(pf->flags & I40E_FLAG_PTP))
		return -EOPNOTSUPP;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	err = i40e_ptp_set_timestamp_mode(pf, &config);
	if (err)
		return err;

	/* save these settings for future reference */
	pf->tstamp_config = config;

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
}

/**
 * i40e_init_pin_config - initialize pins.
 * @pf: private board structure
 *
 * Initialize pins for external clock source.
 * Return 0 on success or error code on failure.
 **/
static int i40e_init_pin_config(struct i40e_pf *pf)
{
	int i;

	pf->ptp_caps.n_pins = 3;
	pf->ptp_caps.n_ext_ts = 2;
	pf->ptp_caps.pps = 1;
	pf->ptp_caps.n_per_out = 2;

	pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
					  sizeof(*pf->ptp_caps.pin_config),
					  GFP_KERNEL);
	if (!pf->ptp_caps.pin_config)
		return -ENOMEM;

	for (i = 0; i < pf->ptp_caps.n_pins; i++) {
		snprintf(pf->ptp_caps.pin_config[i].name,
			 sizeof(pf->ptp_caps.pin_config[i].name),
			 "%s", sdp_desc[i].name);
		pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
		pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
		pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
	}

	pf->ptp_caps.verify = i40e_ptp_verify;
	pf->ptp_caps.enable = i40e_ptp_feature_enable;

	pf->ptp_caps.pps = 1;

	return 0;
}

/**
 * i40e_ptp_create_clock - Create PTP clock device for userspace
 * @pf: Board private structure
 *
 * This function creates a new PTP clock device. It only creates one if we
 * don't already have one, so it is safe to call. Will return error if it
 * can't create one, but success if we already have a device. Should be used
 * by i40e_ptp_init to create clock initially, and prevent global resets from
 * creating new clock devices.
 **/
static long i40e_ptp_create_clock(struct i40e_pf *pf)
{
	/* no need to create a clock device if we already have one */
	if (!IS_ERR_OR_NULL(pf->ptp_clock))
		return 0;

	strscpy(pf->ptp_caps.name, i40e_driver_name,
		sizeof(pf->ptp_caps.name) - 1);
	pf->ptp_caps.owner = THIS_MODULE;
	pf->ptp_caps.max_adj = 999999999;
	pf->ptp_caps.adjfine = i40e_ptp_adjfine;
	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
	pf->ptp_caps.settime64 = i40e_ptp_settime;
	if (i40e_is_ptp_pin_dev(&pf->hw)) {
		int err = i40e_init_pin_config(pf);

		if (err)
			return err;
	}

	/* Attempt to register the clock before enabling the hardware. */
	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
	if (IS_ERR(pf->ptp_clock))
		return PTR_ERR(pf->ptp_clock);

	/* clear the hwtstamp settings here during clock create, instead of
	 * during regular init, so that we can maintain settings across a
	 * reset or suspend.
	 */
	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;

	/* Set the previous "reset" time to the current Kernel clock time */
	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
	pf->ptp_reset_start = ktime_get();

	return 0;
}

/**
 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
 * @pf: Board private structure
 *
 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
 * be called at the end of preparing to reset, just before hardware reset
 * occurs, in order to preserve the PTP time as close as possible across
 * resets.
 */
void i40e_ptp_save_hw_time(struct i40e_pf *pf)
{
	/* don't try to access the PTP clock if it's not enabled */
	if (!(pf->flags & I40E_FLAG_PTP))
		return;

	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
	/* Get a monotonic starting time for this reset */
	pf->ptp_reset_start = ktime_get();
}

/**
 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
 * @pf: Board private structure
 *
 * Restore the PTP hardware clock registers. We previously cached the PTP
 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
 * update this value based on the time delta since the time was saved, using
 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
 *
 * This ensures that the hardware clock is restored to nearly what it should
 * have been if a reset had not occurred.
 */
void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
{
	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);

	/* Update the previous HW time with the ktime delta */
	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));

	/* Restore the hardware clock registers */
	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
}

/**
 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
 * @pf: Board private structure
 *
 * This function sets device up for 1588 support. The first time it is run, it
 * will create a PHC clock device. It does not create a clock device if one
 * already exists. It also reconfigures the device after a reset.
 *
 * The first time a clock is created, i40e_ptp_create_clock will set
 * pf->ptp_prev_hw_time to the current system time. During resets, it is
 * expected that this timespec will be set to the last known PTP clock time,
 * in order to preserve the clock time as close as possible across a reset.
 **/
void i40e_ptp_init(struct i40e_pf *pf)
{
	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
	struct i40e_hw *hw = &pf->hw;
	u32 pf_id;
	long err;

	/* Only one PF is assigned to control 1588 logic per port. Do not
	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
	 */
	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
	if (hw->pf_id != pf_id) {
		pf->flags &= ~I40E_FLAG_PTP;
		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
			 __func__,
			 netdev->name);
		return;
	}

	mutex_init(&pf->tmreg_lock);
	spin_lock_init(&pf->ptp_rx_lock);

	/* ensure we have a clock device */
	err = i40e_ptp_create_clock(pf);
	if (err) {
		pf->ptp_clock = NULL;
		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
			__func__);
	} else if (pf->ptp_clock) {
		u32 regval;

		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
			dev_info(&pf->pdev->dev, "PHC enabled\n");
		pf->flags |= I40E_FLAG_PTP;

		/* Ensure the clocks are running. */
		regval = rd32(hw, I40E_PRTTSYN_CTL0);
		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
		wr32(hw, I40E_PRTTSYN_CTL0, regval);
		regval = rd32(hw, I40E_PRTTSYN_CTL1);
		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
		wr32(hw, I40E_PRTTSYN_CTL1, regval);

		/* Set the increment value per clock tick. */
		i40e_ptp_set_increment(pf);

		/* reset timestamping mode */
		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);

		/* Restore the clock time based on last known value */
		i40e_ptp_restore_hw_time(pf);
	}

	i40e_ptp_set_1pps_signal_hw(pf);
}

/**
 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
 * @pf: Board private structure
 *
 * This function handles the cleanup work required from the initialization by
 * clearing out the important information and unregistering the PHC.
 **/
void i40e_ptp_stop(struct i40e_pf *pf)
{
	struct i40e_hw *hw = &pf->hw;
	u32 regval;

	pf->flags &= ~I40E_FLAG_PTP;
	pf->ptp_tx = false;
	pf->ptp_rx = false;

	if (pf->ptp_tx_skb) {
		struct sk_buff *skb = pf->ptp_tx_skb;

		pf->ptp_tx_skb = NULL;
		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
		dev_kfree_skb_any(skb);
	}

	if (pf->ptp_clock) {
		ptp_clock_unregister(pf->ptp_clock);
		pf->ptp_clock = NULL;
		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
			 pf->vsi[pf->lan_vsi]->netdev->name);
	}

	if (i40e_is_ptp_pin_dev(&pf->hw)) {
		i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
		i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
		i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
	}

	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
	regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);

	/* Disable interrupts */
	regval = rd32(hw, I40E_PRTTSYN_CTL0);
	regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
	wr32(hw, I40E_PRTTSYN_CTL0, regval);

	i40e_ptp_free_pins(pf);
}