Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
// SPDX-License-Identifier: GPL-2.0-only
/*
 * VGIC: KVM DEVICE API
 *
 * Copyright (C) 2015 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */
#include <linux/kvm_host.h>
#include <kvm/arm_vgic.h>
#include <linux/uaccess.h>
#include <asm/kvm_mmu.h>
#include <asm/cputype.h>
#include "vgic.h"

/* common helpers */

int vgic_check_iorange(struct kvm *kvm, phys_addr_t ioaddr,
		       phys_addr_t addr, phys_addr_t alignment,
		       phys_addr_t size)
{
	if (!IS_VGIC_ADDR_UNDEF(ioaddr))
		return -EEXIST;

	if (!IS_ALIGNED(addr, alignment) || !IS_ALIGNED(size, alignment))
		return -EINVAL;

	if (addr + size < addr)
		return -EINVAL;

	if (addr & ~kvm_phys_mask(kvm) || addr + size > kvm_phys_size(kvm))
		return -E2BIG;

	return 0;
}

static int vgic_check_type(struct kvm *kvm, int type_needed)
{
	if (kvm->arch.vgic.vgic_model != type_needed)
		return -ENODEV;
	else
		return 0;
}

int kvm_set_legacy_vgic_v2_addr(struct kvm *kvm, struct kvm_arm_device_addr *dev_addr)
{
	struct vgic_dist *vgic = &kvm->arch.vgic;
	int r;

	mutex_lock(&kvm->arch.config_lock);
	switch (FIELD_GET(KVM_ARM_DEVICE_TYPE_MASK, dev_addr->id)) {
	case KVM_VGIC_V2_ADDR_TYPE_DIST:
		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		if (!r)
			r = vgic_check_iorange(kvm, vgic->vgic_dist_base, dev_addr->addr,
					       SZ_4K, KVM_VGIC_V2_DIST_SIZE);
		if (!r)
			vgic->vgic_dist_base = dev_addr->addr;
		break;
	case KVM_VGIC_V2_ADDR_TYPE_CPU:
		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		if (!r)
			r = vgic_check_iorange(kvm, vgic->vgic_cpu_base, dev_addr->addr,
					       SZ_4K, KVM_VGIC_V2_CPU_SIZE);
		if (!r)
			vgic->vgic_cpu_base = dev_addr->addr;
		break;
	default:
		r = -ENODEV;
	}

	mutex_unlock(&kvm->arch.config_lock);

	return r;
}

/**
 * kvm_vgic_addr - set or get vgic VM base addresses
 * @kvm:   pointer to the vm struct
 * @attr:  pointer to the attribute being retrieved/updated
 * @write: if true set the address in the VM address space, if false read the
 *          address
 *
 * Set or get the vgic base addresses for the distributor and the virtual CPU
 * interface in the VM physical address space.  These addresses are properties
 * of the emulated core/SoC and therefore user space initially knows this
 * information.
 * Check them for sanity (alignment, double assignment). We can't check for
 * overlapping regions in case of a virtual GICv3 here, since we don't know
 * the number of VCPUs yet, so we defer this check to map_resources().
 */
static int kvm_vgic_addr(struct kvm *kvm, struct kvm_device_attr *attr, bool write)
{
	u64 __user *uaddr = (u64 __user *)attr->addr;
	struct vgic_dist *vgic = &kvm->arch.vgic;
	phys_addr_t *addr_ptr, alignment, size;
	u64 undef_value = VGIC_ADDR_UNDEF;
	u64 addr;
	int r;

	/* Reading a redistributor region addr implies getting the index */
	if (write || attr->attr == KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION)
		if (get_user(addr, uaddr))
			return -EFAULT;

	/*
	 * Since we can't hold config_lock while registering the redistributor
	 * iodevs, take the slots_lock immediately.
	 */
	mutex_lock(&kvm->slots_lock);
	switch (attr->attr) {
	case KVM_VGIC_V2_ADDR_TYPE_DIST:
		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		addr_ptr = &vgic->vgic_dist_base;
		alignment = SZ_4K;
		size = KVM_VGIC_V2_DIST_SIZE;
		break;
	case KVM_VGIC_V2_ADDR_TYPE_CPU:
		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		addr_ptr = &vgic->vgic_cpu_base;
		alignment = SZ_4K;
		size = KVM_VGIC_V2_CPU_SIZE;
		break;
	case KVM_VGIC_V3_ADDR_TYPE_DIST:
		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
		addr_ptr = &vgic->vgic_dist_base;
		alignment = SZ_64K;
		size = KVM_VGIC_V3_DIST_SIZE;
		break;
	case KVM_VGIC_V3_ADDR_TYPE_REDIST: {
		struct vgic_redist_region *rdreg;

		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
		if (r)
			break;
		if (write) {
			r = vgic_v3_set_redist_base(kvm, 0, addr, 0);
			goto out;
		}
		rdreg = list_first_entry_or_null(&vgic->rd_regions,
						 struct vgic_redist_region, list);
		if (!rdreg)
			addr_ptr = &undef_value;
		else
			addr_ptr = &rdreg->base;
		break;
	}
	case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
	{
		struct vgic_redist_region *rdreg;
		u8 index;

		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
		if (r)
			break;

		index = addr & KVM_VGIC_V3_RDIST_INDEX_MASK;

		if (write) {
			gpa_t base = addr & KVM_VGIC_V3_RDIST_BASE_MASK;
			u32 count = FIELD_GET(KVM_VGIC_V3_RDIST_COUNT_MASK, addr);
			u8 flags = FIELD_GET(KVM_VGIC_V3_RDIST_FLAGS_MASK, addr);

			if (!count || flags)
				r = -EINVAL;
			else
				r = vgic_v3_set_redist_base(kvm, index,
							    base, count);
			goto out;
		}

		rdreg = vgic_v3_rdist_region_from_index(kvm, index);
		if (!rdreg) {
			r = -ENOENT;
			goto out;
		}

		addr = index;
		addr |= rdreg->base;
		addr |= (u64)rdreg->count << KVM_VGIC_V3_RDIST_COUNT_SHIFT;
		goto out;
	}
	default:
		r = -ENODEV;
	}

	if (r)
		goto out;

	mutex_lock(&kvm->arch.config_lock);
	if (write) {
		r = vgic_check_iorange(kvm, *addr_ptr, addr, alignment, size);
		if (!r)
			*addr_ptr = addr;
	} else {
		addr = *addr_ptr;
	}
	mutex_unlock(&kvm->arch.config_lock);

out:
	mutex_unlock(&kvm->slots_lock);

	if (!r && !write)
		r =  put_user(addr, uaddr);

	return r;
}

static int vgic_set_common_attr(struct kvm_device *dev,
				struct kvm_device_attr *attr)
{
	int r;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		r = kvm_vgic_addr(dev->kvm, attr, true);
		return (r == -ENODEV) ? -ENXIO : r;
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 val;
		int ret = 0;

		if (get_user(val, uaddr))
			return -EFAULT;

		/*
		 * We require:
		 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
		 * - at most 1024 interrupts
		 * - a multiple of 32 interrupts
		 */
		if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
		    val > VGIC_MAX_RESERVED ||
		    (val & 31))
			return -EINVAL;

		mutex_lock(&dev->kvm->arch.config_lock);

		if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_spis)
			ret = -EBUSY;
		else
			dev->kvm->arch.vgic.nr_spis =
				val - VGIC_NR_PRIVATE_IRQS;

		mutex_unlock(&dev->kvm->arch.config_lock);

		return ret;
	}
	case KVM_DEV_ARM_VGIC_GRP_CTRL: {
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			mutex_lock(&dev->kvm->arch.config_lock);
			r = vgic_init(dev->kvm);
			mutex_unlock(&dev->kvm->arch.config_lock);
			return r;
		case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
			/*
			 * OK, this one isn't common at all, but we
			 * want to handle all control group attributes
			 * in a single place.
			 */
			if (vgic_check_type(dev->kvm, KVM_DEV_TYPE_ARM_VGIC_V3))
				return -ENXIO;
			mutex_lock(&dev->kvm->lock);

			if (!lock_all_vcpus(dev->kvm)) {
				mutex_unlock(&dev->kvm->lock);
				return -EBUSY;
			}

			mutex_lock(&dev->kvm->arch.config_lock);
			r = vgic_v3_save_pending_tables(dev->kvm);
			mutex_unlock(&dev->kvm->arch.config_lock);
			unlock_all_vcpus(dev->kvm);
			mutex_unlock(&dev->kvm->lock);
			return r;
		}
		break;
	}
	}

	return -ENXIO;
}

static int vgic_get_common_attr(struct kvm_device *dev,
				struct kvm_device_attr *attr)
{
	int r = -ENXIO;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		r = kvm_vgic_addr(dev->kvm, attr, false);
		return (r == -ENODEV) ? -ENXIO : r;
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;

		r = put_user(dev->kvm->arch.vgic.nr_spis +
			     VGIC_NR_PRIVATE_IRQS, uaddr);
		break;
	}
	}

	return r;
}

static int vgic_create(struct kvm_device *dev, u32 type)
{
	return kvm_vgic_create(dev->kvm, type);
}

static void vgic_destroy(struct kvm_device *dev)
{
	kfree(dev);
}

int kvm_register_vgic_device(unsigned long type)
{
	int ret = -ENODEV;

	switch (type) {
	case KVM_DEV_TYPE_ARM_VGIC_V2:
		ret = kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
					      KVM_DEV_TYPE_ARM_VGIC_V2);
		break;
	case KVM_DEV_TYPE_ARM_VGIC_V3:
		ret = kvm_register_device_ops(&kvm_arm_vgic_v3_ops,
					      KVM_DEV_TYPE_ARM_VGIC_V3);

		if (ret)
			break;
		ret = kvm_vgic_register_its_device();
		break;
	}

	return ret;
}

int vgic_v2_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
		       struct vgic_reg_attr *reg_attr)
{
	int cpuid;

	cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
		 KVM_DEV_ARM_VGIC_CPUID_SHIFT;

	if (cpuid >= atomic_read(&dev->kvm->online_vcpus))
		return -EINVAL;

	reg_attr->vcpu = kvm_get_vcpu(dev->kvm, cpuid);
	reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;

	return 0;
}

/* unlocks vcpus from @vcpu_lock_idx and smaller */
static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
{
	struct kvm_vcpu *tmp_vcpu;

	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
		mutex_unlock(&tmp_vcpu->mutex);
	}
}

void unlock_all_vcpus(struct kvm *kvm)
{
	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
}

/* Returns true if all vcpus were locked, false otherwise */
bool lock_all_vcpus(struct kvm *kvm)
{
	struct kvm_vcpu *tmp_vcpu;
	unsigned long c;

	/*
	 * Any time a vcpu is run, vcpu_load is called which tries to grab the
	 * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
	 * that no other VCPUs are run and fiddle with the vgic state while we
	 * access it.
	 */
	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
		if (!mutex_trylock(&tmp_vcpu->mutex)) {
			unlock_vcpus(kvm, c - 1);
			return false;
		}
	}

	return true;
}

/**
 * vgic_v2_attr_regs_access - allows user space to access VGIC v2 state
 *
 * @dev:      kvm device handle
 * @attr:     kvm device attribute
 * @is_write: true if userspace is writing a register
 */
static int vgic_v2_attr_regs_access(struct kvm_device *dev,
				    struct kvm_device_attr *attr,
				    bool is_write)
{
	u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
	struct vgic_reg_attr reg_attr;
	gpa_t addr;
	struct kvm_vcpu *vcpu;
	int ret;
	u32 val;

	ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
	if (ret)
		return ret;

	vcpu = reg_attr.vcpu;
	addr = reg_attr.addr;

	if (is_write)
		if (get_user(val, uaddr))
			return -EFAULT;

	mutex_lock(&dev->kvm->lock);

	if (!lock_all_vcpus(dev->kvm)) {
		mutex_unlock(&dev->kvm->lock);
		return -EBUSY;
	}

	mutex_lock(&dev->kvm->arch.config_lock);

	ret = vgic_init(dev->kvm);
	if (ret)
		goto out;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		ret = vgic_v2_cpuif_uaccess(vcpu, is_write, addr, &val);
		break;
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		ret = vgic_v2_dist_uaccess(vcpu, is_write, addr, &val);
		break;
	default:
		ret = -EINVAL;
		break;
	}

out:
	mutex_unlock(&dev->kvm->arch.config_lock);
	unlock_all_vcpus(dev->kvm);
	mutex_unlock(&dev->kvm->lock);

	if (!ret && !is_write)
		ret = put_user(val, uaddr);

	return ret;
}

static int vgic_v2_set_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		return vgic_v2_attr_regs_access(dev, attr, true);
	default:
		return vgic_set_common_attr(dev, attr);
	}
}

static int vgic_v2_get_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		return vgic_v2_attr_regs_access(dev, attr, false);
	default:
		return vgic_get_common_attr(dev, attr);
	}
}

static int vgic_v2_has_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		switch (attr->attr) {
		case KVM_VGIC_V2_ADDR_TYPE_DIST:
		case KVM_VGIC_V2_ADDR_TYPE_CPU:
			return 0;
		}
		break;
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		return vgic_v2_has_attr_regs(dev, attr);
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
		return 0;
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			return 0;
		}
	}
	return -ENXIO;
}

struct kvm_device_ops kvm_arm_vgic_v2_ops = {
	.name = "kvm-arm-vgic-v2",
	.create = vgic_create,
	.destroy = vgic_destroy,
	.set_attr = vgic_v2_set_attr,
	.get_attr = vgic_v2_get_attr,
	.has_attr = vgic_v2_has_attr,
};

int vgic_v3_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
		       struct vgic_reg_attr *reg_attr)
{
	unsigned long vgic_mpidr, mpidr_reg;

	/*
	 * For KVM_DEV_ARM_VGIC_GRP_DIST_REGS group,
	 * attr might not hold MPIDR. Hence assume vcpu0.
	 */
	if (attr->group != KVM_DEV_ARM_VGIC_GRP_DIST_REGS) {
		vgic_mpidr = (attr->attr & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) >>
			      KVM_DEV_ARM_VGIC_V3_MPIDR_SHIFT;

		mpidr_reg = VGIC_TO_MPIDR(vgic_mpidr);
		reg_attr->vcpu = kvm_mpidr_to_vcpu(dev->kvm, mpidr_reg);
	} else {
		reg_attr->vcpu = kvm_get_vcpu(dev->kvm, 0);
	}

	if (!reg_attr->vcpu)
		return -EINVAL;

	reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;

	return 0;
}

/*
 * vgic_v3_attr_regs_access - allows user space to access VGIC v3 state
 *
 * @dev:      kvm device handle
 * @attr:     kvm device attribute
 * @is_write: true if userspace is writing a register
 */
static int vgic_v3_attr_regs_access(struct kvm_device *dev,
				    struct kvm_device_attr *attr,
				    bool is_write)
{
	struct vgic_reg_attr reg_attr;
	gpa_t addr;
	struct kvm_vcpu *vcpu;
	bool uaccess;
	u32 val;
	int ret;

	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
	if (ret)
		return ret;

	vcpu = reg_attr.vcpu;
	addr = reg_attr.addr;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
		/* Sysregs uaccess is performed by the sysreg handling code */
		uaccess = false;
		break;
	default:
		uaccess = true;
	}

	if (uaccess && is_write) {
		u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
		if (get_user(val, uaddr))
			return -EFAULT;
	}

	mutex_lock(&dev->kvm->lock);

	if (!lock_all_vcpus(dev->kvm)) {
		mutex_unlock(&dev->kvm->lock);
		return -EBUSY;
	}

	mutex_lock(&dev->kvm->arch.config_lock);

	if (unlikely(!vgic_initialized(dev->kvm))) {
		ret = -EBUSY;
		goto out;
	}

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		ret = vgic_v3_dist_uaccess(vcpu, is_write, addr, &val);
		break;
	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
		ret = vgic_v3_redist_uaccess(vcpu, is_write, addr, &val);
		break;
	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
		ret = vgic_v3_cpu_sysregs_uaccess(vcpu, attr, is_write);
		break;
	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
		unsigned int info, intid;

		info = (attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
			KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT;
		if (info == VGIC_LEVEL_INFO_LINE_LEVEL) {
			intid = attr->attr &
				KVM_DEV_ARM_VGIC_LINE_LEVEL_INTID_MASK;
			ret = vgic_v3_line_level_info_uaccess(vcpu, is_write,
							      intid, &val);
		} else {
			ret = -EINVAL;
		}
		break;
	}
	default:
		ret = -EINVAL;
		break;
	}

out:
	mutex_unlock(&dev->kvm->arch.config_lock);
	unlock_all_vcpus(dev->kvm);
	mutex_unlock(&dev->kvm->lock);

	if (!ret && uaccess && !is_write) {
		u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
		ret = put_user(val, uaddr);
	}

	return ret;
}

static int vgic_v3_set_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO:
		return vgic_v3_attr_regs_access(dev, attr, true);
	default:
		return vgic_set_common_attr(dev, attr);
	}
}

static int vgic_v3_get_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO:
		return vgic_v3_attr_regs_access(dev, attr, false);
	default:
		return vgic_get_common_attr(dev, attr);
	}
}

static int vgic_v3_has_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		switch (attr->attr) {
		case KVM_VGIC_V3_ADDR_TYPE_DIST:
		case KVM_VGIC_V3_ADDR_TYPE_REDIST:
		case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
			return 0;
		}
		break;
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
		return vgic_v3_has_attr_regs(dev, attr);
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
		return 0;
	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
		if (((attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
		      KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT) ==
		      VGIC_LEVEL_INFO_LINE_LEVEL)
			return 0;
		break;
	}
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			return 0;
		case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
			return 0;
		}
	}
	return -ENXIO;
}

struct kvm_device_ops kvm_arm_vgic_v3_ops = {
	.name = "kvm-arm-vgic-v3",
	.create = vgic_create,
	.destroy = vgic_destroy,
	.set_attr = vgic_v3_set_attr,
	.get_attr = vgic_v3_get_attr,
	.has_attr = vgic_v3_has_attr,
};