Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 | // SPDX-License-Identifier: GPL-2.0 /* * Page table allocation functions * * Copyright IBM Corp. 2016 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> */ #include <linux/sysctl.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> #include <asm/gmap.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #ifdef CONFIG_PGSTE int page_table_allocate_pgste = 0; EXPORT_SYMBOL(page_table_allocate_pgste); static struct ctl_table page_table_sysctl[] = { { .procname = "allocate_pgste", .data = &page_table_allocate_pgste, .maxlen = sizeof(int), .mode = S_IRUGO | S_IWUSR, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { } }; static struct ctl_table page_table_sysctl_dir[] = { { .procname = "vm", .maxlen = 0, .mode = 0555, .child = page_table_sysctl, }, { } }; static int __init page_table_register_sysctl(void) { return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM; } __initcall(page_table_register_sysctl); #endif /* CONFIG_PGSTE */ unsigned long *crst_table_alloc(struct mm_struct *mm) { struct page *page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); if (!page) return NULL; arch_set_page_dat(page, CRST_ALLOC_ORDER); return (unsigned long *) page_to_virt(page); } void crst_table_free(struct mm_struct *mm, unsigned long *table) { free_pages((unsigned long)table, CRST_ALLOC_ORDER); } static void __crst_table_upgrade(void *arg) { struct mm_struct *mm = arg; /* change all active ASCEs to avoid the creation of new TLBs */ if (current->active_mm == mm) { S390_lowcore.user_asce = mm->context.asce; __ctl_load(S390_lowcore.user_asce, 7, 7); } __tlb_flush_local(); } int crst_table_upgrade(struct mm_struct *mm, unsigned long end) { unsigned long *pgd = NULL, *p4d = NULL, *__pgd; unsigned long asce_limit = mm->context.asce_limit; /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */ VM_BUG_ON(asce_limit < _REGION2_SIZE); if (end <= asce_limit) return 0; if (asce_limit == _REGION2_SIZE) { p4d = crst_table_alloc(mm); if (unlikely(!p4d)) goto err_p4d; crst_table_init(p4d, _REGION2_ENTRY_EMPTY); } if (end > _REGION1_SIZE) { pgd = crst_table_alloc(mm); if (unlikely(!pgd)) goto err_pgd; crst_table_init(pgd, _REGION1_ENTRY_EMPTY); } spin_lock_bh(&mm->page_table_lock); /* * This routine gets called with mmap_lock lock held and there is * no reason to optimize for the case of otherwise. However, if * that would ever change, the below check will let us know. */ VM_BUG_ON(asce_limit != mm->context.asce_limit); if (p4d) { __pgd = (unsigned long *) mm->pgd; p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd); mm->pgd = (pgd_t *) p4d; mm->context.asce_limit = _REGION1_SIZE; mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | _ASCE_USER_BITS | _ASCE_TYPE_REGION2; mm_inc_nr_puds(mm); } if (pgd) { __pgd = (unsigned long *) mm->pgd; pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd); mm->pgd = (pgd_t *) pgd; mm->context.asce_limit = TASK_SIZE_MAX; mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | _ASCE_USER_BITS | _ASCE_TYPE_REGION1; } spin_unlock_bh(&mm->page_table_lock); on_each_cpu(__crst_table_upgrade, mm, 0); return 0; err_pgd: crst_table_free(mm, p4d); err_p4d: return -ENOMEM; } static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) { unsigned int old, new; do { old = atomic_read(v); new = old ^ bits; } while (atomic_cmpxchg(v, old, new) != old); return new; } #ifdef CONFIG_PGSTE struct page *page_table_alloc_pgste(struct mm_struct *mm) { struct page *page; u64 *table; page = alloc_page(GFP_KERNEL); if (page) { table = (u64 *)page_to_virt(page); memset64(table, _PAGE_INVALID, PTRS_PER_PTE); memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE); } return page; } void page_table_free_pgste(struct page *page) { __free_page(page); } #endif /* CONFIG_PGSTE */ /* * A 2KB-pgtable is either upper or lower half of a normal page. * The second half of the page may be unused or used as another * 2KB-pgtable. * * Whenever possible the parent page for a new 2KB-pgtable is picked * from the list of partially allocated pages mm_context_t::pgtable_list. * In case the list is empty a new parent page is allocated and added to * the list. * * When a parent page gets fully allocated it contains 2KB-pgtables in both * upper and lower halves and is removed from mm_context_t::pgtable_list. * * When 2KB-pgtable is freed from to fully allocated parent page that * page turns partially allocated and added to mm_context_t::pgtable_list. * * If 2KB-pgtable is freed from the partially allocated parent page that * page turns unused and gets removed from mm_context_t::pgtable_list. * Furthermore, the unused parent page is released. * * As follows from the above, no unallocated or fully allocated parent * pages are contained in mm_context_t::pgtable_list. * * The upper byte (bits 24-31) of the parent page _refcount is used * for tracking contained 2KB-pgtables and has the following format: * * PP AA * 01234567 upper byte (bits 24-31) of struct page::_refcount * || || * || |+--- upper 2KB-pgtable is allocated * || +---- lower 2KB-pgtable is allocated * |+------- upper 2KB-pgtable is pending for removal * +-------- lower 2KB-pgtable is pending for removal * * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why * using _refcount is possible). * * When 2KB-pgtable is allocated the corresponding AA bit is set to 1. * The parent page is either: * - added to mm_context_t::pgtable_list in case the second half of the * parent page is still unallocated; * - removed from mm_context_t::pgtable_list in case both hales of the * parent page are allocated; * These operations are protected with mm_context_t::lock. * * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0 * and the corresponding PP bit is set to 1 in a single atomic operation. * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually * exclusive and may never be both set to 1! * The parent page is either: * - added to mm_context_t::pgtable_list in case the second half of the * parent page is still allocated; * - removed from mm_context_t::pgtable_list in case the second half of * the parent page is unallocated; * These operations are protected with mm_context_t::lock. * * It is important to understand that mm_context_t::lock only protects * mm_context_t::pgtable_list and AA bits, but not the parent page itself * and PP bits. * * Releasing the parent page happens whenever the PP bit turns from 1 to 0, * while both AA bits and the second PP bit are already unset. Then the * parent page does not contain any 2KB-pgtable fragment anymore, and it has * also been removed from mm_context_t::pgtable_list. It is safe to release * the page therefore. * * PGSTE memory spaces use full 4KB-pgtables and do not need most of the * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable * while the PP bits are never used, nor such a page is added to or removed * from mm_context_t::pgtable_list. */ unsigned long *page_table_alloc(struct mm_struct *mm) { unsigned long *table; struct page *page; unsigned int mask, bit; /* Try to get a fragment of a 4K page as a 2K page table */ if (!mm_alloc_pgste(mm)) { table = NULL; spin_lock_bh(&mm->context.lock); if (!list_empty(&mm->context.pgtable_list)) { page = list_first_entry(&mm->context.pgtable_list, struct page, lru); mask = atomic_read(&page->_refcount) >> 24; /* * The pending removal bits must also be checked. * Failure to do so might lead to an impossible * value of (i.e 0x13 or 0x23) written to _refcount. * Such values violate the assumption that pending and * allocation bits are mutually exclusive, and the rest * of the code unrails as result. That could lead to * a whole bunch of races and corruptions. */ mask = (mask | (mask >> 4)) & 0x03U; if (mask != 0x03U) { table = (unsigned long *) page_to_virt(page); bit = mask & 1; /* =1 -> second 2K */ if (bit) table += PTRS_PER_PTE; atomic_xor_bits(&page->_refcount, 0x01U << (bit + 24)); list_del(&page->lru); } } spin_unlock_bh(&mm->context.lock); if (table) return table; } /* Allocate a fresh page */ page = alloc_page(GFP_KERNEL); if (!page) return NULL; if (!pgtable_pte_page_ctor(page)) { __free_page(page); return NULL; } arch_set_page_dat(page, 0); /* Initialize page table */ table = (unsigned long *) page_to_virt(page); if (mm_alloc_pgste(mm)) { /* Return 4K page table with PGSTEs */ atomic_xor_bits(&page->_refcount, 0x03U << 24); memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE); } else { /* Return the first 2K fragment of the page */ atomic_xor_bits(&page->_refcount, 0x01U << 24); memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE); spin_lock_bh(&mm->context.lock); list_add(&page->lru, &mm->context.pgtable_list); spin_unlock_bh(&mm->context.lock); } return table; } static void page_table_release_check(struct page *page, void *table, unsigned int half, unsigned int mask) { char msg[128]; if (!IS_ENABLED(CONFIG_DEBUG_VM) || !mask) return; snprintf(msg, sizeof(msg), "Invalid pgtable %p release half 0x%02x mask 0x%02x", table, half, mask); dump_page(page, msg); } void page_table_free(struct mm_struct *mm, unsigned long *table) { unsigned int mask, bit, half; struct page *page; page = virt_to_page(table); if (!mm_alloc_pgste(mm)) { /* Free 2K page table fragment of a 4K page */ bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)); spin_lock_bh(&mm->context.lock); /* * Mark the page for delayed release. The actual release * will happen outside of the critical section from this * function or from __tlb_remove_table() */ mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24)); mask >>= 24; if (mask & 0x03U) list_add(&page->lru, &mm->context.pgtable_list); else list_del(&page->lru); spin_unlock_bh(&mm->context.lock); mask = atomic_xor_bits(&page->_refcount, 0x10U << (bit + 24)); mask >>= 24; if (mask != 0x00U) return; half = 0x01U << bit; } else { half = 0x03U; mask = atomic_xor_bits(&page->_refcount, 0x03U << 24); mask >>= 24; } page_table_release_check(page, table, half, mask); pgtable_pte_page_dtor(page); __free_page(page); } void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table, unsigned long vmaddr) { struct mm_struct *mm; struct page *page; unsigned int bit, mask; mm = tlb->mm; page = virt_to_page(table); if (mm_alloc_pgste(mm)) { gmap_unlink(mm, table, vmaddr); table = (unsigned long *) ((unsigned long)table | 0x03U); tlb_remove_table(tlb, table); return; } bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)); spin_lock_bh(&mm->context.lock); /* * Mark the page for delayed release. The actual release will happen * outside of the critical section from __tlb_remove_table() or from * page_table_free() */ mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24)); mask >>= 24; if (mask & 0x03U) list_add_tail(&page->lru, &mm->context.pgtable_list); else list_del(&page->lru); spin_unlock_bh(&mm->context.lock); table = (unsigned long *) ((unsigned long) table | (0x01U << bit)); tlb_remove_table(tlb, table); } void __tlb_remove_table(void *_table) { unsigned int mask = (unsigned long) _table & 0x03U, half = mask; void *table = (void *)((unsigned long) _table ^ mask); struct page *page = virt_to_page(table); switch (half) { case 0x00U: /* pmd, pud, or p4d */ free_pages((unsigned long)table, CRST_ALLOC_ORDER); return; case 0x01U: /* lower 2K of a 4K page table */ case 0x02U: /* higher 2K of a 4K page table */ mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24)); mask >>= 24; if (mask != 0x00U) return; break; case 0x03U: /* 4K page table with pgstes */ mask = atomic_xor_bits(&page->_refcount, 0x03U << 24); mask >>= 24; break; } page_table_release_check(page, table, half, mask); pgtable_pte_page_dtor(page); __free_page(page); } /* * Base infrastructure required to generate basic asces, region, segment, * and page tables that do not make use of enhanced features like EDAT1. */ static struct kmem_cache *base_pgt_cache; static unsigned long *base_pgt_alloc(void) { unsigned long *table; table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL); if (table) memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); return table; } static void base_pgt_free(unsigned long *table) { kmem_cache_free(base_pgt_cache, table); } static unsigned long *base_crst_alloc(unsigned long val) { unsigned long *table; table = (unsigned long *)__get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER); if (table) crst_table_init(table, val); return table; } static void base_crst_free(unsigned long *table) { free_pages((unsigned long)table, CRST_ALLOC_ORDER); } #define BASE_ADDR_END_FUNC(NAME, SIZE) \ static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \ unsigned long end) \ { \ unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \ \ return (next - 1) < (end - 1) ? next : end; \ } BASE_ADDR_END_FUNC(page, _PAGE_SIZE) BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE) BASE_ADDR_END_FUNC(region3, _REGION3_SIZE) BASE_ADDR_END_FUNC(region2, _REGION2_SIZE) BASE_ADDR_END_FUNC(region1, _REGION1_SIZE) static inline unsigned long base_lra(unsigned long address) { unsigned long real; asm volatile( " lra %0,0(%1)\n" : "=d" (real) : "a" (address) : "cc"); return real; } static int base_page_walk(unsigned long *origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *pte, next; if (!alloc) return 0; pte = origin; pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT; do { next = base_page_addr_end(addr, end); *pte = base_lra(addr); } while (pte++, addr = next, addr < end); return 0; } static int base_segment_walk(unsigned long *origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *ste, next, *table; int rc; ste = origin; ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; do { next = base_segment_addr_end(addr, end); if (*ste & _SEGMENT_ENTRY_INVALID) { if (!alloc) continue; table = base_pgt_alloc(); if (!table) return -ENOMEM; *ste = __pa(table) | _SEGMENT_ENTRY; } table = __va(*ste & _SEGMENT_ENTRY_ORIGIN); rc = base_page_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_pgt_free(table); cond_resched(); } while (ste++, addr = next, addr < end); return 0; } static int base_region3_walk(unsigned long *origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *rtte, next, *table; int rc; rtte = origin; rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT; do { next = base_region3_addr_end(addr, end); if (*rtte & _REGION_ENTRY_INVALID) { if (!alloc) continue; table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); if (!table) return -ENOMEM; *rtte = __pa(table) | _REGION3_ENTRY; } table = __va(*rtte & _REGION_ENTRY_ORIGIN); rc = base_segment_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_crst_free(table); } while (rtte++, addr = next, addr < end); return 0; } static int base_region2_walk(unsigned long *origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *rste, next, *table; int rc; rste = origin; rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT; do { next = base_region2_addr_end(addr, end); if (*rste & _REGION_ENTRY_INVALID) { if (!alloc) continue; table = base_crst_alloc(_REGION3_ENTRY_EMPTY); if (!table) return -ENOMEM; *rste = __pa(table) | _REGION2_ENTRY; } table = __va(*rste & _REGION_ENTRY_ORIGIN); rc = base_region3_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_crst_free(table); } while (rste++, addr = next, addr < end); return 0; } static int base_region1_walk(unsigned long *origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *rfte, next, *table; int rc; rfte = origin; rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT; do { next = base_region1_addr_end(addr, end); if (*rfte & _REGION_ENTRY_INVALID) { if (!alloc) continue; table = base_crst_alloc(_REGION2_ENTRY_EMPTY); if (!table) return -ENOMEM; *rfte = __pa(table) | _REGION1_ENTRY; } table = __va(*rfte & _REGION_ENTRY_ORIGIN); rc = base_region2_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_crst_free(table); } while (rfte++, addr = next, addr < end); return 0; } /** * base_asce_free - free asce and tables returned from base_asce_alloc() * @asce: asce to be freed * * Frees all region, segment, and page tables that were allocated with a * corresponding base_asce_alloc() call. */ void base_asce_free(unsigned long asce) { unsigned long *table = __va(asce & _ASCE_ORIGIN); if (!asce) return; switch (asce & _ASCE_TYPE_MASK) { case _ASCE_TYPE_SEGMENT: base_segment_walk(table, 0, _REGION3_SIZE, 0); break; case _ASCE_TYPE_REGION3: base_region3_walk(table, 0, _REGION2_SIZE, 0); break; case _ASCE_TYPE_REGION2: base_region2_walk(table, 0, _REGION1_SIZE, 0); break; case _ASCE_TYPE_REGION1: base_region1_walk(table, 0, TASK_SIZE_MAX, 0); break; } base_crst_free(table); } static int base_pgt_cache_init(void) { static DEFINE_MUTEX(base_pgt_cache_mutex); unsigned long sz = _PAGE_TABLE_SIZE; if (base_pgt_cache) return 0; mutex_lock(&base_pgt_cache_mutex); if (!base_pgt_cache) base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL); mutex_unlock(&base_pgt_cache_mutex); return base_pgt_cache ? 0 : -ENOMEM; } /** * base_asce_alloc - create kernel mapping without enhanced DAT features * @addr: virtual start address of kernel mapping * @num_pages: number of consecutive pages * * Generate an asce, including all required region, segment and page tables, * that can be used to access the virtual kernel mapping. The difference is * that the returned asce does not make use of any enhanced DAT features like * e.g. large pages. This is required for some I/O functions that pass an * asce, like e.g. some service call requests. * * Note: the returned asce may NEVER be attached to any cpu. It may only be * used for I/O requests. tlb entries that might result because the * asce was attached to a cpu won't be cleared. */ unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages) { unsigned long asce, *table, end; int rc; if (base_pgt_cache_init()) return 0; end = addr + num_pages * PAGE_SIZE; if (end <= _REGION3_SIZE) { table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); if (!table) return 0; rc = base_segment_walk(table, addr, end, 1); asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH; } else if (end <= _REGION2_SIZE) { table = base_crst_alloc(_REGION3_ENTRY_EMPTY); if (!table) return 0; rc = base_region3_walk(table, addr, end, 1); asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH; } else if (end <= _REGION1_SIZE) { table = base_crst_alloc(_REGION2_ENTRY_EMPTY); if (!table) return 0; rc = base_region2_walk(table, addr, end, 1); asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH; } else { table = base_crst_alloc(_REGION1_ENTRY_EMPTY); if (!table) return 0; rc = base_region1_walk(table, addr, end, 1); asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH; } if (rc) { base_asce_free(asce); asce = 0; } return asce; } |