Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved. * * Authors: * Alexander Graf <agraf@suse.de> * Kevin Wolf <mail@kevin-wolf.de> */ #include <linux/kvm_host.h> #include <linux/pkeys.h> #include <asm/kvm_ppc.h> #include <asm/kvm_book3s.h> #include <asm/book3s/64/mmu-hash.h> #include <asm/machdep.h> #include <asm/mmu_context.h> #include <asm/hw_irq.h> #include "trace_pr.h" #include "book3s.h" #define PTE_SIZE 12 void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) { mmu_hash_ops.hpte_invalidate(pte->slot, pte->host_vpn, pte->pagesize, pte->pagesize, MMU_SEGSIZE_256M, false); } /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using * a hash, so we don't waste cycles on looping */ static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) { return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); } static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) { struct kvmppc_sid_map *map; u16 sid_map_mask; if (kvmppc_get_msr(vcpu) & MSR_PR) gvsid |= VSID_PR; sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); map = &to_book3s(vcpu)->sid_map[sid_map_mask]; if (map->valid && (map->guest_vsid == gvsid)) { trace_kvm_book3s_slb_found(gvsid, map->host_vsid); return map; } map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; if (map->valid && (map->guest_vsid == gvsid)) { trace_kvm_book3s_slb_found(gvsid, map->host_vsid); return map; } trace_kvm_book3s_slb_fail(sid_map_mask, gvsid); return NULL; } int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte, bool iswrite) { unsigned long vpn; kvm_pfn_t hpaddr; ulong hash, hpteg; u64 vsid; int ret; int rflags = 0x192; int vflags = 0; int attempt = 0; struct kvmppc_sid_map *map; int r = 0; int hpsize = MMU_PAGE_4K; bool writable; unsigned long mmu_seq; struct kvm *kvm = vcpu->kvm; struct hpte_cache *cpte; unsigned long gfn = orig_pte->raddr >> PAGE_SHIFT; unsigned long pfn; /* used to check for invalidations in progress */ mmu_seq = kvm->mmu_invalidate_seq; smp_rmb(); /* Get host physical address for gpa */ pfn = kvmppc_gpa_to_pfn(vcpu, orig_pte->raddr, iswrite, &writable); if (is_error_noslot_pfn(pfn)) { printk(KERN_INFO "Couldn't get guest page for gpa %lx!\n", orig_pte->raddr); r = -EINVAL; goto out; } hpaddr = pfn << PAGE_SHIFT; /* and write the mapping ea -> hpa into the pt */ vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); map = find_sid_vsid(vcpu, vsid); if (!map) { ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr); WARN_ON(ret < 0); map = find_sid_vsid(vcpu, vsid); } if (!map) { printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n", vsid, orig_pte->eaddr); WARN_ON(true); r = -EINVAL; goto out; } vpn = hpt_vpn(orig_pte->eaddr, map->host_vsid, MMU_SEGSIZE_256M); kvm_set_pfn_accessed(pfn); if (!orig_pte->may_write || !writable) rflags |= PP_RXRX; else { mark_page_dirty(vcpu->kvm, gfn); kvm_set_pfn_dirty(pfn); } if (!orig_pte->may_execute) rflags |= HPTE_R_N; else kvmppc_mmu_flush_icache(pfn); rflags |= pte_to_hpte_pkey_bits(0, HPTE_USE_KERNEL_KEY); rflags = (rflags & ~HPTE_R_WIMG) | orig_pte->wimg; /* * Use 64K pages if possible; otherwise, on 64K page kernels, * we need to transfer 4 more bits from guest real to host real addr. */ if (vsid & VSID_64K) hpsize = MMU_PAGE_64K; else hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK); hash = hpt_hash(vpn, mmu_psize_defs[hpsize].shift, MMU_SEGSIZE_256M); cpte = kvmppc_mmu_hpte_cache_next(vcpu); spin_lock(&kvm->mmu_lock); if (!cpte || mmu_invalidate_retry(kvm, mmu_seq)) { r = -EAGAIN; goto out_unlock; } map_again: hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); /* In case we tried normal mapping already, let's nuke old entries */ if (attempt > 1) if (mmu_hash_ops.hpte_remove(hpteg) < 0) { r = -1; goto out_unlock; } ret = mmu_hash_ops.hpte_insert(hpteg, vpn, hpaddr, rflags, vflags, hpsize, hpsize, MMU_SEGSIZE_256M); if (ret == -1) { /* If we couldn't map a primary PTE, try a secondary */ hash = ~hash; vflags ^= HPTE_V_SECONDARY; attempt++; goto map_again; } else if (ret < 0) { r = -EIO; goto out_unlock; } else { trace_kvm_book3s_64_mmu_map(rflags, hpteg, vpn, hpaddr, orig_pte); /* * The mmu_hash_ops code may give us a secondary entry even * though we asked for a primary. Fix up. */ if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) { hash = ~hash; hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); } cpte->slot = hpteg + (ret & 7); cpte->host_vpn = vpn; cpte->pte = *orig_pte; cpte->pfn = pfn; cpte->pagesize = hpsize; kvmppc_mmu_hpte_cache_map(vcpu, cpte); cpte = NULL; } out_unlock: spin_unlock(&kvm->mmu_lock); kvm_release_pfn_clean(pfn); if (cpte) kvmppc_mmu_hpte_cache_free(cpte); out: return r; } void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) { u64 mask = 0xfffffffffULL; u64 vsid; vcpu->arch.mmu.esid_to_vsid(vcpu, pte->eaddr >> SID_SHIFT, &vsid); if (vsid & VSID_64K) mask = 0xffffffff0ULL; kvmppc_mmu_pte_vflush(vcpu, pte->vpage, mask); } static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) { unsigned long vsid_bits = VSID_BITS_65_256M; struct kvmppc_sid_map *map; struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); u16 sid_map_mask; static int backwards_map; if (kvmppc_get_msr(vcpu) & MSR_PR) gvsid |= VSID_PR; /* We might get collisions that trap in preceding order, so let's map them differently */ sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); if (backwards_map) sid_map_mask = SID_MAP_MASK - sid_map_mask; map = &to_book3s(vcpu)->sid_map[sid_map_mask]; /* Make sure we're taking the other map next time */ backwards_map = !backwards_map; /* Uh-oh ... out of mappings. Let's flush! */ if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) { vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first; memset(vcpu_book3s->sid_map, 0, sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); kvmppc_mmu_pte_flush(vcpu, 0, 0); kvmppc_mmu_flush_segments(vcpu); } if (mmu_has_feature(MMU_FTR_68_BIT_VA)) vsid_bits = VSID_BITS_256M; map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++, VSID_MULTIPLIER_256M, vsid_bits); map->guest_vsid = gvsid; map->valid = true; trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid); return map; } static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid) { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); int i; int max_slb_size = 64; int found_inval = -1; int r; /* Are we overwriting? */ for (i = 0; i < svcpu->slb_max; i++) { if (!(svcpu->slb[i].esid & SLB_ESID_V)) found_inval = i; else if ((svcpu->slb[i].esid & ESID_MASK) == esid) { r = i; goto out; } } /* Found a spare entry that was invalidated before */ if (found_inval >= 0) { r = found_inval; goto out; } /* No spare invalid entry, so create one */ if (mmu_slb_size < 64) max_slb_size = mmu_slb_size; /* Overflowing -> purge */ if ((svcpu->slb_max) == max_slb_size) kvmppc_mmu_flush_segments(vcpu); r = svcpu->slb_max; svcpu->slb_max++; out: svcpu_put(svcpu); return r; } int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); u64 esid = eaddr >> SID_SHIFT; u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V; u64 slb_vsid = SLB_VSID_USER; u64 gvsid; int slb_index; struct kvmppc_sid_map *map; int r = 0; slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK); if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) { /* Invalidate an entry */ svcpu->slb[slb_index].esid = 0; r = -ENOENT; goto out; } map = find_sid_vsid(vcpu, gvsid); if (!map) map = create_sid_map(vcpu, gvsid); map->guest_esid = esid; slb_vsid |= (map->host_vsid << 12); slb_vsid &= ~SLB_VSID_KP; slb_esid |= slb_index; #ifdef CONFIG_PPC_64K_PAGES /* Set host segment base page size to 64K if possible */ if (gvsid & VSID_64K) slb_vsid |= mmu_psize_defs[MMU_PAGE_64K].sllp; #endif svcpu->slb[slb_index].esid = slb_esid; svcpu->slb[slb_index].vsid = slb_vsid; trace_kvm_book3s_slbmte(slb_vsid, slb_esid); out: svcpu_put(svcpu); return r; } void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong ea, ulong seg_size) { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); ulong seg_mask = -seg_size; int i; for (i = 0; i < svcpu->slb_max; i++) { if ((svcpu->slb[i].esid & SLB_ESID_V) && (svcpu->slb[i].esid & seg_mask) == ea) { /* Invalidate this entry */ svcpu->slb[i].esid = 0; } } svcpu_put(svcpu); } void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); svcpu->slb_max = 0; svcpu->slb[0].esid = 0; svcpu_put(svcpu); } void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu) { kvmppc_mmu_hpte_destroy(vcpu); __destroy_context(to_book3s(vcpu)->context_id[0]); } int kvmppc_mmu_init_pr(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); int err; err = hash__alloc_context_id(); if (err < 0) return -1; vcpu3s->context_id[0] = err; vcpu3s->proto_vsid_max = ((u64)(vcpu3s->context_id[0] + 1) << ESID_BITS) - 1; vcpu3s->proto_vsid_first = (u64)vcpu3s->context_id[0] << ESID_BITS; vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first; kvmppc_mmu_hpte_init(vcpu); return 0; } |