Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 | // SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2006 Intel Corporation. */ /* * e100.c: Intel(R) PRO/100 ethernet driver * * (Re)written 2003 by scott.feldman@intel.com. Based loosely on * original e100 driver, but better described as a munging of * e100, e1000, eepro100, tg3, 8139cp, and other drivers. * * References: * Intel 8255x 10/100 Mbps Ethernet Controller Family, * Open Source Software Developers Manual, * http://sourceforge.net/projects/e1000 * * * Theory of Operation * * I. General * * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet * controller family, which includes the 82557, 82558, 82559, 82550, * 82551, and 82562 devices. 82558 and greater controllers * integrate the Intel 82555 PHY. The controllers are used in * server and client network interface cards, as well as in * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx * configurations. 8255x supports a 32-bit linear addressing * mode and operates at 33Mhz PCI clock rate. * * II. Driver Operation * * Memory-mapped mode is used exclusively to access the device's * shared-memory structure, the Control/Status Registers (CSR). All * setup, configuration, and control of the device, including queuing * of Tx, Rx, and configuration commands is through the CSR. * cmd_lock serializes accesses to the CSR command register. cb_lock * protects the shared Command Block List (CBL). * * 8255x is highly MII-compliant and all access to the PHY go * through the Management Data Interface (MDI). Consequently, the * driver leverages the mii.c library shared with other MII-compliant * devices. * * Big- and Little-Endian byte order as well as 32- and 64-bit * archs are supported. Weak-ordered memory and non-cache-coherent * archs are supported. * * III. Transmit * * A Tx skb is mapped and hangs off of a TCB. TCBs are linked * together in a fixed-size ring (CBL) thus forming the flexible mode * memory structure. A TCB marked with the suspend-bit indicates * the end of the ring. The last TCB processed suspends the * controller, and the controller can be restarted by issue a CU * resume command to continue from the suspend point, or a CU start * command to start at a given position in the ring. * * Non-Tx commands (config, multicast setup, etc) are linked * into the CBL ring along with Tx commands. The common structure * used for both Tx and non-Tx commands is the Command Block (CB). * * cb_to_use is the next CB to use for queuing a command; cb_to_clean * is the next CB to check for completion; cb_to_send is the first * CB to start on in case of a previous failure to resume. CB clean * up happens in interrupt context in response to a CU interrupt. * cbs_avail keeps track of number of free CB resources available. * * Hardware padding of short packets to minimum packet size is * enabled. 82557 pads with 7Eh, while the later controllers pad * with 00h. * * IV. Receive * * The Receive Frame Area (RFA) comprises a ring of Receive Frame * Descriptors (RFD) + data buffer, thus forming the simplified mode * memory structure. Rx skbs are allocated to contain both the RFD * and the data buffer, but the RFD is pulled off before the skb is * indicated. The data buffer is aligned such that encapsulated * protocol headers are u32-aligned. Since the RFD is part of the * mapped shared memory, and completion status is contained within * the RFD, the RFD must be dma_sync'ed to maintain a consistent * view from software and hardware. * * In order to keep updates to the RFD link field from colliding with * hardware writes to mark packets complete, we use the feature that * hardware will not write to a size 0 descriptor and mark the previous * packet as end-of-list (EL). After updating the link, we remove EL * and only then restore the size such that hardware may use the * previous-to-end RFD. * * Under typical operation, the receive unit (RU) is start once, * and the controller happily fills RFDs as frames arrive. If * replacement RFDs cannot be allocated, or the RU goes non-active, * the RU must be restarted. Frame arrival generates an interrupt, * and Rx indication and re-allocation happen in the same context, * therefore no locking is required. A software-generated interrupt * is generated from the watchdog to recover from a failed allocation * scenario where all Rx resources have been indicated and none re- * placed. * * V. Miscellaneous * * VLAN offloading of tagging, stripping and filtering is not * supported, but driver will accommodate the extra 4-byte VLAN tag * for processing by upper layers. Tx/Rx Checksum offloading is not * supported. Tx Scatter/Gather is not supported. Jumbo Frames is * not supported (hardware limitation). * * MagicPacket(tm) WoL support is enabled/disabled via ethtool. * * Thanks to JC (jchapman@katalix.com) for helping with * testing/troubleshooting the development driver. * * TODO: * o several entry points race with dev->close * o check for tx-no-resources/stop Q races with tx clean/wake Q * * FIXES: * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> * - Stratus87247: protect MDI control register manipulations * 2009/06/01 - Andreas Mohr <andi at lisas dot de> * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/hardirq.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/mii.h> #include <linux/if_vlan.h> #include <linux/skbuff.h> #include <linux/ethtool.h> #include <linux/string.h> #include <linux/firmware.h> #include <linux/rtnetlink.h> #include <asm/unaligned.h> #define DRV_NAME "e100" #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" #define E100_WATCHDOG_PERIOD (2 * HZ) #define E100_NAPI_WEIGHT 16 #define FIRMWARE_D101M "e100/d101m_ucode.bin" #define FIRMWARE_D101S "e100/d101s_ucode.bin" #define FIRMWARE_D102E "e100/d102e_ucode.bin" MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_AUTHOR(DRV_COPYRIGHT); MODULE_LICENSE("GPL v2"); MODULE_FIRMWARE(FIRMWARE_D101M); MODULE_FIRMWARE(FIRMWARE_D101S); MODULE_FIRMWARE(FIRMWARE_D102E); static int debug = 3; static int eeprom_bad_csum_allow = 0; static int use_io = 0; module_param(debug, int, 0); module_param(eeprom_bad_csum_allow, int, 0); module_param(use_io, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } static const struct pci_device_id e100_id_table[] = { INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), { 0, } }; MODULE_DEVICE_TABLE(pci, e100_id_table); enum mac { mac_82557_D100_A = 0, mac_82557_D100_B = 1, mac_82557_D100_C = 2, mac_82558_D101_A4 = 4, mac_82558_D101_B0 = 5, mac_82559_D101M = 8, mac_82559_D101S = 9, mac_82550_D102 = 12, mac_82550_D102_C = 13, mac_82551_E = 14, mac_82551_F = 15, mac_82551_10 = 16, mac_unknown = 0xFF, }; enum phy { phy_100a = 0x000003E0, phy_100c = 0x035002A8, phy_82555_tx = 0x015002A8, phy_nsc_tx = 0x5C002000, phy_82562_et = 0x033002A8, phy_82562_em = 0x032002A8, phy_82562_ek = 0x031002A8, phy_82562_eh = 0x017002A8, phy_82552_v = 0xd061004d, phy_unknown = 0xFFFFFFFF, }; /* CSR (Control/Status Registers) */ struct csr { struct { u8 status; u8 stat_ack; u8 cmd_lo; u8 cmd_hi; u32 gen_ptr; } scb; u32 port; u16 flash_ctrl; u8 eeprom_ctrl_lo; u8 eeprom_ctrl_hi; u32 mdi_ctrl; u32 rx_dma_count; }; enum scb_status { rus_no_res = 0x08, rus_ready = 0x10, rus_mask = 0x3C, }; enum ru_state { RU_SUSPENDED = 0, RU_RUNNING = 1, RU_UNINITIALIZED = -1, }; enum scb_stat_ack { stat_ack_not_ours = 0x00, stat_ack_sw_gen = 0x04, stat_ack_rnr = 0x10, stat_ack_cu_idle = 0x20, stat_ack_frame_rx = 0x40, stat_ack_cu_cmd_done = 0x80, stat_ack_not_present = 0xFF, stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), }; enum scb_cmd_hi { irq_mask_none = 0x00, irq_mask_all = 0x01, irq_sw_gen = 0x02, }; enum scb_cmd_lo { cuc_nop = 0x00, ruc_start = 0x01, ruc_load_base = 0x06, cuc_start = 0x10, cuc_resume = 0x20, cuc_dump_addr = 0x40, cuc_dump_stats = 0x50, cuc_load_base = 0x60, cuc_dump_reset = 0x70, }; enum cuc_dump { cuc_dump_complete = 0x0000A005, cuc_dump_reset_complete = 0x0000A007, }; enum port { software_reset = 0x0000, selftest = 0x0001, selective_reset = 0x0002, }; enum eeprom_ctrl_lo { eesk = 0x01, eecs = 0x02, eedi = 0x04, eedo = 0x08, }; enum mdi_ctrl { mdi_write = 0x04000000, mdi_read = 0x08000000, mdi_ready = 0x10000000, }; enum eeprom_op { op_write = 0x05, op_read = 0x06, op_ewds = 0x10, op_ewen = 0x13, }; enum eeprom_offsets { eeprom_cnfg_mdix = 0x03, eeprom_phy_iface = 0x06, eeprom_id = 0x0A, eeprom_config_asf = 0x0D, eeprom_smbus_addr = 0x90, }; enum eeprom_cnfg_mdix { eeprom_mdix_enabled = 0x0080, }; enum eeprom_phy_iface { NoSuchPhy = 0, I82553AB, I82553C, I82503, DP83840, S80C240, S80C24, I82555, DP83840A = 10, }; enum eeprom_id { eeprom_id_wol = 0x0020, }; enum eeprom_config_asf { eeprom_asf = 0x8000, eeprom_gcl = 0x4000, }; enum cb_status { cb_complete = 0x8000, cb_ok = 0x2000, }; /* * cb_command - Command Block flags * @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory */ enum cb_command { cb_nop = 0x0000, cb_iaaddr = 0x0001, cb_config = 0x0002, cb_multi = 0x0003, cb_tx = 0x0004, cb_ucode = 0x0005, cb_dump = 0x0006, cb_tx_sf = 0x0008, cb_tx_nc = 0x0010, cb_cid = 0x1f00, cb_i = 0x2000, cb_s = 0x4000, cb_el = 0x8000, }; struct rfd { __le16 status; __le16 command; __le32 link; __le32 rbd; __le16 actual_size; __le16 size; }; struct rx { struct rx *next, *prev; struct sk_buff *skb; dma_addr_t dma_addr; }; #if defined(__BIG_ENDIAN_BITFIELD) #define X(a,b) b,a #else #define X(a,b) a,b #endif struct config { /*0*/ u8 X(byte_count:6, pad0:2); /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); /*2*/ u8 adaptive_ifs; /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), term_write_cache_line:1), pad3:4); /*4*/ u8 X(rx_dma_max_count:7, pad4:1); /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), rx_save_overruns : 1), rx_save_bad_frames : 1); /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), tx_dynamic_tbd:1); /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), link_status_wake:1), arp_wake:1), mcmatch_wake:1); /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), loopback:2); /*11*/ u8 X(linear_priority:3, pad11:5); /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); /*13*/ u8 ip_addr_lo; /*14*/ u8 ip_addr_hi; /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), pad15_2:1), crs_or_cdt:1); /*16*/ u8 fc_delay_lo; /*17*/ u8 fc_delay_hi; /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), rx_long_ok:1), fc_priority_threshold:3), pad18:1); /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), full_duplex_force:1), full_duplex_pin:1); /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); u8 pad_d102[9]; }; #define E100_MAX_MULTICAST_ADDRS 64 struct multi { __le16 count; u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; }; /* Important: keep total struct u32-aligned */ #define UCODE_SIZE 134 struct cb { __le16 status; __le16 command; __le32 link; union { u8 iaaddr[ETH_ALEN]; __le32 ucode[UCODE_SIZE]; struct config config; struct multi multi; struct { u32 tbd_array; u16 tcb_byte_count; u8 threshold; u8 tbd_count; struct { __le32 buf_addr; __le16 size; u16 eol; } tbd; } tcb; __le32 dump_buffer_addr; } u; struct cb *next, *prev; dma_addr_t dma_addr; struct sk_buff *skb; }; enum loopback { lb_none = 0, lb_mac = 1, lb_phy = 3, }; struct stats { __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, tx_multiple_collisions, tx_total_collisions; __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, rx_resource_errors, rx_overrun_errors, rx_cdt_errors, rx_short_frame_errors; __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; __le16 xmt_tco_frames, rcv_tco_frames; __le32 complete; }; struct mem { struct { u32 signature; u32 result; } selftest; struct stats stats; u8 dump_buf[596]; }; struct param_range { u32 min; u32 max; u32 count; }; struct params { struct param_range rfds; struct param_range cbs; }; struct nic { /* Begin: frequently used values: keep adjacent for cache effect */ u32 msg_enable ____cacheline_aligned; struct net_device *netdev; struct pci_dev *pdev; u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); struct rx *rxs ____cacheline_aligned; struct rx *rx_to_use; struct rx *rx_to_clean; struct rfd blank_rfd; enum ru_state ru_running; spinlock_t cb_lock ____cacheline_aligned; spinlock_t cmd_lock; struct csr __iomem *csr; enum scb_cmd_lo cuc_cmd; unsigned int cbs_avail; struct napi_struct napi; struct cb *cbs; struct cb *cb_to_use; struct cb *cb_to_send; struct cb *cb_to_clean; __le16 tx_command; /* End: frequently used values: keep adjacent for cache effect */ enum { ich = (1 << 0), promiscuous = (1 << 1), multicast_all = (1 << 2), wol_magic = (1 << 3), ich_10h_workaround = (1 << 4), } flags ____cacheline_aligned; enum mac mac; enum phy phy; struct params params; struct timer_list watchdog; struct mii_if_info mii; struct work_struct tx_timeout_task; enum loopback loopback; struct mem *mem; dma_addr_t dma_addr; struct dma_pool *cbs_pool; dma_addr_t cbs_dma_addr; u8 adaptive_ifs; u8 tx_threshold; u32 tx_frames; u32 tx_collisions; u32 tx_deferred; u32 tx_single_collisions; u32 tx_multiple_collisions; u32 tx_fc_pause; u32 tx_tco_frames; u32 rx_fc_pause; u32 rx_fc_unsupported; u32 rx_tco_frames; u32 rx_short_frame_errors; u32 rx_over_length_errors; u16 eeprom_wc; __le16 eeprom[256]; spinlock_t mdio_lock; const struct firmware *fw; }; static inline void e100_write_flush(struct nic *nic) { /* Flush previous PCI writes through intermediate bridges * by doing a benign read */ (void)ioread8(&nic->csr->scb.status); } static void e100_enable_irq(struct nic *nic) { unsigned long flags; spin_lock_irqsave(&nic->cmd_lock, flags); iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); e100_write_flush(nic); spin_unlock_irqrestore(&nic->cmd_lock, flags); } static void e100_disable_irq(struct nic *nic) { unsigned long flags; spin_lock_irqsave(&nic->cmd_lock, flags); iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); e100_write_flush(nic); spin_unlock_irqrestore(&nic->cmd_lock, flags); } static void e100_hw_reset(struct nic *nic) { /* Put CU and RU into idle with a selective reset to get * device off of PCI bus */ iowrite32(selective_reset, &nic->csr->port); e100_write_flush(nic); udelay(20); /* Now fully reset device */ iowrite32(software_reset, &nic->csr->port); e100_write_flush(nic); udelay(20); /* Mask off our interrupt line - it's unmasked after reset */ e100_disable_irq(nic); } static int e100_self_test(struct nic *nic) { u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); /* Passing the self-test is a pretty good indication * that the device can DMA to/from host memory */ nic->mem->selftest.signature = 0; nic->mem->selftest.result = 0xFFFFFFFF; iowrite32(selftest | dma_addr, &nic->csr->port); e100_write_flush(nic); /* Wait 10 msec for self-test to complete */ msleep(10); /* Interrupts are enabled after self-test */ e100_disable_irq(nic); /* Check results of self-test */ if (nic->mem->selftest.result != 0) { netif_err(nic, hw, nic->netdev, "Self-test failed: result=0x%08X\n", nic->mem->selftest.result); return -ETIMEDOUT; } if (nic->mem->selftest.signature == 0) { netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); return -ETIMEDOUT; } return 0; } static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) { u32 cmd_addr_data[3]; u8 ctrl; int i, j; /* Three cmds: write/erase enable, write data, write/erase disable */ cmd_addr_data[0] = op_ewen << (addr_len - 2); cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | le16_to_cpu(data); cmd_addr_data[2] = op_ewds << (addr_len - 2); /* Bit-bang cmds to write word to eeprom */ for (j = 0; j < 3; j++) { /* Chip select */ iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); for (i = 31; i >= 0; i--) { ctrl = (cmd_addr_data[j] & (1 << i)) ? eecs | eedi : eecs; iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); } /* Wait 10 msec for cmd to complete */ msleep(10); /* Chip deselect */ iowrite8(0, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); } }; /* General technique stolen from the eepro100 driver - very clever */ static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) { u32 cmd_addr_data; u16 data = 0; u8 ctrl; int i; cmd_addr_data = ((op_read << *addr_len) | addr) << 16; /* Chip select */ iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); /* Bit-bang to read word from eeprom */ for (i = 31; i >= 0; i--) { ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); /* Eeprom drives a dummy zero to EEDO after receiving * complete address. Use this to adjust addr_len. */ ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); if (!(ctrl & eedo) && i > 16) { *addr_len -= (i - 16); i = 17; } data = (data << 1) | (ctrl & eedo ? 1 : 0); } /* Chip deselect */ iowrite8(0, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); return cpu_to_le16(data); }; /* Load entire EEPROM image into driver cache and validate checksum */ static int e100_eeprom_load(struct nic *nic) { u16 addr, addr_len = 8, checksum = 0; /* Try reading with an 8-bit addr len to discover actual addr len */ e100_eeprom_read(nic, &addr_len, 0); nic->eeprom_wc = 1 << addr_len; for (addr = 0; addr < nic->eeprom_wc; addr++) { nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); if (addr < nic->eeprom_wc - 1) checksum += le16_to_cpu(nic->eeprom[addr]); } /* The checksum, stored in the last word, is calculated such that * the sum of words should be 0xBABA */ if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); if (!eeprom_bad_csum_allow) return -EAGAIN; } return 0; } /* Save (portion of) driver EEPROM cache to device and update checksum */ static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) { u16 addr, addr_len = 8, checksum = 0; /* Try reading with an 8-bit addr len to discover actual addr len */ e100_eeprom_read(nic, &addr_len, 0); nic->eeprom_wc = 1 << addr_len; if (start + count >= nic->eeprom_wc) return -EINVAL; for (addr = start; addr < start + count; addr++) e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); /* The checksum, stored in the last word, is calculated such that * the sum of words should be 0xBABA */ for (addr = 0; addr < nic->eeprom_wc - 1; addr++) checksum += le16_to_cpu(nic->eeprom[addr]); nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, nic->eeprom[nic->eeprom_wc - 1]); return 0; } #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) { unsigned long flags; unsigned int i; int err = 0; spin_lock_irqsave(&nic->cmd_lock, flags); /* Previous command is accepted when SCB clears */ for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { if (likely(!ioread8(&nic->csr->scb.cmd_lo))) break; cpu_relax(); if (unlikely(i > E100_WAIT_SCB_FAST)) udelay(5); } if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { err = -EAGAIN; goto err_unlock; } if (unlikely(cmd != cuc_resume)) iowrite32(dma_addr, &nic->csr->scb.gen_ptr); iowrite8(cmd, &nic->csr->scb.cmd_lo); err_unlock: spin_unlock_irqrestore(&nic->cmd_lock, flags); return err; } static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) { struct cb *cb; unsigned long flags; int err; spin_lock_irqsave(&nic->cb_lock, flags); if (unlikely(!nic->cbs_avail)) { err = -ENOMEM; goto err_unlock; } cb = nic->cb_to_use; nic->cb_to_use = cb->next; nic->cbs_avail--; cb->skb = skb; err = cb_prepare(nic, cb, skb); if (err) goto err_unlock; if (unlikely(!nic->cbs_avail)) err = -ENOSPC; /* Order is important otherwise we'll be in a race with h/w: * set S-bit in current first, then clear S-bit in previous. */ cb->command |= cpu_to_le16(cb_s); dma_wmb(); cb->prev->command &= cpu_to_le16(~cb_s); while (nic->cb_to_send != nic->cb_to_use) { if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, nic->cb_to_send->dma_addr))) { /* Ok, here's where things get sticky. It's * possible that we can't schedule the command * because the controller is too busy, so * let's just queue the command and try again * when another command is scheduled. */ if (err == -ENOSPC) { //request a reset schedule_work(&nic->tx_timeout_task); } break; } else { nic->cuc_cmd = cuc_resume; nic->cb_to_send = nic->cb_to_send->next; } } err_unlock: spin_unlock_irqrestore(&nic->cb_lock, flags); return err; } static int mdio_read(struct net_device *netdev, int addr, int reg) { struct nic *nic = netdev_priv(netdev); return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); } static void mdio_write(struct net_device *netdev, int addr, int reg, int data) { struct nic *nic = netdev_priv(netdev); nic->mdio_ctrl(nic, addr, mdi_write, reg, data); } /* the standard mdio_ctrl() function for usual MII-compliant hardware */ static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) { u32 data_out = 0; unsigned int i; unsigned long flags; /* * Stratus87247: we shouldn't be writing the MDI control * register until the Ready bit shows True. Also, since * manipulation of the MDI control registers is a multi-step * procedure it should be done under lock. */ spin_lock_irqsave(&nic->mdio_lock, flags); for (i = 100; i; --i) { if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) break; udelay(20); } if (unlikely(!i)) { netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); spin_unlock_irqrestore(&nic->mdio_lock, flags); return 0; /* No way to indicate timeout error */ } iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); for (i = 0; i < 100; i++) { udelay(20); if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) break; } spin_unlock_irqrestore(&nic->mdio_lock, flags); netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); return (u16)data_out; } /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ static u16 mdio_ctrl_phy_82552_v(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) { if ((reg == MII_BMCR) && (dir == mdi_write)) { if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, MII_ADVERTISE); /* * Workaround Si issue where sometimes the part will not * autoneg to 100Mbps even when advertised. */ if (advert & ADVERTISE_100FULL) data |= BMCR_SPEED100 | BMCR_FULLDPLX; else if (advert & ADVERTISE_100HALF) data |= BMCR_SPEED100; } } return mdio_ctrl_hw(nic, addr, dir, reg, data); } /* Fully software-emulated mdio_ctrl() function for cards without * MII-compliant PHYs. * For now, this is mainly geared towards 80c24 support; in case of further * requirements for other types (i82503, ...?) either extend this mechanism * or split it, whichever is cleaner. */ static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) { /* might need to allocate a netdev_priv'ed register array eventually * to be able to record state changes, but for now * some fully hardcoded register handling ought to be ok I guess. */ if (dir == mdi_read) { switch (reg) { case MII_BMCR: /* Auto-negotiation, right? */ return BMCR_ANENABLE | BMCR_FULLDPLX; case MII_BMSR: return BMSR_LSTATUS /* for mii_link_ok() */ | BMSR_ANEGCAPABLE | BMSR_10FULL; case MII_ADVERTISE: /* 80c24 is a "combo card" PHY, right? */ return ADVERTISE_10HALF | ADVERTISE_10FULL; default: netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", dir == mdi_read ? "READ" : "WRITE", addr, reg, data); return 0xFFFF; } } else { switch (reg) { default: netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", dir == mdi_read ? "READ" : "WRITE", addr, reg, data); return 0xFFFF; } } } static inline int e100_phy_supports_mii(struct nic *nic) { /* for now, just check it by comparing whether we are using MII software emulation. */ return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); } static void e100_get_defaults(struct nic *nic) { struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; if (nic->mac == mac_unknown) nic->mac = mac_82557_D100_A; nic->params.rfds = rfds; nic->params.cbs = cbs; /* Quadwords to DMA into FIFO before starting frame transmit */ nic->tx_threshold = 0xE0; /* no interrupt for every tx completion, delay = 256us if not 557 */ nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); /* Template for a freshly allocated RFD */ nic->blank_rfd.command = 0; nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); /* MII setup */ nic->mii.phy_id_mask = 0x1F; nic->mii.reg_num_mask = 0x1F; nic->mii.dev = nic->netdev; nic->mii.mdio_read = mdio_read; nic->mii.mdio_write = mdio_write; } static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) { struct config *config = &cb->u.config; u8 *c = (u8 *)config; struct net_device *netdev = nic->netdev; cb->command = cpu_to_le16(cb_config); memset(config, 0, sizeof(struct config)); config->byte_count = 0x16; /* bytes in this struct */ config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ config->direct_rx_dma = 0x1; /* reserved */ config->standard_tcb = 0x1; /* 1=standard, 0=extended */ config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ config->tx_underrun_retry = 0x3; /* # of underrun retries */ if (e100_phy_supports_mii(nic)) config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ config->pad10 = 0x6; config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ config->ifs = 0x6; /* x16 = inter frame spacing */ config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ config->pad15_1 = 0x1; config->pad15_2 = 0x1; config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ config->fc_delay_hi = 0x40; /* time delay for fc frame */ config->tx_padding = 0x1; /* 1=pad short frames */ config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ config->pad18 = 0x1; config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ config->pad20_1 = 0x1F; config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ config->pad21_1 = 0x5; config->adaptive_ifs = nic->adaptive_ifs; config->loopback = nic->loopback; if (nic->mii.force_media && nic->mii.full_duplex) config->full_duplex_force = 0x1; /* 1=force, 0=auto */ if (nic->flags & promiscuous || nic->loopback) { config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ config->promiscuous_mode = 0x1; /* 1=on, 0=off */ } if (unlikely(netdev->features & NETIF_F_RXFCS)) config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */ if (nic->flags & multicast_all) config->multicast_all = 0x1; /* 1=accept, 0=no */ /* disable WoL when up */ if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) config->magic_packet_disable = 0x1; /* 1=off, 0=on */ if (nic->mac >= mac_82558_D101_A4) { config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ config->mwi_enable = 0x1; /* 1=enable, 0=disable */ config->standard_tcb = 0x0; /* 1=standard, 0=extended */ config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ if (nic->mac >= mac_82559_D101M) { config->tno_intr = 0x1; /* TCO stats enable */ /* Enable TCO in extended config */ if (nic->mac >= mac_82551_10) { config->byte_count = 0x20; /* extended bytes */ config->rx_d102_mode = 0x1; /* GMRC for TCO */ } } else { config->standard_stat_counter = 0x0; } } if (netdev->features & NETIF_F_RXALL) { config->rx_save_overruns = 0x1; /* 1=save, 0=discard */ config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ } netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n", c + 0); netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n", c + 8); netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n", c + 16); return 0; } /************************************************************************* * CPUSaver parameters * * All CPUSaver parameters are 16-bit literals that are part of a * "move immediate value" instruction. By changing the value of * the literal in the instruction before the code is loaded, the * driver can change the algorithm. * * INTDELAY - This loads the dead-man timer with its initial value. * When this timer expires the interrupt is asserted, and the * timer is reset each time a new packet is received. (see * BUNDLEMAX below to set the limit on number of chained packets) * The current default is 0x600 or 1536. Experiments show that * the value should probably stay within the 0x200 - 0x1000. * * BUNDLEMAX - * This sets the maximum number of frames that will be bundled. In * some situations, such as the TCP windowing algorithm, it may be * better to limit the growth of the bundle size than let it go as * high as it can, because that could cause too much added latency. * The default is six, because this is the number of packets in the * default TCP window size. A value of 1 would make CPUSaver indicate * an interrupt for every frame received. If you do not want to put * a limit on the bundle size, set this value to xFFFF. * * BUNDLESMALL - * This contains a bit-mask describing the minimum size frame that * will be bundled. The default masks the lower 7 bits, which means * that any frame less than 128 bytes in length will not be bundled, * but will instead immediately generate an interrupt. This does * not affect the current bundle in any way. Any frame that is 128 * bytes or large will be bundled normally. This feature is meant * to provide immediate indication of ACK frames in a TCP environment. * Customers were seeing poor performance when a machine with CPUSaver * enabled was sending but not receiving. The delay introduced when * the ACKs were received was enough to reduce total throughput, because * the sender would sit idle until the ACK was finally seen. * * The current default is 0xFF80, which masks out the lower 7 bits. * This means that any frame which is x7F (127) bytes or smaller * will cause an immediate interrupt. Because this value must be a * bit mask, there are only a few valid values that can be used. To * turn this feature off, the driver can write the value xFFFF to the * lower word of this instruction (in the same way that the other * parameters are used). Likewise, a value of 0xF800 (2047) would * cause an interrupt to be generated for every frame, because all * standard Ethernet frames are <= 2047 bytes in length. *************************************************************************/ /* if you wish to disable the ucode functionality, while maintaining the * workarounds it provides, set the following defines to: * BUNDLESMALL 0 * BUNDLEMAX 1 * INTDELAY 1 */ #define BUNDLESMALL 1 #define BUNDLEMAX (u16)6 #define INTDELAY (u16)1536 /* 0x600 */ /* Initialize firmware */ static const struct firmware *e100_request_firmware(struct nic *nic) { const char *fw_name; const struct firmware *fw = nic->fw; u8 timer, bundle, min_size; int err = 0; bool required = false; /* do not load u-code for ICH devices */ if (nic->flags & ich) return NULL; /* Search for ucode match against h/w revision * * Based on comments in the source code for the FreeBSD fxp * driver, the FIRMWARE_D102E ucode includes both CPUSaver and * * "fixes for bugs in the B-step hardware (specifically, bugs * with Inline Receive)." * * So we must fail if it cannot be loaded. * * The other microcode files are only required for the optional * CPUSaver feature. Nice to have, but no reason to fail. */ if (nic->mac == mac_82559_D101M) { fw_name = FIRMWARE_D101M; } else if (nic->mac == mac_82559_D101S) { fw_name = FIRMWARE_D101S; } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) { fw_name = FIRMWARE_D102E; required = true; } else { /* No ucode on other devices */ return NULL; } /* If the firmware has not previously been loaded, request a pointer * to it. If it was previously loaded, we are reinitializing the * adapter, possibly in a resume from hibernate, in which case * request_firmware() cannot be used. */ if (!fw) err = request_firmware(&fw, fw_name, &nic->pdev->dev); if (err) { if (required) { netif_err(nic, probe, nic->netdev, "Failed to load firmware \"%s\": %d\n", fw_name, err); return ERR_PTR(err); } else { netif_info(nic, probe, nic->netdev, "CPUSaver disabled. Needs \"%s\": %d\n", fw_name, err); return NULL; } } /* Firmware should be precisely UCODE_SIZE (words) plus three bytes indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ if (fw->size != UCODE_SIZE * 4 + 3) { netif_err(nic, probe, nic->netdev, "Firmware \"%s\" has wrong size %zu\n", fw_name, fw->size); release_firmware(fw); return ERR_PTR(-EINVAL); } /* Read timer, bundle and min_size from end of firmware blob */ timer = fw->data[UCODE_SIZE * 4]; bundle = fw->data[UCODE_SIZE * 4 + 1]; min_size = fw->data[UCODE_SIZE * 4 + 2]; if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || min_size >= UCODE_SIZE) { netif_err(nic, probe, nic->netdev, "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", fw_name, timer, bundle, min_size); release_firmware(fw); return ERR_PTR(-EINVAL); } /* OK, firmware is validated and ready to use. Save a pointer * to it in the nic */ nic->fw = fw; return fw; } static int e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) { const struct firmware *fw = (void *)skb; u8 timer, bundle, min_size; /* It's not a real skb; we just abused the fact that e100_exec_cb will pass it through to here... */ cb->skb = NULL; /* firmware is stored as little endian already */ memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); /* Read timer, bundle and min_size from end of firmware blob */ timer = fw->data[UCODE_SIZE * 4]; bundle = fw->data[UCODE_SIZE * 4 + 1]; min_size = fw->data[UCODE_SIZE * 4 + 2]; /* Insert user-tunable settings in cb->u.ucode */ cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); cb->command = cpu_to_le16(cb_ucode | cb_el); return 0; } static inline int e100_load_ucode_wait(struct nic *nic) { const struct firmware *fw; int err = 0, counter = 50; struct cb *cb = nic->cb_to_clean; fw = e100_request_firmware(nic); /* If it's NULL, then no ucode is required */ if (IS_ERR_OR_NULL(fw)) return PTR_ERR_OR_ZERO(fw); if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) netif_err(nic, probe, nic->netdev, "ucode cmd failed with error %d\n", err); /* must restart cuc */ nic->cuc_cmd = cuc_start; /* wait for completion */ e100_write_flush(nic); udelay(10); /* wait for possibly (ouch) 500ms */ while (!(cb->status & cpu_to_le16(cb_complete))) { msleep(10); if (!--counter) break; } /* ack any interrupts, something could have been set */ iowrite8(~0, &nic->csr->scb.stat_ack); /* if the command failed, or is not OK, notify and return */ if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { netif_err(nic, probe, nic->netdev, "ucode load failed\n"); err = -EPERM; } return err; } static int e100_setup_iaaddr(struct nic *nic, struct cb *cb, struct sk_buff *skb) { cb->command = cpu_to_le16(cb_iaaddr); memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); return 0; } static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) { cb->command = cpu_to_le16(cb_dump); cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + offsetof(struct mem, dump_buf)); return 0; } static int e100_phy_check_without_mii(struct nic *nic) { u8 phy_type; int without_mii; phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f; switch (phy_type) { case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ case I82503: /* Non-MII PHY; UNTESTED! */ case S80C24: /* Non-MII PHY; tested and working */ /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter * doesn't have a programming interface of any sort. The * media is sensed automatically based on how the link partner * is configured. This is, in essence, manual configuration. */ netif_info(nic, probe, nic->netdev, "found MII-less i82503 or 80c24 or other PHY\n"); nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ /* these might be needed for certain MII-less cards... * nic->flags |= ich; * nic->flags |= ich_10h_workaround; */ without_mii = 1; break; default: without_mii = 0; break; } return without_mii; } #define NCONFIG_AUTO_SWITCH 0x0080 #define MII_NSC_CONG MII_RESV1 #define NSC_CONG_ENABLE 0x0100 #define NSC_CONG_TXREADY 0x0400 static int e100_phy_init(struct nic *nic) { struct net_device *netdev = nic->netdev; u32 addr; u16 bmcr, stat, id_lo, id_hi, cong; /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ for (addr = 0; addr < 32; addr++) { nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) break; } if (addr == 32) { /* uhoh, no PHY detected: check whether we seem to be some * weird, rare variant which is *known* to not have any MII. * But do this AFTER MII checking only, since this does * lookup of EEPROM values which may easily be unreliable. */ if (e100_phy_check_without_mii(nic)) return 0; /* simply return and hope for the best */ else { /* for unknown cases log a fatal error */ netif_err(nic, hw, nic->netdev, "Failed to locate any known PHY, aborting\n"); return -EAGAIN; } } else netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "phy_addr = %d\n", nic->mii.phy_id); /* Get phy ID */ id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); nic->phy = (u32)id_hi << 16 | (u32)id_lo; netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "phy ID = 0x%08X\n", nic->phy); /* Select the phy and isolate the rest */ for (addr = 0; addr < 32; addr++) { if (addr != nic->mii.phy_id) { mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); } else if (nic->phy != phy_82552_v) { bmcr = mdio_read(netdev, addr, MII_BMCR); mdio_write(netdev, addr, MII_BMCR, bmcr & ~BMCR_ISOLATE); } } /* * Workaround for 82552: * Clear the ISOLATE bit on selected phy_id last (mirrored on all * other phy_id's) using bmcr value from addr discovery loop above. */ if (nic->phy == phy_82552_v) mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr & ~BMCR_ISOLATE); /* Handle National tx phys */ #define NCS_PHY_MODEL_MASK 0xFFF0FFFF if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { /* Disable congestion control */ cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); cong |= NSC_CONG_TXREADY; cong &= ~NSC_CONG_ENABLE; mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); } if (nic->phy == phy_82552_v) { u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); /* assign special tweaked mdio_ctrl() function */ nic->mdio_ctrl = mdio_ctrl_phy_82552_v; /* Workaround Si not advertising flow-control during autoneg */ advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); /* Reset for the above changes to take effect */ bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); bmcr |= BMCR_RESET; mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) { /* enable/disable MDI/MDI-X auto-switching. */ mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); } return 0; } static int e100_hw_init(struct nic *nic) { int err = 0; e100_hw_reset(nic); netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); if ((err = e100_self_test(nic))) return err; if ((err = e100_phy_init(nic))) return err; if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) return err; if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) return err; if ((err = e100_load_ucode_wait(nic))) return err; if ((err = e100_exec_cb(nic, NULL, e100_configure))) return err; if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) return err; if ((err = e100_exec_cmd(nic, cuc_dump_addr, nic->dma_addr + offsetof(struct mem, stats)))) return err; if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) return err; e100_disable_irq(nic); return 0; } static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) { struct net_device *netdev = nic->netdev; struct netdev_hw_addr *ha; u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); cb->command = cpu_to_le16(cb_multi); cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); i = 0; netdev_for_each_mc_addr(ha, netdev) { if (i == count) break; memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, ETH_ALEN); } return 0; } static void e100_set_multicast_list(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "mc_count=%d, flags=0x%04X\n", netdev_mc_count(netdev), netdev->flags); if (netdev->flags & IFF_PROMISC) nic->flags |= promiscuous; else nic->flags &= ~promiscuous; if (netdev->flags & IFF_ALLMULTI || netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) nic->flags |= multicast_all; else nic->flags &= ~multicast_all; e100_exec_cb(nic, NULL, e100_configure); e100_exec_cb(nic, NULL, e100_multi); } static void e100_update_stats(struct nic *nic) { struct net_device *dev = nic->netdev; struct net_device_stats *ns = &dev->stats; struct stats *s = &nic->mem->stats; __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : &s->complete; /* Device's stats reporting may take several microseconds to * complete, so we're always waiting for results of the * previous command. */ if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { *complete = 0; nic->tx_frames = le32_to_cpu(s->tx_good_frames); nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); ns->collisions += nic->tx_collisions; ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + le32_to_cpu(s->tx_lost_crs); nic->rx_short_frame_errors += le32_to_cpu(s->rx_short_frame_errors); ns->rx_length_errors = nic->rx_short_frame_errors + nic->rx_over_length_errors; ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + le32_to_cpu(s->rx_alignment_errors) + le32_to_cpu(s->rx_short_frame_errors) + le32_to_cpu(s->rx_cdt_errors); nic->tx_deferred += le32_to_cpu(s->tx_deferred); nic->tx_single_collisions += le32_to_cpu(s->tx_single_collisions); nic->tx_multiple_collisions += le32_to_cpu(s->tx_multiple_collisions); if (nic->mac >= mac_82558_D101_A4) { nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); nic->rx_fc_unsupported += le32_to_cpu(s->fc_rcv_unsupported); if (nic->mac >= mac_82559_D101M) { nic->tx_tco_frames += le16_to_cpu(s->xmt_tco_frames); nic->rx_tco_frames += le16_to_cpu(s->rcv_tco_frames); } } } if (e100_exec_cmd(nic, cuc_dump_reset, 0)) netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, "exec cuc_dump_reset failed\n"); } static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) { /* Adjust inter-frame-spacing (IFS) between two transmits if * we're getting collisions on a half-duplex connection. */ if (duplex == DUPLEX_HALF) { u32 prev = nic->adaptive_ifs; u32 min_frames = (speed == SPEED_100) ? 1000 : 100; if ((nic->tx_frames / 32 < nic->tx_collisions) && (nic->tx_frames > min_frames)) { if (nic->adaptive_ifs < 60) nic->adaptive_ifs += 5; } else if (nic->tx_frames < min_frames) { if (nic->adaptive_ifs >= 5) nic->adaptive_ifs -= 5; } if (nic->adaptive_ifs != prev) e100_exec_cb(nic, NULL, e100_configure); } } static void e100_watchdog(struct timer_list *t) { struct nic *nic = from_timer(nic, t, watchdog); struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET }; u32 speed; netif_printk(nic, timer, KERN_DEBUG, nic->netdev, "right now = %ld\n", jiffies); /* mii library handles link maintenance tasks */ mii_ethtool_gset(&nic->mii, &cmd); speed = ethtool_cmd_speed(&cmd); if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", speed == SPEED_100 ? 100 : 10, cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { netdev_info(nic->netdev, "NIC Link is Down\n"); } mii_check_link(&nic->mii); /* Software generated interrupt to recover from (rare) Rx * allocation failure. * Unfortunately have to use a spinlock to not re-enable interrupts * accidentally, due to hardware that shares a register between the * interrupt mask bit and the SW Interrupt generation bit */ spin_lock_irq(&nic->cmd_lock); iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); e100_write_flush(nic); spin_unlock_irq(&nic->cmd_lock); e100_update_stats(nic); e100_adjust_adaptive_ifs(nic, speed, cmd.duplex); if (nic->mac <= mac_82557_D100_C) /* Issue a multicast command to workaround a 557 lock up */ e100_set_multicast_list(nic->netdev); if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF) /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ nic->flags |= ich_10h_workaround; else nic->flags &= ~ich_10h_workaround; mod_timer(&nic->watchdog, round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); } static int e100_xmit_prepare(struct nic *nic, struct cb *cb, struct sk_buff *skb) { dma_addr_t dma_addr; cb->command = nic->tx_command; dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); /* If we can't map the skb, have the upper layer try later */ if (dma_mapping_error(&nic->pdev->dev, dma_addr)) return -ENOMEM; /* * Use the last 4 bytes of the SKB payload packet as the CRC, used for * testing, ie sending frames with bad CRC. */ if (unlikely(skb->no_fcs)) cb->command |= cpu_to_le16(cb_tx_nc); else cb->command &= ~cpu_to_le16(cb_tx_nc); /* interrupt every 16 packets regardless of delay */ if ((nic->cbs_avail & ~15) == nic->cbs_avail) cb->command |= cpu_to_le16(cb_i); cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); cb->u.tcb.tcb_byte_count = 0; cb->u.tcb.threshold = nic->tx_threshold; cb->u.tcb.tbd_count = 1; cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr); cb->u.tcb.tbd.size = cpu_to_le16(skb->len); skb_tx_timestamp(skb); return 0; } static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); int err; if (nic->flags & ich_10h_workaround) { /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. Issue a NOP command followed by a 1us delay before issuing the Tx command. */ if (e100_exec_cmd(nic, cuc_nop, 0)) netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, "exec cuc_nop failed\n"); udelay(1); } err = e100_exec_cb(nic, skb, e100_xmit_prepare); switch (err) { case -ENOSPC: /* We queued the skb, but now we're out of space. */ netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, "No space for CB\n"); netif_stop_queue(netdev); break; case -ENOMEM: /* This is a hard error - log it. */ netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, "Out of Tx resources, returning skb\n"); netif_stop_queue(netdev); return NETDEV_TX_BUSY; } return NETDEV_TX_OK; } static int e100_tx_clean(struct nic *nic) { struct net_device *dev = nic->netdev; struct cb *cb; int tx_cleaned = 0; spin_lock(&nic->cb_lock); /* Clean CBs marked complete */ for (cb = nic->cb_to_clean; cb->status & cpu_to_le16(cb_complete); cb = nic->cb_to_clean = cb->next) { dma_rmb(); /* read skb after status */ netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, "cb[%d]->status = 0x%04X\n", (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), cb->status); if (likely(cb->skb != NULL)) { dev->stats.tx_packets++; dev->stats.tx_bytes += cb->skb->len; dma_unmap_single(&nic->pdev->dev, le32_to_cpu(cb->u.tcb.tbd.buf_addr), le16_to_cpu(cb->u.tcb.tbd.size), DMA_TO_DEVICE); dev_kfree_skb_any(cb->skb); cb->skb = NULL; tx_cleaned = 1; } cb->status = 0; nic->cbs_avail++; } spin_unlock(&nic->cb_lock); /* Recover from running out of Tx resources in xmit_frame */ if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) netif_wake_queue(nic->netdev); return tx_cleaned; } static void e100_clean_cbs(struct nic *nic) { if (nic->cbs) { while (nic->cbs_avail != nic->params.cbs.count) { struct cb *cb = nic->cb_to_clean; if (cb->skb) { dma_unmap_single(&nic->pdev->dev, le32_to_cpu(cb->u.tcb.tbd.buf_addr), le16_to_cpu(cb->u.tcb.tbd.size), DMA_TO_DEVICE); dev_kfree_skb(cb->skb); } nic->cb_to_clean = nic->cb_to_clean->next; nic->cbs_avail++; } dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); nic->cbs = NULL; nic->cbs_avail = 0; } nic->cuc_cmd = cuc_start; nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; } static int e100_alloc_cbs(struct nic *nic) { struct cb *cb; unsigned int i, count = nic->params.cbs.count; nic->cuc_cmd = cuc_start; nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; nic->cbs_avail = 0; nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL, &nic->cbs_dma_addr); if (!nic->cbs) return -ENOMEM; for (cb = nic->cbs, i = 0; i < count; cb++, i++) { cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); cb->link = cpu_to_le32(nic->cbs_dma_addr + ((i+1) % count) * sizeof(struct cb)); } nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; nic->cbs_avail = count; return 0; } static inline void e100_start_receiver(struct nic *nic, struct rx *rx) { if (!nic->rxs) return; if (RU_SUSPENDED != nic->ru_running) return; /* handle init time starts */ if (!rx) rx = nic->rxs; /* (Re)start RU if suspended or idle and RFA is non-NULL */ if (rx->skb) { e100_exec_cmd(nic, ruc_start, rx->dma_addr); nic->ru_running = RU_RUNNING; } } #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN) static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) { if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) return -ENOMEM; /* Init, and map the RFD. */ skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data, RFD_BUF_LEN, DMA_BIDIRECTIONAL); if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) { dev_kfree_skb_any(rx->skb); rx->skb = NULL; rx->dma_addr = 0; return -ENOMEM; } /* Link the RFD to end of RFA by linking previous RFD to * this one. We are safe to touch the previous RFD because * it is protected by the before last buffer's el bit being set */ if (rx->prev->skb) { struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; put_unaligned_le32(rx->dma_addr, &prev_rfd->link); dma_sync_single_for_device(&nic->pdev->dev, rx->prev->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); } return 0; } static int e100_rx_indicate(struct nic *nic, struct rx *rx, unsigned int *work_done, unsigned int work_to_do) { struct net_device *dev = nic->netdev; struct sk_buff *skb = rx->skb; struct rfd *rfd = (struct rfd *)skb->data; u16 rfd_status, actual_size; u16 fcs_pad = 0; if (unlikely(work_done && *work_done >= work_to_do)) return -EAGAIN; /* Need to sync before taking a peek at cb_complete bit */ dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); rfd_status = le16_to_cpu(rfd->status); netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, "status=0x%04X\n", rfd_status); dma_rmb(); /* read size after status bit */ /* If data isn't ready, nothing to indicate */ if (unlikely(!(rfd_status & cb_complete))) { /* If the next buffer has the el bit, but we think the receiver * is still running, check to see if it really stopped while * we had interrupts off. * This allows for a fast restart without re-enabling * interrupts */ if ((le16_to_cpu(rfd->command) & cb_el) && (RU_RUNNING == nic->ru_running)) if (ioread8(&nic->csr->scb.status) & rus_no_res) nic->ru_running = RU_SUSPENDED; dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr, sizeof(struct rfd), DMA_FROM_DEVICE); return -ENODATA; } /* Get actual data size */ if (unlikely(dev->features & NETIF_F_RXFCS)) fcs_pad = 4; actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) actual_size = RFD_BUF_LEN - sizeof(struct rfd); /* Get data */ dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN, DMA_BIDIRECTIONAL); /* If this buffer has the el bit, but we think the receiver * is still running, check to see if it really stopped while * we had interrupts off. * This allows for a fast restart without re-enabling interrupts. * This can happen when the RU sees the size change but also sees * the el bit set. */ if ((le16_to_cpu(rfd->command) & cb_el) && (RU_RUNNING == nic->ru_running)) { if (ioread8(&nic->csr->scb.status) & rus_no_res) nic->ru_running = RU_SUSPENDED; } /* Pull off the RFD and put the actual data (minus eth hdr) */ skb_reserve(skb, sizeof(struct rfd)); skb_put(skb, actual_size); skb->protocol = eth_type_trans(skb, nic->netdev); /* If we are receiving all frames, then don't bother * checking for errors. */ if (unlikely(dev->features & NETIF_F_RXALL)) { if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) /* Received oversized frame, but keep it. */ nic->rx_over_length_errors++; goto process_skb; } if (unlikely(!(rfd_status & cb_ok))) { /* Don't indicate if hardware indicates errors */ dev_kfree_skb_any(skb); } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) { /* Don't indicate oversized frames */ nic->rx_over_length_errors++; dev_kfree_skb_any(skb); } else { process_skb: dev->stats.rx_packets++; dev->stats.rx_bytes += (actual_size - fcs_pad); netif_receive_skb(skb); if (work_done) (*work_done)++; } rx->skb = NULL; return 0; } static void e100_rx_clean(struct nic *nic, unsigned int *work_done, unsigned int work_to_do) { struct rx *rx; int restart_required = 0, err = 0; struct rx *old_before_last_rx, *new_before_last_rx; struct rfd *old_before_last_rfd, *new_before_last_rfd; /* Indicate newly arrived packets */ for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { err = e100_rx_indicate(nic, rx, work_done, work_to_do); /* Hit quota or no more to clean */ if (-EAGAIN == err || -ENODATA == err) break; } /* On EAGAIN, hit quota so have more work to do, restart once * cleanup is complete. * Else, are we already rnr? then pay attention!!! this ensures that * the state machine progression never allows a start with a * partially cleaned list, avoiding a race between hardware * and rx_to_clean when in NAPI mode */ if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) restart_required = 1; old_before_last_rx = nic->rx_to_use->prev->prev; old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; /* Alloc new skbs to refill list */ for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { if (unlikely(e100_rx_alloc_skb(nic, rx))) break; /* Better luck next time (see watchdog) */ } new_before_last_rx = nic->rx_to_use->prev->prev; if (new_before_last_rx != old_before_last_rx) { /* Set the el-bit on the buffer that is before the last buffer. * This lets us update the next pointer on the last buffer * without worrying about hardware touching it. * We set the size to 0 to prevent hardware from touching this * buffer. * When the hardware hits the before last buffer with el-bit * and size of 0, it will RNR interrupt, the RUS will go into * the No Resources state. It will not complete nor write to * this buffer. */ new_before_last_rfd = (struct rfd *)new_before_last_rx->skb->data; new_before_last_rfd->size = 0; new_before_last_rfd->command |= cpu_to_le16(cb_el); dma_sync_single_for_device(&nic->pdev->dev, new_before_last_rx->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); /* Now that we have a new stopping point, we can clear the old * stopping point. We must sync twice to get the proper * ordering on the hardware side of things. */ old_before_last_rfd->command &= ~cpu_to_le16(cb_el); dma_sync_single_for_device(&nic->pdev->dev, old_before_last_rx->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); dma_sync_single_for_device(&nic->pdev->dev, old_before_last_rx->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); } if (restart_required) { // ack the rnr? iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); e100_start_receiver(nic, nic->rx_to_clean); if (work_done) (*work_done)++; } } static void e100_rx_clean_list(struct nic *nic) { struct rx *rx; unsigned int i, count = nic->params.rfds.count; nic->ru_running = RU_UNINITIALIZED; if (nic->rxs) { for (rx = nic->rxs, i = 0; i < count; rx++, i++) { if (rx->skb) { dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN, DMA_BIDIRECTIONAL); dev_kfree_skb(rx->skb); } } kfree(nic->rxs); nic->rxs = NULL; } nic->rx_to_use = nic->rx_to_clean = NULL; } static int e100_rx_alloc_list(struct nic *nic) { struct rx *rx; unsigned int i, count = nic->params.rfds.count; struct rfd *before_last; nic->rx_to_use = nic->rx_to_clean = NULL; nic->ru_running = RU_UNINITIALIZED; if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL))) return -ENOMEM; for (rx = nic->rxs, i = 0; i < count; rx++, i++) { rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; if (e100_rx_alloc_skb(nic, rx)) { e100_rx_clean_list(nic); return -ENOMEM; } } /* Set the el-bit on the buffer that is before the last buffer. * This lets us update the next pointer on the last buffer without * worrying about hardware touching it. * We set the size to 0 to prevent hardware from touching this buffer. * When the hardware hits the before last buffer with el-bit and size * of 0, it will RNR interrupt, the RU will go into the No Resources * state. It will not complete nor write to this buffer. */ rx = nic->rxs->prev->prev; before_last = (struct rfd *)rx->skb->data; before_last->command |= cpu_to_le16(cb_el); before_last->size = 0; dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); nic->rx_to_use = nic->rx_to_clean = nic->rxs; nic->ru_running = RU_SUSPENDED; return 0; } static irqreturn_t e100_intr(int irq, void *dev_id) { struct net_device *netdev = dev_id; struct nic *nic = netdev_priv(netdev); u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); netif_printk(nic, intr, KERN_DEBUG, nic->netdev, "stat_ack = 0x%02X\n", stat_ack); if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ stat_ack == stat_ack_not_present) /* Hardware is ejected */ return IRQ_NONE; /* Ack interrupt(s) */ iowrite8(stat_ack, &nic->csr->scb.stat_ack); /* We hit Receive No Resource (RNR); restart RU after cleaning */ if (stat_ack & stat_ack_rnr) nic->ru_running = RU_SUSPENDED; if (likely(napi_schedule_prep(&nic->napi))) { e100_disable_irq(nic); __napi_schedule(&nic->napi); } return IRQ_HANDLED; } static int e100_poll(struct napi_struct *napi, int budget) { struct nic *nic = container_of(napi, struct nic, napi); unsigned int work_done = 0; e100_rx_clean(nic, &work_done, budget); e100_tx_clean(nic); /* If budget fully consumed, continue polling */ if (work_done == budget) return budget; /* only re-enable interrupt if stack agrees polling is really done */ if (likely(napi_complete_done(napi, work_done))) e100_enable_irq(nic); return work_done; } #ifdef CONFIG_NET_POLL_CONTROLLER static void e100_netpoll(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); e100_disable_irq(nic); e100_intr(nic->pdev->irq, netdev); e100_tx_clean(nic); e100_enable_irq(nic); } #endif static int e100_set_mac_address(struct net_device *netdev, void *p) { struct nic *nic = netdev_priv(netdev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; eth_hw_addr_set(netdev, addr->sa_data); e100_exec_cb(nic, NULL, e100_setup_iaaddr); return 0; } static int e100_asf(struct nic *nic) { /* ASF can be enabled from eeprom */ return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) && !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) && ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE); } static int e100_up(struct nic *nic) { int err; if ((err = e100_rx_alloc_list(nic))) return err; if ((err = e100_alloc_cbs(nic))) goto err_rx_clean_list; if ((err = e100_hw_init(nic))) goto err_clean_cbs; e100_set_multicast_list(nic->netdev); e100_start_receiver(nic, NULL); mod_timer(&nic->watchdog, jiffies); if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, nic->netdev->name, nic->netdev))) goto err_no_irq; netif_wake_queue(nic->netdev); napi_enable(&nic->napi); /* enable ints _after_ enabling poll, preventing a race between * disable ints+schedule */ e100_enable_irq(nic); return 0; err_no_irq: del_timer_sync(&nic->watchdog); err_clean_cbs: e100_clean_cbs(nic); err_rx_clean_list: e100_rx_clean_list(nic); return err; } static void e100_down(struct nic *nic) { /* wait here for poll to complete */ napi_disable(&nic->napi); netif_stop_queue(nic->netdev); e100_hw_reset(nic); free_irq(nic->pdev->irq, nic->netdev); del_timer_sync(&nic->watchdog); netif_carrier_off(nic->netdev); e100_clean_cbs(nic); e100_rx_clean_list(nic); } static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct nic *nic = netdev_priv(netdev); /* Reset outside of interrupt context, to avoid request_irq * in interrupt context */ schedule_work(&nic->tx_timeout_task); } static void e100_tx_timeout_task(struct work_struct *work) { struct nic *nic = container_of(work, struct nic, tx_timeout_task); struct net_device *netdev = nic->netdev; netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); rtnl_lock(); if (netif_running(netdev)) { e100_down(netdev_priv(netdev)); e100_up(netdev_priv(netdev)); } rtnl_unlock(); } static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) { int err; struct sk_buff *skb; /* Use driver resources to perform internal MAC or PHY * loopback test. A single packet is prepared and transmitted * in loopback mode, and the test passes if the received * packet compares byte-for-byte to the transmitted packet. */ if ((err = e100_rx_alloc_list(nic))) return err; if ((err = e100_alloc_cbs(nic))) goto err_clean_rx; /* ICH PHY loopback is broken so do MAC loopback instead */ if (nic->flags & ich && loopback_mode == lb_phy) loopback_mode = lb_mac; nic->loopback = loopback_mode; if ((err = e100_hw_init(nic))) goto err_loopback_none; if (loopback_mode == lb_phy) mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, BMCR_LOOPBACK); e100_start_receiver(nic, NULL); if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { err = -ENOMEM; goto err_loopback_none; } skb_put(skb, ETH_DATA_LEN); memset(skb->data, 0xFF, ETH_DATA_LEN); e100_xmit_frame(skb, nic->netdev); msleep(10); dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr, RFD_BUF_LEN, DMA_BIDIRECTIONAL); if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), skb->data, ETH_DATA_LEN)) err = -EAGAIN; err_loopback_none: mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); nic->loopback = lb_none; e100_clean_cbs(nic); e100_hw_reset(nic); err_clean_rx: e100_rx_clean_list(nic); return err; } #define MII_LED_CONTROL 0x1B #define E100_82552_LED_OVERRIDE 0x19 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ static int e100_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd) { struct nic *nic = netdev_priv(netdev); mii_ethtool_get_link_ksettings(&nic->mii, cmd); return 0; } static int e100_set_link_ksettings(struct net_device *netdev, const struct ethtool_link_ksettings *cmd) { struct nic *nic = netdev_priv(netdev); int err; mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); err = mii_ethtool_set_link_ksettings(&nic->mii, cmd); e100_exec_cb(nic, NULL, e100_configure); return err; } static void e100_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { struct nic *nic = netdev_priv(netdev); strscpy(info->driver, DRV_NAME, sizeof(info->driver)); strscpy(info->bus_info, pci_name(nic->pdev), sizeof(info->bus_info)); } #define E100_PHY_REGS 0x1D static int e100_get_regs_len(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); /* We know the number of registers, and the size of the dump buffer. * Calculate the total size in bytes. */ return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf); } static void e100_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) { struct nic *nic = netdev_priv(netdev); u32 *buff = p; int i; regs->version = (1 << 24) | nic->pdev->revision; buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | ioread8(&nic->csr->scb.cmd_lo) << 16 | ioread16(&nic->csr->scb.status); for (i = 0; i < E100_PHY_REGS; i++) /* Note that we read the registers in reverse order. This * ordering is the ABI apparently used by ethtool and other * applications. */ buff[1 + i] = mdio_read(netdev, nic->mii.phy_id, E100_PHY_REGS - 1 - i); memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); e100_exec_cb(nic, NULL, e100_dump); msleep(10); memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf, sizeof(nic->mem->dump_buf)); } static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct nic *nic = netdev_priv(netdev); wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; } static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct nic *nic = netdev_priv(netdev); if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || !device_can_wakeup(&nic->pdev->dev)) return -EOPNOTSUPP; if (wol->wolopts) nic->flags |= wol_magic; else nic->flags &= ~wol_magic; device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); e100_exec_cb(nic, NULL, e100_configure); return 0; } static u32 e100_get_msglevel(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return nic->msg_enable; } static void e100_set_msglevel(struct net_device *netdev, u32 value) { struct nic *nic = netdev_priv(netdev); nic->msg_enable = value; } static int e100_nway_reset(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return mii_nway_restart(&nic->mii); } static u32 e100_get_link(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return mii_link_ok(&nic->mii); } static int e100_get_eeprom_len(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return nic->eeprom_wc << 1; } #define E100_EEPROM_MAGIC 0x1234 static int e100_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct nic *nic = netdev_priv(netdev); eeprom->magic = E100_EEPROM_MAGIC; memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); return 0; } static int e100_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct nic *nic = netdev_priv(netdev); if (eeprom->magic != E100_EEPROM_MAGIC) return -EINVAL; memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); return e100_eeprom_save(nic, eeprom->offset >> 1, (eeprom->len >> 1) + 1); } static void e100_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct nic *nic = netdev_priv(netdev); struct param_range *rfds = &nic->params.rfds; struct param_range *cbs = &nic->params.cbs; ring->rx_max_pending = rfds->max; ring->tx_max_pending = cbs->max; ring->rx_pending = rfds->count; ring->tx_pending = cbs->count; } static int e100_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct nic *nic = netdev_priv(netdev); struct param_range *rfds = &nic->params.rfds; struct param_range *cbs = &nic->params.cbs; if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) return -EINVAL; if (netif_running(netdev)) e100_down(nic); rfds->count = max(ring->rx_pending, rfds->min); rfds->count = min(rfds->count, rfds->max); cbs->count = max(ring->tx_pending, cbs->min); cbs->count = min(cbs->count, cbs->max); netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", rfds->count, cbs->count); if (netif_running(netdev)) e100_up(nic); return 0; } static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { "Link test (on/offline)", "Eeprom test (on/offline)", "Self test (offline)", "Mac loopback (offline)", "Phy loopback (offline)", }; #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) static void e100_diag_test(struct net_device *netdev, struct ethtool_test *test, u64 *data) { struct ethtool_cmd cmd; struct nic *nic = netdev_priv(netdev); int i; memset(data, 0, E100_TEST_LEN * sizeof(u64)); data[0] = !mii_link_ok(&nic->mii); data[1] = e100_eeprom_load(nic); if (test->flags & ETH_TEST_FL_OFFLINE) { /* save speed, duplex & autoneg settings */ mii_ethtool_gset(&nic->mii, &cmd); if (netif_running(netdev)) e100_down(nic); data[2] = e100_self_test(nic); data[3] = e100_loopback_test(nic, lb_mac); data[4] = e100_loopback_test(nic, lb_phy); /* restore speed, duplex & autoneg settings */ mii_ethtool_sset(&nic->mii, &cmd); if (netif_running(netdev)) e100_up(nic); } for (i = 0; i < E100_TEST_LEN; i++) test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; msleep_interruptible(4 * 1000); } static int e100_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state) { struct nic *nic = netdev_priv(netdev); enum led_state { led_on = 0x01, led_off = 0x04, led_on_559 = 0x05, led_on_557 = 0x07, }; u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : MII_LED_CONTROL; u16 leds = 0; switch (state) { case ETHTOOL_ID_ACTIVE: return 2; case ETHTOOL_ID_ON: leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON : (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; break; case ETHTOOL_ID_OFF: leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off; break; case ETHTOOL_ID_INACTIVE: break; } mdio_write(netdev, nic->mii.phy_id, led_reg, leds); return 0; } static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", "rx_length_errors", "rx_over_errors", "rx_crc_errors", "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", "tx_heartbeat_errors", "tx_window_errors", /* device-specific stats */ "tx_deferred", "tx_single_collisions", "tx_multi_collisions", "tx_flow_control_pause", "rx_flow_control_pause", "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", "rx_short_frame_errors", "rx_over_length_errors", }; #define E100_NET_STATS_LEN 21 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) static int e100_get_sset_count(struct net_device *netdev, int sset) { switch (sset) { case ETH_SS_TEST: return E100_TEST_LEN; case ETH_SS_STATS: return E100_STATS_LEN; default: return -EOPNOTSUPP; } } static void e100_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 *data) { struct nic *nic = netdev_priv(netdev); int i; for (i = 0; i < E100_NET_STATS_LEN; i++) data[i] = ((unsigned long *)&netdev->stats)[i]; data[i++] = nic->tx_deferred; data[i++] = nic->tx_single_collisions; data[i++] = nic->tx_multiple_collisions; data[i++] = nic->tx_fc_pause; data[i++] = nic->rx_fc_pause; data[i++] = nic->rx_fc_unsupported; data[i++] = nic->tx_tco_frames; data[i++] = nic->rx_tco_frames; data[i++] = nic->rx_short_frame_errors; data[i++] = nic->rx_over_length_errors; } static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { switch (stringset) { case ETH_SS_TEST: memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test)); break; case ETH_SS_STATS: memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats)); break; } } static const struct ethtool_ops e100_ethtool_ops = { .get_drvinfo = e100_get_drvinfo, .get_regs_len = e100_get_regs_len, .get_regs = e100_get_regs, .get_wol = e100_get_wol, .set_wol = e100_set_wol, .get_msglevel = e100_get_msglevel, .set_msglevel = e100_set_msglevel, .nway_reset = e100_nway_reset, .get_link = e100_get_link, .get_eeprom_len = e100_get_eeprom_len, .get_eeprom = e100_get_eeprom, .set_eeprom = e100_set_eeprom, .get_ringparam = e100_get_ringparam, .set_ringparam = e100_set_ringparam, .self_test = e100_diag_test, .get_strings = e100_get_strings, .set_phys_id = e100_set_phys_id, .get_ethtool_stats = e100_get_ethtool_stats, .get_sset_count = e100_get_sset_count, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = e100_get_link_ksettings, .set_link_ksettings = e100_set_link_ksettings, }; static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct nic *nic = netdev_priv(netdev); return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); } static int e100_alloc(struct nic *nic) { nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem), &nic->dma_addr, GFP_KERNEL); return nic->mem ? 0 : -ENOMEM; } static void e100_free(struct nic *nic) { if (nic->mem) { dma_free_coherent(&nic->pdev->dev, sizeof(struct mem), nic->mem, nic->dma_addr); nic->mem = NULL; } } static int e100_open(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); int err = 0; netif_carrier_off(netdev); if ((err = e100_up(nic))) netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); return err; } static int e100_close(struct net_device *netdev) { e100_down(netdev_priv(netdev)); return 0; } static int e100_set_features(struct net_device *netdev, netdev_features_t features) { struct nic *nic = netdev_priv(netdev); netdev_features_t changed = features ^ netdev->features; if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL))) return 0; netdev->features = features; e100_exec_cb(nic, NULL, e100_configure); return 1; } static const struct net_device_ops e100_netdev_ops = { .ndo_open = e100_open, .ndo_stop = e100_close, .ndo_start_xmit = e100_xmit_frame, .ndo_validate_addr = eth_validate_addr, .ndo_set_rx_mode = e100_set_multicast_list, .ndo_set_mac_address = e100_set_mac_address, .ndo_eth_ioctl = e100_do_ioctl, .ndo_tx_timeout = e100_tx_timeout, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = e100_netpoll, #endif .ndo_set_features = e100_set_features, }; static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct nic *nic; int err; if (!(netdev = alloc_etherdev(sizeof(struct nic)))) return -ENOMEM; netdev->hw_features |= NETIF_F_RXFCS; netdev->priv_flags |= IFF_SUPP_NOFCS; netdev->hw_features |= NETIF_F_RXALL; netdev->netdev_ops = &e100_netdev_ops; netdev->ethtool_ops = &e100_ethtool_ops; netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); nic = netdev_priv(netdev); netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); nic->netdev = netdev; nic->pdev = pdev; nic->msg_enable = (1 << debug) - 1; nic->mdio_ctrl = mdio_ctrl_hw; pci_set_drvdata(pdev, netdev); if ((err = pci_enable_device(pdev))) { netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); goto err_out_free_dev; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); err = -ENODEV; goto err_out_disable_pdev; } if ((err = pci_request_regions(pdev, DRV_NAME))) { netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); goto err_out_disable_pdev; } if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) { netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); goto err_out_free_res; } SET_NETDEV_DEV(netdev, &pdev->dev); if (use_io) netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); if (!nic->csr) { netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); err = -ENOMEM; goto err_out_free_res; } if (ent->driver_data) nic->flags |= ich; else nic->flags &= ~ich; e100_get_defaults(nic); /* D100 MAC doesn't allow rx of vlan packets with normal MTU */ if (nic->mac < mac_82558_D101_A4) netdev->features |= NETIF_F_VLAN_CHALLENGED; /* locks must be initialized before calling hw_reset */ spin_lock_init(&nic->cb_lock); spin_lock_init(&nic->cmd_lock); spin_lock_init(&nic->mdio_lock); /* Reset the device before pci_set_master() in case device is in some * funky state and has an interrupt pending - hint: we don't have the * interrupt handler registered yet. */ e100_hw_reset(nic); pci_set_master(pdev); timer_setup(&nic->watchdog, e100_watchdog, 0); INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); if ((err = e100_alloc(nic))) { netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); goto err_out_iounmap; } if ((err = e100_eeprom_load(nic))) goto err_out_free; e100_phy_init(nic); eth_hw_addr_set(netdev, (u8 *)nic->eeprom); if (!is_valid_ether_addr(netdev->dev_addr)) { if (!eeprom_bad_csum_allow) { netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); err = -EAGAIN; goto err_out_free; } else { netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); } } /* Wol magic packet can be enabled from eeprom */ if ((nic->mac >= mac_82558_D101_A4) && (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) { nic->flags |= wol_magic; device_set_wakeup_enable(&pdev->dev, true); } /* ack any pending wake events, disable PME */ pci_pme_active(pdev, false); strcpy(netdev->name, "eth%d"); if ((err = register_netdev(netdev))) { netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n"); goto err_out_free; } nic->cbs_pool = dma_pool_create(netdev->name, &nic->pdev->dev, nic->params.cbs.max * sizeof(struct cb), sizeof(u32), 0); if (!nic->cbs_pool) { netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n"); err = -ENOMEM; goto err_out_pool; } netif_info(nic, probe, nic->netdev, "addr 0x%llx, irq %d, MAC addr %pM\n", (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), pdev->irq, netdev->dev_addr); return 0; err_out_pool: unregister_netdev(netdev); err_out_free: e100_free(nic); err_out_iounmap: pci_iounmap(pdev, nic->csr); err_out_free_res: pci_release_regions(pdev); err_out_disable_pdev: pci_disable_device(pdev); err_out_free_dev: free_netdev(netdev); return err; } static void e100_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); if (netdev) { struct nic *nic = netdev_priv(netdev); unregister_netdev(netdev); e100_free(nic); pci_iounmap(pdev, nic->csr); dma_pool_destroy(nic->cbs_pool); free_netdev(netdev); pci_release_regions(pdev); pci_disable_device(pdev); } } #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) { struct net_device *netdev = pci_get_drvdata(pdev); struct nic *nic = netdev_priv(netdev); netif_device_detach(netdev); if (netif_running(netdev)) e100_down(nic); if ((nic->flags & wol_magic) | e100_asf(nic)) { /* enable reverse auto-negotiation */ if (nic->phy == phy_82552_v) { u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, E100_82552_SMARTSPEED); mdio_write(netdev, nic->mii.phy_id, E100_82552_SMARTSPEED, smartspeed | E100_82552_REV_ANEG | E100_82552_ANEG_NOW); } *enable_wake = true; } else { *enable_wake = false; } pci_disable_device(pdev); } static int __e100_power_off(struct pci_dev *pdev, bool wake) { if (wake) return pci_prepare_to_sleep(pdev); pci_wake_from_d3(pdev, false); pci_set_power_state(pdev, PCI_D3hot); return 0; } static int __maybe_unused e100_suspend(struct device *dev_d) { bool wake; __e100_shutdown(to_pci_dev(dev_d), &wake); return 0; } static int __maybe_unused e100_resume(struct device *dev_d) { struct net_device *netdev = dev_get_drvdata(dev_d); struct nic *nic = netdev_priv(netdev); int err; err = pci_enable_device(to_pci_dev(dev_d)); if (err) { netdev_err(netdev, "Resume cannot enable PCI device, aborting\n"); return err; } pci_set_master(to_pci_dev(dev_d)); /* disable reverse auto-negotiation */ if (nic->phy == phy_82552_v) { u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, E100_82552_SMARTSPEED); mdio_write(netdev, nic->mii.phy_id, E100_82552_SMARTSPEED, smartspeed & ~(E100_82552_REV_ANEG)); } if (netif_running(netdev)) e100_up(nic); netif_device_attach(netdev); return 0; } static void e100_shutdown(struct pci_dev *pdev) { bool wake; __e100_shutdown(pdev, &wake); if (system_state == SYSTEM_POWER_OFF) __e100_power_off(pdev, wake); } /* ------------------ PCI Error Recovery infrastructure -------------- */ /** * e100_io_error_detected - called when PCI error is detected. * @pdev: Pointer to PCI device * @state: The current pci connection state */ static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct nic *nic = netdev_priv(netdev); netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (netif_running(netdev)) e100_down(nic); pci_disable_device(pdev); /* Request a slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /** * e100_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch. */ static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct nic *nic = netdev_priv(netdev); if (pci_enable_device(pdev)) { pr_err("Cannot re-enable PCI device after reset\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); /* Only one device per card can do a reset */ if (0 != PCI_FUNC(pdev->devfn)) return PCI_ERS_RESULT_RECOVERED; e100_hw_reset(nic); e100_phy_init(nic); return PCI_ERS_RESULT_RECOVERED; } /** * e100_io_resume - resume normal operations * @pdev: Pointer to PCI device * * Resume normal operations after an error recovery * sequence has been completed. */ static void e100_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct nic *nic = netdev_priv(netdev); /* ack any pending wake events, disable PME */ pci_enable_wake(pdev, PCI_D0, 0); netif_device_attach(netdev); if (netif_running(netdev)) { e100_open(netdev); mod_timer(&nic->watchdog, jiffies); } } static const struct pci_error_handlers e100_err_handler = { .error_detected = e100_io_error_detected, .slot_reset = e100_io_slot_reset, .resume = e100_io_resume, }; static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume); static struct pci_driver e100_driver = { .name = DRV_NAME, .id_table = e100_id_table, .probe = e100_probe, .remove = e100_remove, /* Power Management hooks */ .driver.pm = &e100_pm_ops, .shutdown = e100_shutdown, .err_handler = &e100_err_handler, }; static int __init e100_init_module(void) { if (((1 << debug) - 1) & NETIF_MSG_DRV) { pr_info("%s\n", DRV_DESCRIPTION); pr_info("%s\n", DRV_COPYRIGHT); } return pci_register_driver(&e100_driver); } static void __exit e100_cleanup_module(void) { pci_unregister_driver(&e100_driver); } module_init(e100_init_module); module_exit(e100_cleanup_module); |