Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 | /* Copyright (c) 2018, Mellanox Technologies All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <net/tls.h> #include <crypto/aead.h> #include <crypto/scatterwalk.h> #include <net/ip6_checksum.h> #include "tls.h" static void chain_to_walk(struct scatterlist *sg, struct scatter_walk *walk) { struct scatterlist *src = walk->sg; int diff = walk->offset - src->offset; sg_set_page(sg, sg_page(src), src->length - diff, walk->offset); scatterwalk_crypto_chain(sg, sg_next(src), 2); } static int tls_enc_record(struct aead_request *aead_req, struct crypto_aead *aead, char *aad, char *iv, __be64 rcd_sn, struct scatter_walk *in, struct scatter_walk *out, int *in_len, struct tls_prot_info *prot) { unsigned char buf[TLS_HEADER_SIZE + MAX_IV_SIZE]; const struct tls_cipher_size_desc *cipher_sz; struct scatterlist sg_in[3]; struct scatterlist sg_out[3]; unsigned int buf_size; u16 len; int rc; switch (prot->cipher_type) { case TLS_CIPHER_AES_GCM_128: case TLS_CIPHER_AES_GCM_256: break; default: return -EINVAL; } cipher_sz = &tls_cipher_size_desc[prot->cipher_type]; buf_size = TLS_HEADER_SIZE + cipher_sz->iv; len = min_t(int, *in_len, buf_size); scatterwalk_copychunks(buf, in, len, 0); scatterwalk_copychunks(buf, out, len, 1); *in_len -= len; if (!*in_len) return 0; scatterwalk_pagedone(in, 0, 1); scatterwalk_pagedone(out, 1, 1); len = buf[4] | (buf[3] << 8); len -= cipher_sz->iv; tls_make_aad(aad, len - cipher_sz->tag, (char *)&rcd_sn, buf[0], prot); memcpy(iv + cipher_sz->salt, buf + TLS_HEADER_SIZE, cipher_sz->iv); sg_init_table(sg_in, ARRAY_SIZE(sg_in)); sg_init_table(sg_out, ARRAY_SIZE(sg_out)); sg_set_buf(sg_in, aad, TLS_AAD_SPACE_SIZE); sg_set_buf(sg_out, aad, TLS_AAD_SPACE_SIZE); chain_to_walk(sg_in + 1, in); chain_to_walk(sg_out + 1, out); *in_len -= len; if (*in_len < 0) { *in_len += cipher_sz->tag; /* the input buffer doesn't contain the entire record. * trim len accordingly. The resulting authentication tag * will contain garbage, but we don't care, so we won't * include any of it in the output skb * Note that we assume the output buffer length * is larger then input buffer length + tag size */ if (*in_len < 0) len += *in_len; *in_len = 0; } if (*in_len) { scatterwalk_copychunks(NULL, in, len, 2); scatterwalk_pagedone(in, 0, 1); scatterwalk_copychunks(NULL, out, len, 2); scatterwalk_pagedone(out, 1, 1); } len -= cipher_sz->tag; aead_request_set_crypt(aead_req, sg_in, sg_out, len, iv); rc = crypto_aead_encrypt(aead_req); return rc; } static void tls_init_aead_request(struct aead_request *aead_req, struct crypto_aead *aead) { aead_request_set_tfm(aead_req, aead); aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); } static struct aead_request *tls_alloc_aead_request(struct crypto_aead *aead, gfp_t flags) { unsigned int req_size = sizeof(struct aead_request) + crypto_aead_reqsize(aead); struct aead_request *aead_req; aead_req = kzalloc(req_size, flags); if (aead_req) tls_init_aead_request(aead_req, aead); return aead_req; } static int tls_enc_records(struct aead_request *aead_req, struct crypto_aead *aead, struct scatterlist *sg_in, struct scatterlist *sg_out, char *aad, char *iv, u64 rcd_sn, int len, struct tls_prot_info *prot) { struct scatter_walk out, in; int rc; scatterwalk_start(&in, sg_in); scatterwalk_start(&out, sg_out); do { rc = tls_enc_record(aead_req, aead, aad, iv, cpu_to_be64(rcd_sn), &in, &out, &len, prot); rcd_sn++; } while (rc == 0 && len); scatterwalk_done(&in, 0, 0); scatterwalk_done(&out, 1, 0); return rc; } /* Can't use icsk->icsk_af_ops->send_check here because the ip addresses * might have been changed by NAT. */ static void update_chksum(struct sk_buff *skb, int headln) { struct tcphdr *th = tcp_hdr(skb); int datalen = skb->len - headln; const struct ipv6hdr *ipv6h; const struct iphdr *iph; /* We only changed the payload so if we are using partial we don't * need to update anything. */ if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) return; skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); if (skb->sk->sk_family == AF_INET6) { ipv6h = ipv6_hdr(skb); th->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, datalen, IPPROTO_TCP, 0); } else { iph = ip_hdr(skb); th->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, datalen, IPPROTO_TCP, 0); } } static void complete_skb(struct sk_buff *nskb, struct sk_buff *skb, int headln) { struct sock *sk = skb->sk; int delta; skb_copy_header(nskb, skb); skb_put(nskb, skb->len); memcpy(nskb->data, skb->data, headln); nskb->destructor = skb->destructor; nskb->sk = sk; skb->destructor = NULL; skb->sk = NULL; update_chksum(nskb, headln); /* sock_efree means skb must gone through skb_orphan_partial() */ if (nskb->destructor == sock_efree) return; delta = nskb->truesize - skb->truesize; if (likely(delta < 0)) WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc)); else if (delta) refcount_add(delta, &sk->sk_wmem_alloc); } /* This function may be called after the user socket is already * closed so make sure we don't use anything freed during * tls_sk_proto_close here */ static int fill_sg_in(struct scatterlist *sg_in, struct sk_buff *skb, struct tls_offload_context_tx *ctx, u64 *rcd_sn, s32 *sync_size, int *resync_sgs) { int tcp_payload_offset = skb_tcp_all_headers(skb); int payload_len = skb->len - tcp_payload_offset; u32 tcp_seq = ntohl(tcp_hdr(skb)->seq); struct tls_record_info *record; unsigned long flags; int remaining; int i; spin_lock_irqsave(&ctx->lock, flags); record = tls_get_record(ctx, tcp_seq, rcd_sn); if (!record) { spin_unlock_irqrestore(&ctx->lock, flags); return -EINVAL; } *sync_size = tcp_seq - tls_record_start_seq(record); if (*sync_size < 0) { int is_start_marker = tls_record_is_start_marker(record); spin_unlock_irqrestore(&ctx->lock, flags); /* This should only occur if the relevant record was * already acked. In that case it should be ok * to drop the packet and avoid retransmission. * * There is a corner case where the packet contains * both an acked and a non-acked record. * We currently don't handle that case and rely * on TCP to retranmit a packet that doesn't contain * already acked payload. */ if (!is_start_marker) *sync_size = 0; return -EINVAL; } remaining = *sync_size; for (i = 0; remaining > 0; i++) { skb_frag_t *frag = &record->frags[i]; __skb_frag_ref(frag); sg_set_page(sg_in + i, skb_frag_page(frag), skb_frag_size(frag), skb_frag_off(frag)); remaining -= skb_frag_size(frag); if (remaining < 0) sg_in[i].length += remaining; } *resync_sgs = i; spin_unlock_irqrestore(&ctx->lock, flags); if (skb_to_sgvec(skb, &sg_in[i], tcp_payload_offset, payload_len) < 0) return -EINVAL; return 0; } static void fill_sg_out(struct scatterlist sg_out[3], void *buf, struct tls_context *tls_ctx, struct sk_buff *nskb, int tcp_payload_offset, int payload_len, int sync_size, void *dummy_buf) { const struct tls_cipher_size_desc *cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_send.info.cipher_type]; sg_set_buf(&sg_out[0], dummy_buf, sync_size); sg_set_buf(&sg_out[1], nskb->data + tcp_payload_offset, payload_len); /* Add room for authentication tag produced by crypto */ dummy_buf += sync_size; sg_set_buf(&sg_out[2], dummy_buf, cipher_sz->tag); } static struct sk_buff *tls_enc_skb(struct tls_context *tls_ctx, struct scatterlist sg_out[3], struct scatterlist *sg_in, struct sk_buff *skb, s32 sync_size, u64 rcd_sn) { struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); int tcp_payload_offset = skb_tcp_all_headers(skb); int payload_len = skb->len - tcp_payload_offset; const struct tls_cipher_size_desc *cipher_sz; void *buf, *iv, *aad, *dummy_buf, *salt; struct aead_request *aead_req; struct sk_buff *nskb = NULL; int buf_len; aead_req = tls_alloc_aead_request(ctx->aead_send, GFP_ATOMIC); if (!aead_req) return NULL; switch (tls_ctx->crypto_send.info.cipher_type) { case TLS_CIPHER_AES_GCM_128: salt = tls_ctx->crypto_send.aes_gcm_128.salt; break; case TLS_CIPHER_AES_GCM_256: salt = tls_ctx->crypto_send.aes_gcm_256.salt; break; default: goto free_req; } cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_send.info.cipher_type]; buf_len = cipher_sz->salt + cipher_sz->iv + TLS_AAD_SPACE_SIZE + sync_size + cipher_sz->tag; buf = kmalloc(buf_len, GFP_ATOMIC); if (!buf) goto free_req; iv = buf; memcpy(iv, salt, cipher_sz->salt); aad = buf + cipher_sz->salt + cipher_sz->iv; dummy_buf = aad + TLS_AAD_SPACE_SIZE; nskb = alloc_skb(skb_headroom(skb) + skb->len, GFP_ATOMIC); if (!nskb) goto free_buf; skb_reserve(nskb, skb_headroom(skb)); fill_sg_out(sg_out, buf, tls_ctx, nskb, tcp_payload_offset, payload_len, sync_size, dummy_buf); if (tls_enc_records(aead_req, ctx->aead_send, sg_in, sg_out, aad, iv, rcd_sn, sync_size + payload_len, &tls_ctx->prot_info) < 0) goto free_nskb; complete_skb(nskb, skb, tcp_payload_offset); /* validate_xmit_skb_list assumes that if the skb wasn't segmented * nskb->prev will point to the skb itself */ nskb->prev = nskb; free_buf: kfree(buf); free_req: kfree(aead_req); return nskb; free_nskb: kfree_skb(nskb); nskb = NULL; goto free_buf; } static struct sk_buff *tls_sw_fallback(struct sock *sk, struct sk_buff *skb) { int tcp_payload_offset = skb_tcp_all_headers(skb); struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); int payload_len = skb->len - tcp_payload_offset; struct scatterlist *sg_in, sg_out[3]; struct sk_buff *nskb = NULL; int sg_in_max_elements; int resync_sgs = 0; s32 sync_size = 0; u64 rcd_sn; /* worst case is: * MAX_SKB_FRAGS in tls_record_info * MAX_SKB_FRAGS + 1 in SKB head and frags. */ sg_in_max_elements = 2 * MAX_SKB_FRAGS + 1; if (!payload_len) return skb; sg_in = kmalloc_array(sg_in_max_elements, sizeof(*sg_in), GFP_ATOMIC); if (!sg_in) goto free_orig; sg_init_table(sg_in, sg_in_max_elements); sg_init_table(sg_out, ARRAY_SIZE(sg_out)); if (fill_sg_in(sg_in, skb, ctx, &rcd_sn, &sync_size, &resync_sgs)) { /* bypass packets before kernel TLS socket option was set */ if (sync_size < 0 && payload_len <= -sync_size) nskb = skb_get(skb); goto put_sg; } nskb = tls_enc_skb(tls_ctx, sg_out, sg_in, skb, sync_size, rcd_sn); put_sg: while (resync_sgs) put_page(sg_page(&sg_in[--resync_sgs])); kfree(sg_in); free_orig: if (nskb) consume_skb(skb); else kfree_skb(skb); return nskb; } struct sk_buff *tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, struct sk_buff *skb) { if (dev == rcu_dereference_bh(tls_get_ctx(sk)->netdev) || netif_is_bond_master(dev)) return skb; return tls_sw_fallback(sk, skb); } EXPORT_SYMBOL_GPL(tls_validate_xmit_skb); struct sk_buff *tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev, struct sk_buff *skb) { return tls_sw_fallback(sk, skb); } struct sk_buff *tls_encrypt_skb(struct sk_buff *skb) { return tls_sw_fallback(skb->sk, skb); } EXPORT_SYMBOL_GPL(tls_encrypt_skb); int tls_sw_fallback_init(struct sock *sk, struct tls_offload_context_tx *offload_ctx, struct tls_crypto_info *crypto_info) { const struct tls_cipher_size_desc *cipher_sz; const u8 *key; int rc; offload_ctx->aead_send = crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(offload_ctx->aead_send)) { rc = PTR_ERR(offload_ctx->aead_send); pr_err_ratelimited("crypto_alloc_aead failed rc=%d\n", rc); offload_ctx->aead_send = NULL; goto err_out; } switch (crypto_info->cipher_type) { case TLS_CIPHER_AES_GCM_128: key = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->key; break; case TLS_CIPHER_AES_GCM_256: key = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->key; break; default: rc = -EINVAL; goto free_aead; } cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type]; rc = crypto_aead_setkey(offload_ctx->aead_send, key, cipher_sz->key); if (rc) goto free_aead; rc = crypto_aead_setauthsize(offload_ctx->aead_send, cipher_sz->tag); if (rc) goto free_aead; return 0; free_aead: crypto_free_aead(offload_ctx->aead_send); err_out: return rc; } |