Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2014-2015 Broadcom Corporation * Copyright 2014 Linaro Limited */ #include <linux/cpumask.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/io.h> #include <linux/irqchip/irq-bcm2836.h> #include <linux/jiffies.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/smp.h> #include <asm/cacheflush.h> #include <asm/smp.h> #include <asm/smp_plat.h> #include <asm/smp_scu.h> #include "platsmp.h" /* Size of mapped Cortex A9 SCU address space */ #define CORTEX_A9_SCU_SIZE 0x58 #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */ #define BOOT_ADDR_CPUID_MASK 0x3 /* Name of device node property defining secondary boot register location */ #define OF_SECONDARY_BOOT "secondary-boot-reg" #define MPIDR_CPUID_BITMASK 0x3 /* * Enable the Cortex A9 Snoop Control Unit * * By the time this is called we already know there are multiple * cores present. We assume we're running on a Cortex A9 processor, * so any trouble getting the base address register or getting the * SCU base is a problem. * * Return 0 if successful or an error code otherwise. */ static int __init scu_a9_enable(void) { unsigned long config_base; void __iomem *scu_base; if (!scu_a9_has_base()) { pr_err("no configuration base address register!\n"); return -ENXIO; } /* Config base address register value is zero for uniprocessor */ config_base = scu_a9_get_base(); if (!config_base) { pr_err("hardware reports only one core\n"); return -ENOENT; } scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE); if (!scu_base) { pr_err("failed to remap config base (%lu/%u) for SCU\n", config_base, CORTEX_A9_SCU_SIZE); return -ENOMEM; } scu_enable(scu_base); iounmap(scu_base); /* That's the last we'll need of this */ return 0; } static u32 secondary_boot_addr_for(unsigned int cpu) { u32 secondary_boot_addr = 0; struct device_node *cpu_node = of_get_cpu_node(cpu, NULL); if (!cpu_node) { pr_err("Failed to find device tree node for CPU%u\n", cpu); return 0; } if (of_property_read_u32(cpu_node, OF_SECONDARY_BOOT, &secondary_boot_addr)) pr_err("required secondary boot register not specified for CPU%u\n", cpu); of_node_put(cpu_node); return secondary_boot_addr; } static int nsp_write_lut(unsigned int cpu) { void __iomem *sku_rom_lut; phys_addr_t secondary_startup_phy; const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); if (!secondary_boot_addr) return -EINVAL; sku_rom_lut = ioremap((phys_addr_t)secondary_boot_addr, sizeof(phys_addr_t)); if (!sku_rom_lut) { pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu); return -ENOMEM; } secondary_startup_phy = __pa_symbol(secondary_startup); BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX); writel_relaxed(secondary_startup_phy, sku_rom_lut); /* Ensure the write is visible to the secondary core */ smp_wmb(); iounmap(sku_rom_lut); return 0; } static void __init bcm_smp_prepare_cpus(unsigned int max_cpus) { const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 }; /* Enable the SCU on Cortex A9 based SoCs */ if (scu_a9_enable()) { /* Update the CPU present map to reflect uniprocessor mode */ pr_warn("failed to enable A9 SCU - disabling SMP\n"); init_cpu_present(&only_cpu_0); } } /* * The ROM code has the secondary cores looping, waiting for an event. * When an event occurs each core examines the bottom two bits of the * secondary boot register. When a core finds those bits contain its * own core id, it performs initialization, including computing its boot * address by clearing the boot register value's bottom two bits. The * core signals that it is beginning its execution by writing its boot * address back to the secondary boot register, and finally jumps to * that address. * * So to start a core executing we need to: * - Encode the (hardware) CPU id with the bottom bits of the secondary * start address. * - Write that value into the secondary boot register. * - Generate an event to wake up the secondary CPU(s). * - Wait for the secondary boot register to be re-written, which * indicates the secondary core has started. */ static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle) { void __iomem *boot_reg; phys_addr_t boot_func; u64 start_clock; u32 cpu_id; u32 boot_val; bool timeout = false; const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); cpu_id = cpu_logical_map(cpu); if (cpu_id & ~BOOT_ADDR_CPUID_MASK) { pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK); return -EINVAL; } if (!secondary_boot_addr) return -EINVAL; boot_reg = ioremap((phys_addr_t)secondary_boot_addr, sizeof(phys_addr_t)); if (!boot_reg) { pr_err("unable to map boot register for cpu %u\n", cpu_id); return -ENOMEM; } /* * Secondary cores will start in secondary_startup(), * defined in "arch/arm/kernel/head.S" */ boot_func = __pa_symbol(secondary_startup); BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK); BUG_ON(boot_func > (phys_addr_t)U32_MAX); /* The core to start is encoded in the low bits */ boot_val = (u32)boot_func | cpu_id; writel_relaxed(boot_val, boot_reg); sev(); /* The low bits will be cleared once the core has started */ start_clock = local_clock(); while (!timeout && readl_relaxed(boot_reg) == boot_val) timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS; iounmap(boot_reg); if (!timeout) return 0; pr_err("timeout waiting for cpu %u to start\n", cpu_id); return -ENXIO; } /* Cluster Dormant Control command to bring CPU into a running state */ #define CDC_CMD 6 #define CDC_CMD_OFFSET 0 #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu)) /* * BCM23550 has a Cluster Dormant Control block that keeps the core in * idle state. A command needs to be sent to the block to bring the CPU * into running state. */ static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle) { void __iomem *cdc_base; struct device_node *dn; char *name; int ret; /* Make sure a CDC node exists before booting the * secondary core. */ name = "brcm,bcm23550-cdc"; dn = of_find_compatible_node(NULL, NULL, name); if (!dn) { pr_err("unable to find cdc node\n"); return -ENODEV; } cdc_base = of_iomap(dn, 0); of_node_put(dn); if (!cdc_base) { pr_err("unable to remap cdc base register\n"); return -ENOMEM; } /* Boot the secondary core */ ret = kona_boot_secondary(cpu, idle); if (ret) goto out; /* Bring this CPU to RUN state so that nIRQ nFIQ * signals are unblocked. */ writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu)); out: iounmap(cdc_base); return ret; } static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle) { int ret; /* * After wake up, secondary core branches to the startup * address programmed at SKU ROM LUT location. */ ret = nsp_write_lut(cpu); if (ret) { pr_err("unable to write startup addr to SKU ROM LUT\n"); goto out; } /* Send a CPU wakeup interrupt to the secondary core */ arch_send_wakeup_ipi_mask(cpumask_of(cpu)); out: return ret; } static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle) { void __iomem *intc_base; struct device_node *dn; char *name; name = "brcm,bcm2836-l1-intc"; dn = of_find_compatible_node(NULL, NULL, name); if (!dn) { pr_err("unable to find intc node\n"); return -ENODEV; } intc_base = of_iomap(dn, 0); of_node_put(dn); if (!intc_base) { pr_err("unable to remap intc base register\n"); return -ENOMEM; } writel(virt_to_phys(secondary_startup), intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu); dsb(sy); sev(); iounmap(intc_base); return 0; } static const struct smp_operations kona_smp_ops __initconst = { .smp_prepare_cpus = bcm_smp_prepare_cpus, .smp_boot_secondary = kona_boot_secondary, }; CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method", &kona_smp_ops); static const struct smp_operations bcm23550_smp_ops __initconst = { .smp_boot_secondary = bcm23550_boot_secondary, }; CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550", &bcm23550_smp_ops); static const struct smp_operations nsp_smp_ops __initconst = { .smp_prepare_cpus = bcm_smp_prepare_cpus, .smp_boot_secondary = nsp_boot_secondary, }; CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops); const struct smp_operations bcm2836_smp_ops __initconst = { .smp_boot_secondary = bcm2836_boot_secondary, }; CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops); |