Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
/*
 * Copyright 2018 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 */
#include <linux/string.h>
#include <linux/acpi.h>

#include <drm/drm_probe_helper.h>
#include <drm/amdgpu_drm.h>
#include "dm_services.h"
#include "amdgpu.h"
#include "amdgpu_dm.h"
#include "amdgpu_dm_irq.h"
#include "amdgpu_pm.h"
#include "dm_pp_smu.h"

bool dm_pp_apply_display_requirements(
		const struct dc_context *ctx,
		const struct dm_pp_display_configuration *pp_display_cfg)
{
	struct amdgpu_device *adev = ctx->driver_context;
	int i;

	if (adev->pm.dpm_enabled) {

		memset(&adev->pm.pm_display_cfg, 0,
				sizeof(adev->pm.pm_display_cfg));

		adev->pm.pm_display_cfg.cpu_cc6_disable =
			pp_display_cfg->cpu_cc6_disable;

		adev->pm.pm_display_cfg.cpu_pstate_disable =
			pp_display_cfg->cpu_pstate_disable;

		adev->pm.pm_display_cfg.cpu_pstate_separation_time =
			pp_display_cfg->cpu_pstate_separation_time;

		adev->pm.pm_display_cfg.nb_pstate_switch_disable =
			pp_display_cfg->nb_pstate_switch_disable;

		adev->pm.pm_display_cfg.num_display =
				pp_display_cfg->display_count;
		adev->pm.pm_display_cfg.num_path_including_non_display =
				pp_display_cfg->display_count;

		adev->pm.pm_display_cfg.min_core_set_clock =
				pp_display_cfg->min_engine_clock_khz/10;
		adev->pm.pm_display_cfg.min_core_set_clock_in_sr =
				pp_display_cfg->min_engine_clock_deep_sleep_khz/10;
		adev->pm.pm_display_cfg.min_mem_set_clock =
				pp_display_cfg->min_memory_clock_khz/10;

		adev->pm.pm_display_cfg.min_dcef_deep_sleep_set_clk =
				pp_display_cfg->min_engine_clock_deep_sleep_khz/10;
		adev->pm.pm_display_cfg.min_dcef_set_clk =
				pp_display_cfg->min_dcfclock_khz/10;

		adev->pm.pm_display_cfg.multi_monitor_in_sync =
				pp_display_cfg->all_displays_in_sync;
		adev->pm.pm_display_cfg.min_vblank_time =
				pp_display_cfg->avail_mclk_switch_time_us;

		adev->pm.pm_display_cfg.display_clk =
				pp_display_cfg->disp_clk_khz/10;

		adev->pm.pm_display_cfg.dce_tolerable_mclk_in_active_latency =
				pp_display_cfg->avail_mclk_switch_time_in_disp_active_us;

		adev->pm.pm_display_cfg.crtc_index = pp_display_cfg->crtc_index;
		adev->pm.pm_display_cfg.line_time_in_us =
				pp_display_cfg->line_time_in_us;

		adev->pm.pm_display_cfg.vrefresh = pp_display_cfg->disp_configs[0].v_refresh;
		adev->pm.pm_display_cfg.crossfire_display_index = -1;
		adev->pm.pm_display_cfg.min_bus_bandwidth = 0;

		for (i = 0; i < pp_display_cfg->display_count; i++) {
			const struct dm_pp_single_disp_config *dc_cfg =
						&pp_display_cfg->disp_configs[i];
			adev->pm.pm_display_cfg.displays[i].controller_id = dc_cfg->pipe_idx + 1;
		}

		amdgpu_dpm_display_configuration_change(adev, &adev->pm.pm_display_cfg);

		amdgpu_dpm_compute_clocks(adev);
	}

	return true;
}

static void get_default_clock_levels(
		enum dm_pp_clock_type clk_type,
		struct dm_pp_clock_levels *clks)
{
	uint32_t disp_clks_in_khz[6] = {
			300000, 400000, 496560, 626090, 685720, 757900 };
	uint32_t sclks_in_khz[6] = {
			300000, 360000, 423530, 514290, 626090, 720000 };
	uint32_t mclks_in_khz[2] = { 333000, 800000 };

	switch (clk_type) {
	case DM_PP_CLOCK_TYPE_DISPLAY_CLK:
		clks->num_levels = 6;
		memmove(clks->clocks_in_khz, disp_clks_in_khz,
				sizeof(disp_clks_in_khz));
		break;
	case DM_PP_CLOCK_TYPE_ENGINE_CLK:
		clks->num_levels = 6;
		memmove(clks->clocks_in_khz, sclks_in_khz,
				sizeof(sclks_in_khz));
		break;
	case DM_PP_CLOCK_TYPE_MEMORY_CLK:
		clks->num_levels = 2;
		memmove(clks->clocks_in_khz, mclks_in_khz,
				sizeof(mclks_in_khz));
		break;
	default:
		clks->num_levels = 0;
		break;
	}
}

static enum amd_pp_clock_type dc_to_pp_clock_type(
		enum dm_pp_clock_type dm_pp_clk_type)
{
	enum amd_pp_clock_type amd_pp_clk_type = 0;

	switch (dm_pp_clk_type) {
	case DM_PP_CLOCK_TYPE_DISPLAY_CLK:
		amd_pp_clk_type = amd_pp_disp_clock;
		break;
	case DM_PP_CLOCK_TYPE_ENGINE_CLK:
		amd_pp_clk_type = amd_pp_sys_clock;
		break;
	case DM_PP_CLOCK_TYPE_MEMORY_CLK:
		amd_pp_clk_type = amd_pp_mem_clock;
		break;
	case DM_PP_CLOCK_TYPE_DCEFCLK:
		amd_pp_clk_type  = amd_pp_dcef_clock;
		break;
	case DM_PP_CLOCK_TYPE_DCFCLK:
		amd_pp_clk_type = amd_pp_dcf_clock;
		break;
	case DM_PP_CLOCK_TYPE_PIXELCLK:
		amd_pp_clk_type = amd_pp_pixel_clock;
		break;
	case DM_PP_CLOCK_TYPE_FCLK:
		amd_pp_clk_type = amd_pp_f_clock;
		break;
	case DM_PP_CLOCK_TYPE_DISPLAYPHYCLK:
		amd_pp_clk_type = amd_pp_phy_clock;
		break;
	case DM_PP_CLOCK_TYPE_DPPCLK:
		amd_pp_clk_type = amd_pp_dpp_clock;
		break;
	default:
		DRM_ERROR("DM_PPLIB: invalid clock type: %d!\n",
				dm_pp_clk_type);
		break;
	}

	return amd_pp_clk_type;
}

static enum dm_pp_clocks_state pp_to_dc_powerlevel_state(
			enum PP_DAL_POWERLEVEL max_clocks_state)
{
	switch (max_clocks_state) {
	case PP_DAL_POWERLEVEL_0:
		return DM_PP_CLOCKS_DPM_STATE_LEVEL_0;
	case PP_DAL_POWERLEVEL_1:
		return DM_PP_CLOCKS_DPM_STATE_LEVEL_1;
	case PP_DAL_POWERLEVEL_2:
		return DM_PP_CLOCKS_DPM_STATE_LEVEL_2;
	case PP_DAL_POWERLEVEL_3:
		return DM_PP_CLOCKS_DPM_STATE_LEVEL_3;
	case PP_DAL_POWERLEVEL_4:
		return DM_PP_CLOCKS_DPM_STATE_LEVEL_4;
	case PP_DAL_POWERLEVEL_5:
		return DM_PP_CLOCKS_DPM_STATE_LEVEL_5;
	case PP_DAL_POWERLEVEL_6:
		return DM_PP_CLOCKS_DPM_STATE_LEVEL_6;
	case PP_DAL_POWERLEVEL_7:
		return DM_PP_CLOCKS_DPM_STATE_LEVEL_7;
	default:
		DRM_ERROR("DM_PPLIB: invalid powerlevel state: %d!\n",
				max_clocks_state);
		return DM_PP_CLOCKS_STATE_INVALID;
	}
}

static void pp_to_dc_clock_levels(
		const struct amd_pp_clocks *pp_clks,
		struct dm_pp_clock_levels *dc_clks,
		enum dm_pp_clock_type dc_clk_type)
{
	uint32_t i;

	if (pp_clks->count > DM_PP_MAX_CLOCK_LEVELS) {
		DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n",
				DC_DECODE_PP_CLOCK_TYPE(dc_clk_type),
				pp_clks->count,
				DM_PP_MAX_CLOCK_LEVELS);

		dc_clks->num_levels = DM_PP_MAX_CLOCK_LEVELS;
	} else
		dc_clks->num_levels = pp_clks->count;

	DRM_INFO("DM_PPLIB: values for %s clock\n",
			DC_DECODE_PP_CLOCK_TYPE(dc_clk_type));

	for (i = 0; i < dc_clks->num_levels; i++) {
		DRM_INFO("DM_PPLIB:\t %d\n", pp_clks->clock[i]);
		dc_clks->clocks_in_khz[i] = pp_clks->clock[i];
	}
}

static void pp_to_dc_clock_levels_with_latency(
		const struct pp_clock_levels_with_latency *pp_clks,
		struct dm_pp_clock_levels_with_latency *clk_level_info,
		enum dm_pp_clock_type dc_clk_type)
{
	uint32_t i;

	if (pp_clks->num_levels > DM_PP_MAX_CLOCK_LEVELS) {
		DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n",
				DC_DECODE_PP_CLOCK_TYPE(dc_clk_type),
				pp_clks->num_levels,
				DM_PP_MAX_CLOCK_LEVELS);

		clk_level_info->num_levels = DM_PP_MAX_CLOCK_LEVELS;
	} else
		clk_level_info->num_levels = pp_clks->num_levels;

	DRM_DEBUG("DM_PPLIB: values for %s clock\n",
			DC_DECODE_PP_CLOCK_TYPE(dc_clk_type));

	for (i = 0; i < clk_level_info->num_levels; i++) {
		DRM_DEBUG("DM_PPLIB:\t %d in kHz\n", pp_clks->data[i].clocks_in_khz);
		clk_level_info->data[i].clocks_in_khz = pp_clks->data[i].clocks_in_khz;
		clk_level_info->data[i].latency_in_us = pp_clks->data[i].latency_in_us;
	}
}

static void pp_to_dc_clock_levels_with_voltage(
		const struct pp_clock_levels_with_voltage *pp_clks,
		struct dm_pp_clock_levels_with_voltage *clk_level_info,
		enum dm_pp_clock_type dc_clk_type)
{
	uint32_t i;

	if (pp_clks->num_levels > DM_PP_MAX_CLOCK_LEVELS) {
		DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n",
				DC_DECODE_PP_CLOCK_TYPE(dc_clk_type),
				pp_clks->num_levels,
				DM_PP_MAX_CLOCK_LEVELS);

		clk_level_info->num_levels = DM_PP_MAX_CLOCK_LEVELS;
	} else
		clk_level_info->num_levels = pp_clks->num_levels;

	DRM_INFO("DM_PPLIB: values for %s clock\n",
			DC_DECODE_PP_CLOCK_TYPE(dc_clk_type));

	for (i = 0; i < clk_level_info->num_levels; i++) {
		DRM_INFO("DM_PPLIB:\t %d in kHz, %d in mV\n", pp_clks->data[i].clocks_in_khz,
			 pp_clks->data[i].voltage_in_mv);
		clk_level_info->data[i].clocks_in_khz = pp_clks->data[i].clocks_in_khz;
		clk_level_info->data[i].voltage_in_mv = pp_clks->data[i].voltage_in_mv;
	}
}

bool dm_pp_get_clock_levels_by_type(
		const struct dc_context *ctx,
		enum dm_pp_clock_type clk_type,
		struct dm_pp_clock_levels *dc_clks)
{
	struct amdgpu_device *adev = ctx->driver_context;
	struct amd_pp_clocks pp_clks = { 0 };
	struct amd_pp_simple_clock_info validation_clks = { 0 };
	uint32_t i;

	if (amdgpu_dpm_get_clock_by_type(adev,
		dc_to_pp_clock_type(clk_type), &pp_clks)) {
		/* Error in pplib. Provide default values. */
		get_default_clock_levels(clk_type, dc_clks);
		return true;
	}

	pp_to_dc_clock_levels(&pp_clks, dc_clks, clk_type);

	if (amdgpu_dpm_get_display_mode_validation_clks(adev, &validation_clks)) {
		/* Error in pplib. Provide default values. */
		DRM_INFO("DM_PPLIB: Warning: using default validation clocks!\n");
		validation_clks.engine_max_clock = 72000;
		validation_clks.memory_max_clock = 80000;
		validation_clks.level = 0;
	}

	DRM_INFO("DM_PPLIB: Validation clocks:\n");
	DRM_INFO("DM_PPLIB:    engine_max_clock: %d\n",
			validation_clks.engine_max_clock);
	DRM_INFO("DM_PPLIB:    memory_max_clock: %d\n",
			validation_clks.memory_max_clock);
	DRM_INFO("DM_PPLIB:    level           : %d\n",
			validation_clks.level);

	/* Translate 10 kHz to kHz. */
	validation_clks.engine_max_clock *= 10;
	validation_clks.memory_max_clock *= 10;

	/* Determine the highest non-boosted level from the Validation Clocks */
	if (clk_type == DM_PP_CLOCK_TYPE_ENGINE_CLK) {
		for (i = 0; i < dc_clks->num_levels; i++) {
			if (dc_clks->clocks_in_khz[i] > validation_clks.engine_max_clock) {
				/* This clock is higher the validation clock.
				 * Than means the previous one is the highest
				 * non-boosted one. */
				DRM_INFO("DM_PPLIB: reducing engine clock level from %d to %d\n",
						dc_clks->num_levels, i);
				dc_clks->num_levels = i > 0 ? i : 1;
				break;
			}
		}
	} else if (clk_type == DM_PP_CLOCK_TYPE_MEMORY_CLK) {
		for (i = 0; i < dc_clks->num_levels; i++) {
			if (dc_clks->clocks_in_khz[i] > validation_clks.memory_max_clock) {
				DRM_INFO("DM_PPLIB: reducing memory clock level from %d to %d\n",
						dc_clks->num_levels, i);
				dc_clks->num_levels = i > 0 ? i : 1;
				break;
			}
		}
	}

	return true;
}

bool dm_pp_get_clock_levels_by_type_with_latency(
	const struct dc_context *ctx,
	enum dm_pp_clock_type clk_type,
	struct dm_pp_clock_levels_with_latency *clk_level_info)
{
	struct amdgpu_device *adev = ctx->driver_context;
	struct pp_clock_levels_with_latency pp_clks = { 0 };
	int ret;

	ret = amdgpu_dpm_get_clock_by_type_with_latency(adev,
					dc_to_pp_clock_type(clk_type),
					&pp_clks);
	if (ret)
		return false;

	pp_to_dc_clock_levels_with_latency(&pp_clks, clk_level_info, clk_type);

	return true;
}

bool dm_pp_get_clock_levels_by_type_with_voltage(
	const struct dc_context *ctx,
	enum dm_pp_clock_type clk_type,
	struct dm_pp_clock_levels_with_voltage *clk_level_info)
{
	struct amdgpu_device *adev = ctx->driver_context;
	struct pp_clock_levels_with_voltage pp_clk_info = {0};
	int ret;

	ret = amdgpu_dpm_get_clock_by_type_with_voltage(adev,
					dc_to_pp_clock_type(clk_type),
					&pp_clk_info);
	if (ret)
		return false;

	pp_to_dc_clock_levels_with_voltage(&pp_clk_info, clk_level_info, clk_type);

	return true;
}

bool dm_pp_notify_wm_clock_changes(
	const struct dc_context *ctx,
	struct dm_pp_wm_sets_with_clock_ranges *wm_with_clock_ranges)
{
	struct amdgpu_device *adev = ctx->driver_context;

	/*
	 * Limit this watermark setting for Polaris for now
	 * TODO: expand this to other ASICs
	 */
	if ((adev->asic_type >= CHIP_POLARIS10) &&
	     (adev->asic_type <= CHIP_VEGAM) &&
	     !amdgpu_dpm_set_watermarks_for_clocks_ranges(adev,
						(void *)wm_with_clock_ranges))
			return true;

	return false;
}

bool dm_pp_apply_power_level_change_request(
	const struct dc_context *ctx,
	struct dm_pp_power_level_change_request *level_change_req)
{
	/* TODO: to be implemented */
	return false;
}

bool dm_pp_apply_clock_for_voltage_request(
	const struct dc_context *ctx,
	struct dm_pp_clock_for_voltage_req *clock_for_voltage_req)
{
	struct amdgpu_device *adev = ctx->driver_context;
	struct pp_display_clock_request pp_clock_request = {0};
	int ret = 0;

	pp_clock_request.clock_type = dc_to_pp_clock_type(clock_for_voltage_req->clk_type);
	pp_clock_request.clock_freq_in_khz = clock_for_voltage_req->clocks_in_khz;

	if (!pp_clock_request.clock_type)
		return false;

	ret = amdgpu_dpm_display_clock_voltage_request(adev, &pp_clock_request);
	if (ret && (ret != -EOPNOTSUPP))
		return false;

	return true;
}

bool dm_pp_get_static_clocks(
	const struct dc_context *ctx,
	struct dm_pp_static_clock_info *static_clk_info)
{
	struct amdgpu_device *adev = ctx->driver_context;
	struct amd_pp_clock_info pp_clk_info = {0};

	if (amdgpu_dpm_get_current_clocks(adev, &pp_clk_info))
		return false;

	static_clk_info->max_clocks_state = pp_to_dc_powerlevel_state(pp_clk_info.max_clocks_state);
	static_clk_info->max_mclk_khz = pp_clk_info.max_memory_clock * 10;
	static_clk_info->max_sclk_khz = pp_clk_info.max_engine_clock * 10;

	return true;
}

static void pp_rv_set_wm_ranges(struct pp_smu *pp,
		struct pp_smu_wm_range_sets *ranges)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;
	struct dm_pp_wm_sets_with_clock_ranges_soc15 wm_with_clock_ranges;
	struct dm_pp_clock_range_for_dmif_wm_set_soc15 *wm_dce_clocks = wm_with_clock_ranges.wm_dmif_clocks_ranges;
	struct dm_pp_clock_range_for_mcif_wm_set_soc15 *wm_soc_clocks = wm_with_clock_ranges.wm_mcif_clocks_ranges;
	int32_t i;

	wm_with_clock_ranges.num_wm_dmif_sets = ranges->num_reader_wm_sets;
	wm_with_clock_ranges.num_wm_mcif_sets = ranges->num_writer_wm_sets;

	for (i = 0; i < wm_with_clock_ranges.num_wm_dmif_sets; i++) {
		if (ranges->reader_wm_sets[i].wm_inst > 3)
			wm_dce_clocks[i].wm_set_id = WM_SET_A;
		else
			wm_dce_clocks[i].wm_set_id =
					ranges->reader_wm_sets[i].wm_inst;
		wm_dce_clocks[i].wm_max_dcfclk_clk_in_khz =
				ranges->reader_wm_sets[i].max_drain_clk_mhz * 1000;
		wm_dce_clocks[i].wm_min_dcfclk_clk_in_khz =
				ranges->reader_wm_sets[i].min_drain_clk_mhz * 1000;
		wm_dce_clocks[i].wm_max_mem_clk_in_khz =
				ranges->reader_wm_sets[i].max_fill_clk_mhz * 1000;
		wm_dce_clocks[i].wm_min_mem_clk_in_khz =
				ranges->reader_wm_sets[i].min_fill_clk_mhz * 1000;
	}

	for (i = 0; i < wm_with_clock_ranges.num_wm_mcif_sets; i++) {
		if (ranges->writer_wm_sets[i].wm_inst > 3)
			wm_soc_clocks[i].wm_set_id = WM_SET_A;
		else
			wm_soc_clocks[i].wm_set_id =
					ranges->writer_wm_sets[i].wm_inst;
		wm_soc_clocks[i].wm_max_socclk_clk_in_khz =
				ranges->writer_wm_sets[i].max_fill_clk_mhz * 1000;
		wm_soc_clocks[i].wm_min_socclk_clk_in_khz =
				ranges->writer_wm_sets[i].min_fill_clk_mhz * 1000;
		wm_soc_clocks[i].wm_max_mem_clk_in_khz =
				ranges->writer_wm_sets[i].max_drain_clk_mhz * 1000;
		wm_soc_clocks[i].wm_min_mem_clk_in_khz =
				ranges->writer_wm_sets[i].min_drain_clk_mhz * 1000;
	}

	amdgpu_dpm_set_watermarks_for_clocks_ranges(adev,
						    &wm_with_clock_ranges);
}

static void pp_rv_set_pme_wa_enable(struct pp_smu *pp)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;

	amdgpu_dpm_notify_smu_enable_pwe(adev);
}

static void pp_rv_set_active_display_count(struct pp_smu *pp, int count)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;

	amdgpu_dpm_set_active_display_count(adev, count);
}

static void pp_rv_set_min_deep_sleep_dcfclk(struct pp_smu *pp, int clock)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;

	amdgpu_dpm_set_min_deep_sleep_dcefclk(adev, clock);
}

static void pp_rv_set_hard_min_dcefclk_by_freq(struct pp_smu *pp, int clock)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;

	amdgpu_dpm_set_hard_min_dcefclk_by_freq(adev, clock);
}

static void pp_rv_set_hard_min_fclk_by_freq(struct pp_smu *pp, int mhz)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;

	amdgpu_dpm_set_hard_min_fclk_by_freq(adev, mhz);
}

static enum pp_smu_status pp_nv_set_wm_ranges(struct pp_smu *pp,
		struct pp_smu_wm_range_sets *ranges)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;

	amdgpu_dpm_set_watermarks_for_clocks_ranges(adev, ranges);

	return PP_SMU_RESULT_OK;
}

static enum pp_smu_status pp_nv_set_display_count(struct pp_smu *pp, int count)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;
	int ret = 0;

	ret = amdgpu_dpm_set_active_display_count(adev, count);
	if (ret == -EOPNOTSUPP)
		return PP_SMU_RESULT_UNSUPPORTED;
	else if (ret)
		/* 0: successful or smu.ppt_funcs->set_display_count = NULL;  1: fail */
		return PP_SMU_RESULT_FAIL;

	return PP_SMU_RESULT_OK;
}

static enum pp_smu_status
pp_nv_set_min_deep_sleep_dcfclk(struct pp_smu *pp, int mhz)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;
	int ret = 0;

	/* 0: successful or smu.ppt_funcs->set_deep_sleep_dcefclk = NULL;1: fail */
	ret = amdgpu_dpm_set_min_deep_sleep_dcefclk(adev, mhz);
	if (ret == -EOPNOTSUPP)
		return PP_SMU_RESULT_UNSUPPORTED;
	else if (ret)
		return PP_SMU_RESULT_FAIL;

	return PP_SMU_RESULT_OK;
}

static enum pp_smu_status pp_nv_set_hard_min_dcefclk_by_freq(
		struct pp_smu *pp, int mhz)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;
	struct pp_display_clock_request clock_req;
	int ret = 0;

	clock_req.clock_type = amd_pp_dcef_clock;
	clock_req.clock_freq_in_khz = mhz * 1000;

	/* 0: successful or smu.ppt_funcs->display_clock_voltage_request = NULL
	 * 1: fail
	 */
	ret = amdgpu_dpm_display_clock_voltage_request(adev, &clock_req);
	if (ret == -EOPNOTSUPP)
		return PP_SMU_RESULT_UNSUPPORTED;
	else if (ret)
		return PP_SMU_RESULT_FAIL;

	return PP_SMU_RESULT_OK;
}

static enum pp_smu_status
pp_nv_set_hard_min_uclk_by_freq(struct pp_smu *pp, int mhz)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;
	struct pp_display_clock_request clock_req;
	int ret = 0;

	clock_req.clock_type = amd_pp_mem_clock;
	clock_req.clock_freq_in_khz = mhz * 1000;

	/* 0: successful or smu.ppt_funcs->display_clock_voltage_request = NULL
	 * 1: fail
	 */
	ret = amdgpu_dpm_display_clock_voltage_request(adev, &clock_req);
	if (ret == -EOPNOTSUPP)
		return PP_SMU_RESULT_UNSUPPORTED;
	else if (ret)
		return PP_SMU_RESULT_FAIL;

	return PP_SMU_RESULT_OK;
}

static enum pp_smu_status pp_nv_set_pstate_handshake_support(
	struct pp_smu *pp, bool pstate_handshake_supported)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;

	if (amdgpu_dpm_display_disable_memory_clock_switch(adev,
							  !pstate_handshake_supported))
		return PP_SMU_RESULT_FAIL;

	return PP_SMU_RESULT_OK;
}

static enum pp_smu_status pp_nv_set_voltage_by_freq(struct pp_smu *pp,
		enum pp_smu_nv_clock_id clock_id, int mhz)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;
	struct pp_display_clock_request clock_req;
	int ret = 0;

	switch (clock_id) {
	case PP_SMU_NV_DISPCLK:
		clock_req.clock_type = amd_pp_disp_clock;
		break;
	case PP_SMU_NV_PHYCLK:
		clock_req.clock_type = amd_pp_phy_clock;
		break;
	case PP_SMU_NV_PIXELCLK:
		clock_req.clock_type = amd_pp_pixel_clock;
		break;
	default:
		break;
	}
	clock_req.clock_freq_in_khz = mhz * 1000;

	/* 0: successful or smu.ppt_funcs->display_clock_voltage_request = NULL
	 * 1: fail
	 */
	ret = amdgpu_dpm_display_clock_voltage_request(adev, &clock_req);
	if (ret == -EOPNOTSUPP)
		return PP_SMU_RESULT_UNSUPPORTED;
	else if (ret)
		return PP_SMU_RESULT_FAIL;

	return PP_SMU_RESULT_OK;
}

static enum pp_smu_status pp_nv_get_maximum_sustainable_clocks(
		struct pp_smu *pp, struct pp_smu_nv_clock_table *max_clocks)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;
	int ret = 0;

	ret = amdgpu_dpm_get_max_sustainable_clocks_by_dc(adev,
							  max_clocks);
	if (ret == -EOPNOTSUPP)
		return PP_SMU_RESULT_UNSUPPORTED;
	else if (ret)
		return PP_SMU_RESULT_FAIL;

	return PP_SMU_RESULT_OK;
}

static enum pp_smu_status pp_nv_get_uclk_dpm_states(struct pp_smu *pp,
		unsigned int *clock_values_in_khz, unsigned int *num_states)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;
	int ret = 0;

	ret = amdgpu_dpm_get_uclk_dpm_states(adev,
					     clock_values_in_khz,
					    num_states);
	if (ret == -EOPNOTSUPP)
		return PP_SMU_RESULT_UNSUPPORTED;
	else if (ret)
		return PP_SMU_RESULT_FAIL;

	return PP_SMU_RESULT_OK;
}

static enum pp_smu_status pp_rn_get_dpm_clock_table(
		struct pp_smu *pp, struct dpm_clocks *clock_table)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;
	int ret = 0;

	ret = amdgpu_dpm_get_dpm_clock_table(adev, clock_table);
	if (ret == -EOPNOTSUPP)
		return PP_SMU_RESULT_UNSUPPORTED;
	else if (ret)
		return PP_SMU_RESULT_FAIL;

	return PP_SMU_RESULT_OK;
}

static enum pp_smu_status pp_rn_set_wm_ranges(struct pp_smu *pp,
		struct pp_smu_wm_range_sets *ranges)
{
	const struct dc_context *ctx = pp->dm;
	struct amdgpu_device *adev = ctx->driver_context;

	amdgpu_dpm_set_watermarks_for_clocks_ranges(adev, ranges);

	return PP_SMU_RESULT_OK;
}

void dm_pp_get_funcs(
		struct dc_context *ctx,
		struct pp_smu_funcs *funcs)
{
	switch (ctx->dce_version) {
	case DCN_VERSION_1_0:
	case DCN_VERSION_1_01:
		funcs->ctx.ver = PP_SMU_VER_RV;
		funcs->rv_funcs.pp_smu.dm = ctx;
		funcs->rv_funcs.set_wm_ranges = pp_rv_set_wm_ranges;
		funcs->rv_funcs.set_pme_wa_enable = pp_rv_set_pme_wa_enable;
		funcs->rv_funcs.set_display_count =
				pp_rv_set_active_display_count;
		funcs->rv_funcs.set_min_deep_sleep_dcfclk =
				pp_rv_set_min_deep_sleep_dcfclk;
		funcs->rv_funcs.set_hard_min_dcfclk_by_freq =
				pp_rv_set_hard_min_dcefclk_by_freq;
		funcs->rv_funcs.set_hard_min_fclk_by_freq =
				pp_rv_set_hard_min_fclk_by_freq;
		break;
	case DCN_VERSION_2_0:
		funcs->ctx.ver = PP_SMU_VER_NV;
		funcs->nv_funcs.pp_smu.dm = ctx;
		funcs->nv_funcs.set_display_count = pp_nv_set_display_count;
		funcs->nv_funcs.set_hard_min_dcfclk_by_freq =
				pp_nv_set_hard_min_dcefclk_by_freq;
		funcs->nv_funcs.set_min_deep_sleep_dcfclk =
				pp_nv_set_min_deep_sleep_dcfclk;
		funcs->nv_funcs.set_voltage_by_freq =
				pp_nv_set_voltage_by_freq;
		funcs->nv_funcs.set_wm_ranges = pp_nv_set_wm_ranges;

		/* todo set_pme_wa_enable cause 4k@6ohz display not light up */
		funcs->nv_funcs.set_pme_wa_enable = NULL;
		/* todo debug waring message */
		funcs->nv_funcs.set_hard_min_uclk_by_freq = pp_nv_set_hard_min_uclk_by_freq;
		/* todo  compare data with window driver*/
		funcs->nv_funcs.get_maximum_sustainable_clocks = pp_nv_get_maximum_sustainable_clocks;
		/*todo  compare data with window driver */
		funcs->nv_funcs.get_uclk_dpm_states = pp_nv_get_uclk_dpm_states;
		funcs->nv_funcs.set_pstate_handshake_support = pp_nv_set_pstate_handshake_support;
		break;

	case DCN_VERSION_2_1:
		funcs->ctx.ver = PP_SMU_VER_RN;
		funcs->rn_funcs.pp_smu.dm = ctx;
		funcs->rn_funcs.set_wm_ranges = pp_rn_set_wm_ranges;
		funcs->rn_funcs.get_dpm_clock_table = pp_rn_get_dpm_clock_table;
		break;
	default:
		DRM_ERROR("smu version is not supported !\n");
		break;
	}
}