Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | // SPDX-License-Identifier: GPL-2.0 /* * Marvell EBU SoC common clock handling * * Copyright (C) 2012 Marvell * * Gregory CLEMENT <gregory.clement@free-electrons.com> * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com> * Andrew Lunn <andrew@lunn.ch> * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/syscore_ops.h> #include "common.h" /* * Core Clocks */ #define SSCG_CONF_MODE(reg) (((reg) >> 16) & 0x3) #define SSCG_SPREAD_DOWN 0x0 #define SSCG_SPREAD_UP 0x1 #define SSCG_SPREAD_CENTRAL 0x2 #define SSCG_CONF_LOW(reg) (((reg) >> 8) & 0xFF) #define SSCG_CONF_HIGH(reg) ((reg) & 0xFF) static struct clk_onecell_data clk_data; /* * This function can be used by the Kirkwood, the Armada 370, the * Armada XP and the Armada 375 SoC. The name of the function was * chosen following the dt convention: using the first known SoC * compatible with it. */ u32 kirkwood_fix_sscg_deviation(u32 system_clk) { struct device_node *sscg_np = NULL; void __iomem *sscg_map; u32 sscg_reg; s32 low_bound, high_bound; u64 freq_swing_half; sscg_np = of_find_node_by_name(NULL, "sscg"); if (sscg_np == NULL) { pr_err("cannot get SSCG register node\n"); return system_clk; } sscg_map = of_iomap(sscg_np, 0); if (sscg_map == NULL) { pr_err("cannot map SSCG register\n"); goto out; } sscg_reg = readl(sscg_map); high_bound = SSCG_CONF_HIGH(sscg_reg); low_bound = SSCG_CONF_LOW(sscg_reg); if ((high_bound - low_bound) <= 0) goto out; /* * From Marvell engineer we got the following formula (when * this code was written, the datasheet was erroneous) * Spread percentage = 1/96 * (H - L) / H * H = SSCG_High_Boundary * L = SSCG_Low_Boundary * * As the deviation is half of spread then it lead to the * following formula in the code. * * To avoid an overflow and not lose any significant digit in * the same time we have to use a 64 bit integer. */ freq_swing_half = (((u64)high_bound - (u64)low_bound) * (u64)system_clk); do_div(freq_swing_half, (2 * 96 * high_bound)); switch (SSCG_CONF_MODE(sscg_reg)) { case SSCG_SPREAD_DOWN: system_clk -= freq_swing_half; break; case SSCG_SPREAD_UP: system_clk += freq_swing_half; break; case SSCG_SPREAD_CENTRAL: default: break; } iounmap(sscg_map); out: of_node_put(sscg_np); return system_clk; } void __init mvebu_coreclk_setup(struct device_node *np, const struct coreclk_soc_desc *desc) { const char *tclk_name = "tclk"; const char *cpuclk_name = "cpuclk"; void __iomem *base; unsigned long rate; int n; base = of_iomap(np, 0); if (WARN_ON(!base)) return; /* Allocate struct for TCLK, cpu clk, and core ratio clocks */ clk_data.clk_num = 2 + desc->num_ratios; /* One more clock for the optional refclk */ if (desc->get_refclk_freq) clk_data.clk_num += 1; clk_data.clks = kcalloc(clk_data.clk_num, sizeof(*clk_data.clks), GFP_KERNEL); if (WARN_ON(!clk_data.clks)) { iounmap(base); return; } /* Register TCLK */ of_property_read_string_index(np, "clock-output-names", 0, &tclk_name); rate = desc->get_tclk_freq(base); clk_data.clks[0] = clk_register_fixed_rate(NULL, tclk_name, NULL, 0, rate); WARN_ON(IS_ERR(clk_data.clks[0])); /* Register CPU clock */ of_property_read_string_index(np, "clock-output-names", 1, &cpuclk_name); rate = desc->get_cpu_freq(base); if (desc->is_sscg_enabled && desc->fix_sscg_deviation && desc->is_sscg_enabled(base)) rate = desc->fix_sscg_deviation(rate); clk_data.clks[1] = clk_register_fixed_rate(NULL, cpuclk_name, NULL, 0, rate); WARN_ON(IS_ERR(clk_data.clks[1])); /* Register fixed-factor clocks derived from CPU clock */ for (n = 0; n < desc->num_ratios; n++) { const char *rclk_name = desc->ratios[n].name; int mult, div; of_property_read_string_index(np, "clock-output-names", 2+n, &rclk_name); desc->get_clk_ratio(base, desc->ratios[n].id, &mult, &div); clk_data.clks[2+n] = clk_register_fixed_factor(NULL, rclk_name, cpuclk_name, 0, mult, div); WARN_ON(IS_ERR(clk_data.clks[2+n])); } /* Register optional refclk */ if (desc->get_refclk_freq) { const char *name = "refclk"; of_property_read_string_index(np, "clock-output-names", 2 + desc->num_ratios, &name); rate = desc->get_refclk_freq(base); clk_data.clks[2 + desc->num_ratios] = clk_register_fixed_rate(NULL, name, NULL, 0, rate); WARN_ON(IS_ERR(clk_data.clks[2 + desc->num_ratios])); } /* SAR register isn't needed anymore */ iounmap(base); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); } /* * Clock Gating Control */ DEFINE_SPINLOCK(ctrl_gating_lock); struct clk_gating_ctrl { spinlock_t *lock; struct clk **gates; int num_gates; void __iomem *base; u32 saved_reg; }; static struct clk_gating_ctrl *ctrl; static struct clk *clk_gating_get_src( struct of_phandle_args *clkspec, void *data) { int n; if (clkspec->args_count < 1) return ERR_PTR(-EINVAL); for (n = 0; n < ctrl->num_gates; n++) { struct clk_gate *gate = to_clk_gate(__clk_get_hw(ctrl->gates[n])); if (clkspec->args[0] == gate->bit_idx) return ctrl->gates[n]; } return ERR_PTR(-ENODEV); } static int mvebu_clk_gating_suspend(void) { ctrl->saved_reg = readl(ctrl->base); return 0; } static void mvebu_clk_gating_resume(void) { writel(ctrl->saved_reg, ctrl->base); } static struct syscore_ops clk_gate_syscore_ops = { .suspend = mvebu_clk_gating_suspend, .resume = mvebu_clk_gating_resume, }; void __init mvebu_clk_gating_setup(struct device_node *np, const struct clk_gating_soc_desc *desc) { struct clk *clk; void __iomem *base; const char *default_parent = NULL; int n; if (ctrl) { pr_err("mvebu-clk-gating: cannot instantiate more than one gateable clock device\n"); return; } base = of_iomap(np, 0); if (WARN_ON(!base)) return; clk = of_clk_get(np, 0); if (!IS_ERR(clk)) { default_parent = __clk_get_name(clk); clk_put(clk); } ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); if (WARN_ON(!ctrl)) goto ctrl_out; /* lock must already be initialized */ ctrl->lock = &ctrl_gating_lock; ctrl->base = base; /* Count, allocate, and register clock gates */ for (n = 0; desc[n].name;) n++; ctrl->num_gates = n; ctrl->gates = kcalloc(ctrl->num_gates, sizeof(*ctrl->gates), GFP_KERNEL); if (WARN_ON(!ctrl->gates)) goto gates_out; for (n = 0; n < ctrl->num_gates; n++) { const char *parent = (desc[n].parent) ? desc[n].parent : default_parent; ctrl->gates[n] = clk_register_gate(NULL, desc[n].name, parent, desc[n].flags, base, desc[n].bit_idx, 0, ctrl->lock); WARN_ON(IS_ERR(ctrl->gates[n])); } of_clk_add_provider(np, clk_gating_get_src, ctrl); register_syscore_ops(&clk_gate_syscore_ops); return; gates_out: kfree(ctrl); ctrl_out: iounmap(base); } |