Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 | // SPDX-License-Identifier: GPL-2.0-only /* * Driver for Murata IRS-D200 PIR sensor. * * Copyright (C) 2023 Axis Communications AB */ #include <asm/unaligned.h> #include <linux/bitfield.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/iio/buffer.h> #include <linux/iio/events.h> #include <linux/iio/iio.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/types.h> #define IRS_DRV_NAME "irsd200" /* Registers. */ #define IRS_REG_OP 0x00 /* Operation mode. */ #define IRS_REG_DATA_LO 0x02 /* Sensor data LSB. */ #define IRS_REG_DATA_HI 0x03 /* Sensor data MSB. */ #define IRS_REG_STATUS 0x04 /* Interrupt status. */ #define IRS_REG_COUNT 0x05 /* Count of exceeding threshold. */ #define IRS_REG_DATA_RATE 0x06 /* Output data rate. */ #define IRS_REG_FILTER 0x07 /* High-pass and low-pass filter. */ #define IRS_REG_INTR 0x09 /* Interrupt mode. */ #define IRS_REG_NR_COUNT 0x0a /* Number of counts before interrupt. */ #define IRS_REG_THR_HI 0x0b /* Upper threshold. */ #define IRS_REG_THR_LO 0x0c /* Lower threshold. */ #define IRS_REG_TIMER_LO 0x0d /* Timer setting LSB. */ #define IRS_REG_TIMER_HI 0x0e /* Timer setting MSB. */ /* Interrupt status bits. */ #define IRS_INTR_DATA 0 /* Data update. */ #define IRS_INTR_TIMER 1 /* Timer expiration. */ #define IRS_INTR_COUNT_THR_AND 2 /* Count "AND" threshold. */ #define IRS_INTR_COUNT_THR_OR 3 /* Count "OR" threshold. */ /* Operation states. */ #define IRS_OP_ACTIVE 0x00 #define IRS_OP_SLEEP 0x01 /* * Quantization scale value for threshold. Used for conversion from/to register * value. */ #define IRS_THR_QUANT_SCALE 128 #define IRS_UPPER_COUNT(count) FIELD_GET(GENMASK(7, 4), count) #define IRS_LOWER_COUNT(count) FIELD_GET(GENMASK(3, 0), count) /* Index corresponds to the value of IRS_REG_DATA_RATE register. */ static const int irsd200_data_rates[] = { 50, 100, }; /* Index corresponds to the (field) value of IRS_REG_FILTER register. */ static const unsigned int irsd200_lp_filter_freq[] = { 10, 7, }; /* * Index corresponds to the (field) value of IRS_REG_FILTER register. Note that * this represents a fractional value (e.g the first value corresponds to 3 / 10 * = 0.3 Hz). */ static const unsigned int irsd200_hp_filter_freq[][2] = { { 3, 10 }, { 5, 10 }, }; /* Register fields. */ enum irsd200_regfield { /* Data interrupt. */ IRS_REGF_INTR_DATA, /* Timer interrupt. */ IRS_REGF_INTR_TIMER, /* AND count threshold interrupt. */ IRS_REGF_INTR_COUNT_THR_AND, /* OR count threshold interrupt. */ IRS_REGF_INTR_COUNT_THR_OR, /* Low-pass filter frequency. */ IRS_REGF_LP_FILTER, /* High-pass filter frequency. */ IRS_REGF_HP_FILTER, /* Sentinel value. */ IRS_REGF_MAX }; static const struct reg_field irsd200_regfields[] = { [IRS_REGF_INTR_DATA] = REG_FIELD(IRS_REG_INTR, IRS_INTR_DATA, IRS_INTR_DATA), [IRS_REGF_INTR_TIMER] = REG_FIELD(IRS_REG_INTR, IRS_INTR_TIMER, IRS_INTR_TIMER), [IRS_REGF_INTR_COUNT_THR_AND] = REG_FIELD( IRS_REG_INTR, IRS_INTR_COUNT_THR_AND, IRS_INTR_COUNT_THR_AND), [IRS_REGF_INTR_COUNT_THR_OR] = REG_FIELD( IRS_REG_INTR, IRS_INTR_COUNT_THR_OR, IRS_INTR_COUNT_THR_OR), [IRS_REGF_LP_FILTER] = REG_FIELD(IRS_REG_FILTER, 1, 1), [IRS_REGF_HP_FILTER] = REG_FIELD(IRS_REG_FILTER, 0, 0), }; static const struct regmap_config irsd200_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = IRS_REG_TIMER_HI, }; struct irsd200_data { struct regmap *regmap; struct regmap_field *regfields[IRS_REGF_MAX]; struct device *dev; }; static int irsd200_setup(struct irsd200_data *data) { unsigned int val; int ret; /* Disable all interrupt sources. */ ret = regmap_write(data->regmap, IRS_REG_INTR, 0); if (ret) { dev_err(data->dev, "Could not set interrupt sources (%d)\n", ret); return ret; } /* Set operation to active. */ ret = regmap_write(data->regmap, IRS_REG_OP, IRS_OP_ACTIVE); if (ret) { dev_err(data->dev, "Could not set operation mode (%d)\n", ret); return ret; } /* Clear threshold count. */ ret = regmap_read(data->regmap, IRS_REG_COUNT, &val); if (ret) { dev_err(data->dev, "Could not clear threshold count (%d)\n", ret); return ret; } /* Clear status. */ ret = regmap_write(data->regmap, IRS_REG_STATUS, 0x0f); if (ret) { dev_err(data->dev, "Could not clear status (%d)\n", ret); return ret; } return 0; } static int irsd200_read_threshold(struct irsd200_data *data, enum iio_event_direction dir, int *val) { unsigned int regval; unsigned int reg; int scale; int ret; /* Set quantization scale. */ if (dir == IIO_EV_DIR_RISING) { scale = IRS_THR_QUANT_SCALE; reg = IRS_REG_THR_HI; } else if (dir == IIO_EV_DIR_FALLING) { scale = -IRS_THR_QUANT_SCALE; reg = IRS_REG_THR_LO; } else { return -EINVAL; } ret = regmap_read(data->regmap, reg, ®val); if (ret) { dev_err(data->dev, "Could not read threshold (%d)\n", ret); return ret; } *val = ((int)regval) * scale; return 0; } static int irsd200_write_threshold(struct irsd200_data *data, enum iio_event_direction dir, int val) { unsigned int regval; unsigned int reg; int scale; int ret; /* Set quantization scale. */ if (dir == IIO_EV_DIR_RISING) { if (val < 0) return -ERANGE; scale = IRS_THR_QUANT_SCALE; reg = IRS_REG_THR_HI; } else if (dir == IIO_EV_DIR_FALLING) { if (val > 0) return -ERANGE; scale = -IRS_THR_QUANT_SCALE; reg = IRS_REG_THR_LO; } else { return -EINVAL; } regval = val / scale; if (regval >= BIT(8)) return -ERANGE; ret = regmap_write(data->regmap, reg, regval); if (ret) { dev_err(data->dev, "Could not write threshold (%d)\n", ret); return ret; } return 0; } static int irsd200_read_data(struct irsd200_data *data, s16 *val) { __le16 buf; int ret; ret = regmap_bulk_read(data->regmap, IRS_REG_DATA_LO, &buf, sizeof(buf)); if (ret) { dev_err(data->dev, "Could not bulk read data (%d)\n", ret); return ret; } *val = le16_to_cpu(buf); return 0; } static int irsd200_read_data_rate(struct irsd200_data *data, int *val) { unsigned int regval; int ret; ret = regmap_read(data->regmap, IRS_REG_DATA_RATE, ®val); if (ret) { dev_err(data->dev, "Could not read data rate (%d)\n", ret); return ret; } if (regval >= ARRAY_SIZE(irsd200_data_rates)) return -ERANGE; *val = irsd200_data_rates[regval]; return 0; } static int irsd200_write_data_rate(struct irsd200_data *data, int val) { size_t idx; int ret; for (idx = 0; idx < ARRAY_SIZE(irsd200_data_rates); ++idx) { if (irsd200_data_rates[idx] == val) break; } if (idx == ARRAY_SIZE(irsd200_data_rates)) return -ERANGE; ret = regmap_write(data->regmap, IRS_REG_DATA_RATE, idx); if (ret) { dev_err(data->dev, "Could not write data rate (%d)\n", ret); return ret; } /* * Data sheet says the device needs 3 seconds of settling time. The * device operates normally during this period though. This is more of a * "guarantee" than trying to prevent other user space reads/writes. */ ssleep(3); return 0; } static int irsd200_read_timer(struct irsd200_data *data, int *val, int *val2) { __le16 buf; int ret; ret = regmap_bulk_read(data->regmap, IRS_REG_TIMER_LO, &buf, sizeof(buf)); if (ret) { dev_err(data->dev, "Could not bulk read timer (%d)\n", ret); return ret; } ret = irsd200_read_data_rate(data, val2); if (ret) return ret; *val = le16_to_cpu(buf); return 0; } static int irsd200_write_timer(struct irsd200_data *data, int val, int val2) { unsigned int regval; int data_rate; __le16 buf; int ret; if (val < 0 || val2 < 0) return -ERANGE; ret = irsd200_read_data_rate(data, &data_rate); if (ret) return ret; /* Quantize from seconds. */ regval = val * data_rate + (val2 * data_rate) / 1000000; /* Value is 10 bits. */ if (regval >= BIT(10)) return -ERANGE; buf = cpu_to_le16((u16)regval); ret = regmap_bulk_write(data->regmap, IRS_REG_TIMER_LO, &buf, sizeof(buf)); if (ret) { dev_err(data->dev, "Could not bulk write timer (%d)\n", ret); return ret; } return 0; } static int irsd200_read_nr_count(struct irsd200_data *data, int *val) { unsigned int regval; int ret; ret = regmap_read(data->regmap, IRS_REG_NR_COUNT, ®val); if (ret) { dev_err(data->dev, "Could not read nr count (%d)\n", ret); return ret; } *val = regval; return 0; } static int irsd200_write_nr_count(struct irsd200_data *data, int val) { unsigned int regval; int ret; /* A value of zero means that IRS_REG_STATUS is never set. */ if (val <= 0 || val >= 8) return -ERANGE; regval = val; if (regval >= 2) { /* * According to the data sheet, timer must be also set in this * case (i.e. be non-zero). Check and enforce that. */ ret = irsd200_read_timer(data, &val, &val); if (ret) return ret; if (val == 0) { dev_err(data->dev, "Timer must be non-zero when nr count is %u\n", regval); return -EPERM; } } ret = regmap_write(data->regmap, IRS_REG_NR_COUNT, regval); if (ret) { dev_err(data->dev, "Could not write nr count (%d)\n", ret); return ret; } return 0; } static int irsd200_read_lp_filter(struct irsd200_data *data, int *val) { unsigned int regval; int ret; ret = regmap_field_read(data->regfields[IRS_REGF_LP_FILTER], ®val); if (ret) { dev_err(data->dev, "Could not read lp filter frequency (%d)\n", ret); return ret; } *val = irsd200_lp_filter_freq[regval]; return 0; } static int irsd200_write_lp_filter(struct irsd200_data *data, int val) { size_t idx; int ret; for (idx = 0; idx < ARRAY_SIZE(irsd200_lp_filter_freq); ++idx) { if (irsd200_lp_filter_freq[idx] == val) break; } if (idx == ARRAY_SIZE(irsd200_lp_filter_freq)) return -ERANGE; ret = regmap_field_write(data->regfields[IRS_REGF_LP_FILTER], idx); if (ret) { dev_err(data->dev, "Could not write lp filter frequency (%d)\n", ret); return ret; } return 0; } static int irsd200_read_hp_filter(struct irsd200_data *data, int *val, int *val2) { unsigned int regval; int ret; ret = regmap_field_read(data->regfields[IRS_REGF_HP_FILTER], ®val); if (ret) { dev_err(data->dev, "Could not read hp filter frequency (%d)\n", ret); return ret; } *val = irsd200_hp_filter_freq[regval][0]; *val2 = irsd200_hp_filter_freq[regval][1]; return 0; } static int irsd200_write_hp_filter(struct irsd200_data *data, int val, int val2) { size_t idx; int ret; /* Truncate fractional part to one digit. */ val2 /= 100000; for (idx = 0; idx < ARRAY_SIZE(irsd200_hp_filter_freq); ++idx) { if (irsd200_hp_filter_freq[idx][0] == val2) break; } if (idx == ARRAY_SIZE(irsd200_hp_filter_freq) || val != 0) return -ERANGE; ret = regmap_field_write(data->regfields[IRS_REGF_HP_FILTER], idx); if (ret) { dev_err(data->dev, "Could not write hp filter frequency (%d)\n", ret); return ret; } return 0; } static int irsd200_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct irsd200_data *data = iio_priv(indio_dev); int ret; s16 buf; switch (mask) { case IIO_CHAN_INFO_RAW: ret = irsd200_read_data(data, &buf); if (ret) return ret; *val = buf; return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: ret = irsd200_read_data_rate(data, val); if (ret) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: ret = irsd200_read_lp_filter(data, val); if (ret) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: ret = irsd200_read_hp_filter(data, val, val2); if (ret) return ret; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } } static int irsd200_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = irsd200_data_rates; *type = IIO_VAL_INT; *length = ARRAY_SIZE(irsd200_data_rates); return IIO_AVAIL_LIST; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: *vals = irsd200_lp_filter_freq; *type = IIO_VAL_INT; *length = ARRAY_SIZE(irsd200_lp_filter_freq); return IIO_AVAIL_LIST; case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: *vals = (int *)irsd200_hp_filter_freq; *type = IIO_VAL_FRACTIONAL; *length = 2 * ARRAY_SIZE(irsd200_hp_filter_freq); return IIO_AVAIL_LIST; default: return -EINVAL; } } static int irsd200_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct irsd200_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: return irsd200_write_data_rate(data, val); case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: return irsd200_write_lp_filter(data, val); case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: return irsd200_write_hp_filter(data, val, val2); default: return -EINVAL; } } static int irsd200_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct irsd200_data *data = iio_priv(indio_dev); int ret; switch (info) { case IIO_EV_INFO_VALUE: ret = irsd200_read_threshold(data, dir, val); if (ret) return ret; return IIO_VAL_INT; case IIO_EV_INFO_RUNNING_PERIOD: ret = irsd200_read_timer(data, val, val2); if (ret) return ret; return IIO_VAL_FRACTIONAL; case IIO_EV_INFO_RUNNING_COUNT: ret = irsd200_read_nr_count(data, val); if (ret) return ret; return IIO_VAL_INT; default: return -EINVAL; } } static int irsd200_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct irsd200_data *data = iio_priv(indio_dev); switch (info) { case IIO_EV_INFO_VALUE: return irsd200_write_threshold(data, dir, val); case IIO_EV_INFO_RUNNING_PERIOD: return irsd200_write_timer(data, val, val2); case IIO_EV_INFO_RUNNING_COUNT: return irsd200_write_nr_count(data, val); default: return -EINVAL; } } static int irsd200_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct irsd200_data *data = iio_priv(indio_dev); unsigned int val; int ret; switch (type) { case IIO_EV_TYPE_THRESH: ret = regmap_field_read( data->regfields[IRS_REGF_INTR_COUNT_THR_OR], &val); if (ret) return ret; return val; default: return -EINVAL; } } static int irsd200_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct irsd200_data *data = iio_priv(indio_dev); unsigned int tmp; int ret; switch (type) { case IIO_EV_TYPE_THRESH: /* Clear the count register (by reading from it). */ ret = regmap_read(data->regmap, IRS_REG_COUNT, &tmp); if (ret) return ret; return regmap_field_write( data->regfields[IRS_REGF_INTR_COUNT_THR_OR], !!state); default: return -EINVAL; } } static irqreturn_t irsd200_irq_thread(int irq, void *dev_id) { struct iio_dev *indio_dev = dev_id; struct irsd200_data *data = iio_priv(indio_dev); enum iio_event_direction dir; unsigned int lower_count; unsigned int upper_count; unsigned int status = 0; unsigned int source = 0; unsigned int clear = 0; unsigned int count = 0; int ret; ret = regmap_read(data->regmap, IRS_REG_INTR, &source); if (ret) { dev_err(data->dev, "Could not read interrupt source (%d)\n", ret); return IRQ_HANDLED; } ret = regmap_read(data->regmap, IRS_REG_STATUS, &status); if (ret) { dev_err(data->dev, "Could not acknowledge interrupt (%d)\n", ret); return IRQ_HANDLED; } if (status & BIT(IRS_INTR_DATA) && iio_buffer_enabled(indio_dev)) { iio_trigger_poll_nested(indio_dev->trig); clear |= BIT(IRS_INTR_DATA); } if (status & BIT(IRS_INTR_COUNT_THR_OR) && source & BIT(IRS_INTR_COUNT_THR_OR)) { /* * The register value resets to zero after reading. We therefore * need to read once and manually extract the lower and upper * count register fields. */ ret = regmap_read(data->regmap, IRS_REG_COUNT, &count); if (ret) dev_err(data->dev, "Could not read count (%d)\n", ret); upper_count = IRS_UPPER_COUNT(count); lower_count = IRS_LOWER_COUNT(count); /* * We only check the OR mode to be able to push events for * rising and falling thresholds. AND mode is covered when both * upper and lower count is non-zero, and is signaled with * IIO_EV_DIR_EITHER. */ if (upper_count && !lower_count) dir = IIO_EV_DIR_RISING; else if (!upper_count && lower_count) dir = IIO_EV_DIR_FALLING; else dir = IIO_EV_DIR_EITHER; iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, IIO_EV_TYPE_THRESH, dir), iio_get_time_ns(indio_dev)); /* * The OR mode will always trigger when the AND mode does, but * not vice versa. However, it seems like the AND bit needs to * be cleared if data capture _and_ threshold count interrupts * are desirable, even though it hasn't explicitly been selected * (with IRS_REG_INTR). Either way, it doesn't hurt... */ clear |= BIT(IRS_INTR_COUNT_THR_OR) | BIT(IRS_INTR_COUNT_THR_AND); } if (!clear) return IRQ_NONE; ret = regmap_write(data->regmap, IRS_REG_STATUS, clear); if (ret) dev_err(data->dev, "Could not clear interrupt status (%d)\n", ret); return IRQ_HANDLED; } static irqreturn_t irsd200_trigger_handler(int irq, void *pollf) { struct iio_dev *indio_dev = ((struct iio_poll_func *)pollf)->indio_dev; struct irsd200_data *data = iio_priv(indio_dev); s64 buf[2] = {}; int ret; ret = irsd200_read_data(data, (s16 *)buf); if (ret) goto end; iio_push_to_buffers_with_timestamp(indio_dev, buf, iio_get_time_ns(indio_dev)); end: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int irsd200_set_trigger_state(struct iio_trigger *trig, bool state) { struct irsd200_data *data = iio_trigger_get_drvdata(trig); int ret; ret = regmap_field_write(data->regfields[IRS_REGF_INTR_DATA], state); if (ret) { dev_err(data->dev, "Could not %s data interrupt source (%d)\n", state ? "enable" : "disable", ret); } return ret; } static const struct iio_info irsd200_info = { .read_raw = irsd200_read_raw, .read_avail = irsd200_read_avail, .write_raw = irsd200_write_raw, .read_event_value = irsd200_read_event, .write_event_value = irsd200_write_event, .read_event_config = irsd200_read_event_config, .write_event_config = irsd200_write_event_config, }; static const struct iio_trigger_ops irsd200_trigger_ops = { .set_trigger_state = irsd200_set_trigger_state, .validate_device = iio_trigger_validate_own_device, }; static const struct iio_event_spec irsd200_event_spec[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_RUNNING_PERIOD) | BIT(IIO_EV_INFO_RUNNING_COUNT) | BIT(IIO_EV_INFO_ENABLE), }, }; static const struct iio_chan_spec irsd200_channels[] = { { .type = IIO_PROXIMITY, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), .info_mask_separate_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), .event_spec = irsd200_event_spec, .num_event_specs = ARRAY_SIZE(irsd200_event_spec), .scan_type = { .sign = 's', .realbits = 16, .storagebits = 16, .endianness = IIO_CPU, }, }, }; static int irsd200_probe(struct i2c_client *client) { struct iio_trigger *trigger; struct irsd200_data *data; struct iio_dev *indio_dev; size_t i; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return dev_err_probe(&client->dev, -ENOMEM, "Could not allocate iio device\n"); data = iio_priv(indio_dev); data->dev = &client->dev; data->regmap = devm_regmap_init_i2c(client, &irsd200_regmap_config); if (IS_ERR(data->regmap)) return dev_err_probe(data->dev, PTR_ERR(data->regmap), "Could not initialize regmap\n"); for (i = 0; i < IRS_REGF_MAX; ++i) { data->regfields[i] = devm_regmap_field_alloc( data->dev, data->regmap, irsd200_regfields[i]); if (IS_ERR(data->regfields[i])) return dev_err_probe( data->dev, PTR_ERR(data->regfields[i]), "Could not allocate register field %zu\n", i); } ret = devm_regulator_get_enable(data->dev, "vdd"); if (ret) return dev_err_probe( data->dev, ret, "Could not get and enable regulator (%d)\n", ret); ret = irsd200_setup(data); if (ret) return ret; indio_dev->info = &irsd200_info; indio_dev->name = IRS_DRV_NAME; indio_dev->channels = irsd200_channels; indio_dev->num_channels = ARRAY_SIZE(irsd200_channels); indio_dev->modes = INDIO_DIRECT_MODE; if (!client->irq) return dev_err_probe(data->dev, -ENXIO, "No irq available\n"); ret = devm_iio_triggered_buffer_setup(data->dev, indio_dev, NULL, irsd200_trigger_handler, NULL); if (ret) return dev_err_probe( data->dev, ret, "Could not setup iio triggered buffer (%d)\n", ret); ret = devm_request_threaded_irq(data->dev, client->irq, NULL, irsd200_irq_thread, IRQF_TRIGGER_RISING | IRQF_ONESHOT, NULL, indio_dev); if (ret) return dev_err_probe(data->dev, ret, "Could not request irq (%d)\n", ret); trigger = devm_iio_trigger_alloc(data->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!trigger) return dev_err_probe(data->dev, -ENOMEM, "Could not allocate iio trigger\n"); trigger->ops = &irsd200_trigger_ops; iio_trigger_set_drvdata(trigger, data); ret = devm_iio_trigger_register(data->dev, trigger); if (ret) return dev_err_probe(data->dev, ret, "Could not register iio trigger (%d)\n", ret); ret = devm_iio_device_register(data->dev, indio_dev); if (ret) return dev_err_probe(data->dev, ret, "Could not register iio device (%d)\n", ret); return 0; } static const struct of_device_id irsd200_of_match[] = { { .compatible = "murata,irsd200", }, {} }; MODULE_DEVICE_TABLE(of, irsd200_of_match); static struct i2c_driver irsd200_driver = { .driver = { .name = IRS_DRV_NAME, .of_match_table = irsd200_of_match, }, .probe = irsd200_probe, }; module_i2c_driver(irsd200_driver); MODULE_AUTHOR("Waqar Hameed <waqar.hameed@axis.com>"); MODULE_DESCRIPTION("Murata IRS-D200 PIR sensor driver"); MODULE_LICENSE("GPL"); |