Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
 *
 * Contact Information:
 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * Few modifications for Realtek's Wi-Fi drivers by
 * Andrea Merello <andrea.merello@gmail.com>
 *
 * A special thanks goes to Realtek for their support !
 */
#include <linux/compiler.h>
#include <linux/errno.h>
#include <linux/if_arp.h>
#include <linux/in6.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/tcp.h>
#include <linux/types.h>
#include <linux/wireless.h>
#include <linux/etherdevice.h>
#include <linux/uaccess.h>
#include <linux/if_vlan.h>

#include "rtllib.h"

/* 802.11 Data Frame
 *
 *
 * 802.11 frame_control for data frames - 2 bytes
 *      ,--------------------------------------------------------------------.
 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  9 |  a |  b  |  c  |  d  | e  |
 *      |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
 * val  | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 |  0 |  x |  x  |  x  |  x  | x  |
 *      |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
 * desc |  ver  | type  |  ^-subtype-^  |to |from|more|retry| pwr |more |wep |
 *      |       |       | x=0 data      |DS | DS |frag|     | mgm |data |    |
 *      |       |       | x=1 data+ack  |   |    |    |     |     |     |    |
 *      '--------------------------------------------------------------------'
 *                                           /\
 *                                           |
 * 802.11 Data Frame                         |
 *          ,--------- 'ctrl' expands to >---'
 *          |
 *       ,--'---,-------------------------------------------------------------.
 * Bytes |  2   |  2   |    6    |    6    |    6    |  2   | 0..2312 |   4  |
 *       |------|------|---------|---------|---------|------|---------|------|
 * Desc. | ctrl | dura |  DA/RA  |   TA    |    SA   | Sequ |  Frame  |  fcs |
 *       |      | tion | (BSSID) |         |         | ence |  data   |      |
 *       `--------------------------------------------------|         |------'
 * Total: 28 non-data bytes                                 `----.----'
 *                                                               |
 *        .- 'Frame data' expands to <---------------------------'
 *        |
 *        V
 *       ,---------------------------------------------------.
 * Bytes |  1   |  1   |    1    |    3     |  2   |  0-2304 |
 *       |------|------|---------|----------|------|---------|
 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP      |
 *       | DSAP | SSAP |         |          |      | Packet  |
 *       | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8|      |         |
 *       `-----------------------------------------|         |
 * Total: 8 non-data bytes                         `----.----'
 *                                                      |
 *        .- 'IP Packet' expands, if WEP enabled, to <--'
 *        |
 *        V
 *       ,-----------------------.
 * Bytes |  4  |   0-2296  |  4  |
 *       |-----|-----------|-----|
 * Desc. | IV  | Encrypted | ICV |
 *       |     | IP Packet |     |
 *       `-----------------------'
 * Total: 8 non-data bytes
 *
 *
 * 802.3 Ethernet Data Frame
 *
 *       ,-----------------------------------------.
 * Bytes |   6   |   6   |  2   |  Variable |   4  |
 *       |-------|-------|------|-----------|------|
 * Desc. | Dest. | Source| Type | IP Packet |  fcs |
 *       |  MAC  |  MAC  |      |	   |      |
 *       `-----------------------------------------'
 * Total: 18 non-data bytes
 *
 * In the event that fragmentation is required, the incoming payload is split
 * into N parts of size ieee->fts.  The first fragment contains the SNAP header
 * and the remaining packets are just data.
 *
 * If encryption is enabled, each fragment payload size is reduced by enough
 * space to add the prefix and postfix (IV and ICV totalling 8 bytes in
 * the case of WEP) So if you have 1500 bytes of payload with ieee->fts set to
 * 500 without encryption it will take 3 frames.  With WEP it will take 4 frames
 * as the payload of each frame is reduced to 492 bytes.
 *
 * SKB visualization
 *
 * ,- skb->data
 * |
 * |    ETHERNET HEADER        ,-<-- PAYLOAD
 * |                           |     14 bytes from skb->data
 * |  2 bytes for Type --> ,T. |     (sizeof ethhdr)
 * |                       | | |
 * |,-Dest.--. ,--Src.---. | | |
 * |  6 bytes| | 6 bytes | | | |
 * v         | |         | | | |
 * 0         | v       1 | v | v           2
 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 *     ^     | ^         | ^ |
 *     |     | |         | | |
 *     |     | |         | `T' <---- 2 bytes for Type
 *     |     | |         |
 *     |     | '---SNAP--' <-------- 6 bytes for SNAP
 *     |     |
 *     `-IV--' <-------------------- 4 bytes for IV (WEP)
 *
 *      SNAP HEADER
 *
 */

static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };

static int rtllib_put_snap(u8 *data, u16 h_proto)
{
	struct rtllib_snap_hdr *snap;
	u8 *oui;

	snap = (struct rtllib_snap_hdr *)data;
	snap->dsap = 0xaa;
	snap->ssap = 0xaa;
	snap->ctrl = 0x03;

	if (h_proto == 0x8137 || h_proto == 0x80f3)
		oui = P802_1H_OUI;
	else
		oui = RFC1042_OUI;
	snap->oui[0] = oui[0];
	snap->oui[1] = oui[1];
	snap->oui[2] = oui[2];

	*(__be16 *)(data + SNAP_SIZE) = htons(h_proto);

	return SNAP_SIZE + sizeof(u16);
}

int rtllib_encrypt_fragment(struct rtllib_device *ieee, struct sk_buff *frag,
			    int hdr_len)
{
	struct lib80211_crypt_data *crypt = NULL;
	int res;

	crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];

	if (!(crypt && crypt->ops)) {
		netdev_info(ieee->dev, "=========>%s(), crypt is null\n",
			    __func__);
		return -1;
	}
	/* To encrypt, frame format is:
	 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
	 */

	/* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
	 * call both MSDU and MPDU encryption functions from here.
	 */
	atomic_inc(&crypt->refcnt);
	res = 0;
	if (crypt->ops->encrypt_msdu)
		res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
	if (res == 0 && crypt->ops->encrypt_mpdu)
		res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);

	atomic_dec(&crypt->refcnt);
	if (res < 0) {
		netdev_info(ieee->dev, "%s: Encryption failed: len=%d.\n",
			    ieee->dev->name, frag->len);
		return -1;
	}

	return 0;
}

void rtllib_txb_free(struct rtllib_txb *txb)
{
	if (unlikely(!txb))
		return;
	kfree(txb);
}

static struct rtllib_txb *rtllib_alloc_txb(int nr_frags, int txb_size,
					   gfp_t gfp_mask)
{
	struct rtllib_txb *txb;
	int i;

	txb = kzalloc(struct_size(txb, fragments, nr_frags), gfp_mask);
	if (!txb)
		return NULL;

	txb->nr_frags = nr_frags;
	txb->frag_size = cpu_to_le16(txb_size);

	for (i = 0; i < nr_frags; i++) {
		txb->fragments[i] = dev_alloc_skb(txb_size);
		if (unlikely(!txb->fragments[i]))
			goto err_free;
		memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
	}

	return txb;

err_free:
	while (--i >= 0)
		dev_kfree_skb_any(txb->fragments[i]);
	kfree(txb);

	return NULL;
}

static int rtllib_classify(struct sk_buff *skb, u8 bIsAmsdu)
{
	struct ethhdr *eth;
	struct iphdr *ip;

	eth = (struct ethhdr *)skb->data;
	if (eth->h_proto != htons(ETH_P_IP))
		return 0;

#ifdef VERBOSE_DEBUG
	print_hex_dump_bytes("%s: ", __func__, DUMP_PREFIX_NONE, skb->data,
			     skb->len);
#endif
	ip = ip_hdr(skb);
	switch (ip->tos & 0xfc) {
	case 0x20:
		return 2;
	case 0x40:
		return 1;
	case 0x60:
		return 3;
	case 0x80:
		return 4;
	case 0xa0:
		return 5;
	case 0xc0:
		return 6;
	case 0xe0:
		return 7;
	default:
		return 0;
	}
}

static void rtllib_tx_query_agg_cap(struct rtllib_device *ieee,
				    struct sk_buff *skb,
				    struct cb_desc *tcb_desc)
{
	struct rt_hi_throughput *ht_info = ieee->ht_info;
	struct tx_ts_record *ts = NULL;
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;

	if (rtllib_act_scanning(ieee, false))
		return;

	if (!ht_info->current_ht_support || !ht_info->enable_ht)
		return;
	if (!IsQoSDataFrame(skb->data))
		return;
	if (is_multicast_ether_addr(hdr->addr1))
		return;

	if (tcb_desc->bdhcp || ieee->CntAfterLink < 2)
		return;

	if (ht_info->iot_action & HT_IOT_ACT_TX_NO_AGGREGATION)
		return;

	if (!ieee->get_nmode_support_by_sec_cfg(ieee->dev))
		return;
	if (ht_info->current_ampdu_enable) {
		if (!rtllib_get_ts(ieee, (struct ts_common_info **)(&ts), hdr->addr1,
			   skb->priority, TX_DIR, true)) {
			netdev_info(ieee->dev, "%s: can't get TS\n", __func__);
			return;
		}
		if (!ts->tx_admitted_ba_record.b_valid) {
			if (ieee->wpa_ie_len && (ieee->pairwise_key_type ==
			    KEY_TYPE_NA)) {
				;
			} else if (tcb_desc->bdhcp == 1) {
				;
			} else if (!ts->disable_add_ba) {
				TsStartAddBaProcess(ieee, ts);
			}
			return;
		} else if (!ts->using_ba) {
			if (SN_LESS(ts->tx_admitted_ba_record.ba_start_seq_ctrl.field.seq_num,
				    (ts->tx_cur_seq + 1) % 4096))
				ts->using_ba = true;
			else
				return;
		}
		if (ieee->iw_mode == IW_MODE_INFRA) {
			tcb_desc->ampdu_enable = true;
			tcb_desc->ampdu_factor = ht_info->current_ampdu_factor;
			tcb_desc->ampdu_density = ht_info->current_mpdu_density;
		}
	}
}

static void rtllib_query_ShortPreambleMode(struct rtllib_device *ieee,
					   struct cb_desc *tcb_desc)
{
	tcb_desc->bUseShortPreamble = false;
	if (tcb_desc->data_rate == 2)
		return;
	else if (ieee->current_network.capability &
		 WLAN_CAPABILITY_SHORT_PREAMBLE)
		tcb_desc->bUseShortPreamble = true;
}

static void rtllib_query_HTCapShortGI(struct rtllib_device *ieee,
				      struct cb_desc *tcb_desc)
{
	struct rt_hi_throughput *ht_info = ieee->ht_info;

	tcb_desc->bUseShortGI		= false;

	if (!ht_info->current_ht_support || !ht_info->enable_ht)
		return;

	if (ht_info->cur_bw_40mhz && ht_info->cur_short_gi_40mhz)
		tcb_desc->bUseShortGI = true;
	else if (!ht_info->cur_bw_40mhz && ht_info->cur_short_gi_20mhz)
		tcb_desc->bUseShortGI = true;
}

static void rtllib_query_BandwidthMode(struct rtllib_device *ieee,
				       struct cb_desc *tcb_desc)
{
	struct rt_hi_throughput *ht_info = ieee->ht_info;

	tcb_desc->bPacketBW = false;

	if (!ht_info->current_ht_support || !ht_info->enable_ht)
		return;

	if (tcb_desc->multicast || tcb_desc->bBroadcast)
		return;

	if ((tcb_desc->data_rate & 0x80) == 0)
		return;
	if (ht_info->cur_bw_40mhz && ht_info->cur_tx_bw40mhz &&
	    !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
		tcb_desc->bPacketBW = true;
}

static void rtllib_query_protectionmode(struct rtllib_device *ieee,
					struct cb_desc *tcb_desc,
					struct sk_buff *skb)
{
	struct rt_hi_throughput *ht_info;

	tcb_desc->bRTSSTBC			= false;
	tcb_desc->bRTSUseShortGI		= false;
	tcb_desc->bCTSEnable			= false;
	tcb_desc->RTSSC				= 0;
	tcb_desc->bRTSBW			= false;

	if (tcb_desc->bBroadcast || tcb_desc->multicast)
		return;

	if (is_broadcast_ether_addr(skb->data + 16))
		return;

	if (ieee->mode < WIRELESS_MODE_N_24G) {
		if (skb->len > ieee->rts) {
			tcb_desc->bRTSEnable = true;
			tcb_desc->rts_rate = MGN_24M;
		} else if (ieee->current_network.buseprotection) {
			tcb_desc->bRTSEnable = true;
			tcb_desc->bCTSEnable = true;
			tcb_desc->rts_rate = MGN_24M;
		}
		return;
	}

	ht_info = ieee->ht_info;

	while (true) {
		if (ht_info->iot_action & HT_IOT_ACT_FORCED_CTS2SELF) {
			tcb_desc->bCTSEnable	= true;
			tcb_desc->rts_rate  =	MGN_24M;
			tcb_desc->bRTSEnable = true;
			break;
		} else if (ht_info->iot_action & (HT_IOT_ACT_FORCED_RTS |
			   HT_IOT_ACT_PURE_N_MODE)) {
			tcb_desc->bRTSEnable = true;
			tcb_desc->rts_rate  =	MGN_24M;
			break;
		}
		if (ieee->current_network.buseprotection) {
			tcb_desc->bRTSEnable = true;
			tcb_desc->bCTSEnable = true;
			tcb_desc->rts_rate = MGN_24M;
			break;
		}
		if (ht_info->current_ht_support && ht_info->enable_ht) {
			u8 HTOpMode = ht_info->current_op_mode;

			if ((ht_info->cur_bw_40mhz && (HTOpMode == 2 ||
						      HTOpMode == 3)) ||
			     (!ht_info->cur_bw_40mhz && HTOpMode == 3)) {
				tcb_desc->rts_rate = MGN_24M;
				tcb_desc->bRTSEnable = true;
				break;
			}
		}
		if (skb->len > ieee->rts) {
			tcb_desc->rts_rate = MGN_24M;
			tcb_desc->bRTSEnable = true;
			break;
		}
		if (tcb_desc->ampdu_enable) {
			tcb_desc->rts_rate = MGN_24M;
			tcb_desc->bRTSEnable = false;
			break;
		}
		goto NO_PROTECTION;
	}
	if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
		tcb_desc->bUseShortPreamble = true;
	return;
NO_PROTECTION:
	tcb_desc->bRTSEnable	= false;
	tcb_desc->bCTSEnable	= false;
	tcb_desc->rts_rate	= 0;
	tcb_desc->RTSSC		= 0;
	tcb_desc->bRTSBW	= false;
}

static void rtllib_txrate_selectmode(struct rtllib_device *ieee,
				     struct cb_desc *tcb_desc)
{
	if (ieee->tx_dis_rate_fallback)
		tcb_desc->tx_dis_rate_fallback = true;

	if (ieee->tx_use_drv_assinged_rate)
		tcb_desc->tx_use_drv_assinged_rate = true;
	if (!tcb_desc->tx_dis_rate_fallback ||
	    !tcb_desc->tx_use_drv_assinged_rate) {
		if (ieee->iw_mode == IW_MODE_INFRA)
			tcb_desc->ratr_index = 0;
	}
}

static u16 rtllib_query_seqnum(struct rtllib_device *ieee, struct sk_buff *skb,
			       u8 *dst)
{
	u16 seqnum = 0;

	if (is_multicast_ether_addr(dst))
		return 0;
	if (IsQoSDataFrame(skb->data)) {
		struct tx_ts_record *ts = NULL;

		if (!rtllib_get_ts(ieee, (struct ts_common_info **)(&ts), dst,
			   skb->priority, TX_DIR, true))
			return 0;
		seqnum = ts->tx_cur_seq;
		ts->tx_cur_seq = (ts->tx_cur_seq + 1) % 4096;
		return seqnum;
	}
	return 0;
}

static int wme_downgrade_ac(struct sk_buff *skb)
{
	switch (skb->priority) {
	case 6:
	case 7:
		skb->priority = 5; /* VO -> VI */
		return 0;
	case 4:
	case 5:
		skb->priority = 3; /* VI -> BE */
		return 0;
	case 0:
	case 3:
		skb->priority = 1; /* BE -> BK */
		return 0;
	default:
		return -1;
	}
}

static u8 rtllib_current_rate(struct rtllib_device *ieee)
{
	if (ieee->mode & IEEE_MODE_MASK)
		return ieee->rate;

	if (ieee->HTCurrentOperaRate)
		return ieee->HTCurrentOperaRate;
	else
		return ieee->rate & 0x7F;
}

static int rtllib_xmit_inter(struct sk_buff *skb, struct net_device *dev)
{
	struct rtllib_device *ieee = (struct rtllib_device *)
				     netdev_priv_rsl(dev);
	struct rtllib_txb *txb = NULL;
	struct ieee80211_qos_hdr *frag_hdr;
	int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
	unsigned long flags;
	struct net_device_stats *stats = &ieee->stats;
	int ether_type = 0, encrypt;
	int bytes, fc, qos_ctl = 0, hdr_len;
	struct sk_buff *skb_frag;
	struct ieee80211_qos_hdr header = { /* Ensure zero initialized */
		.duration_id = 0,
		.seq_ctrl = 0,
		.qos_ctrl = 0
	};
	int qos_activated = ieee->current_network.qos_data.active;
	u8 dest[ETH_ALEN];
	u8 src[ETH_ALEN];
	struct lib80211_crypt_data *crypt = NULL;
	struct cb_desc *tcb_desc;
	u8 bIsMulticast = false;
	u8 IsAmsdu = false;
	bool	bdhcp = false;

	spin_lock_irqsave(&ieee->lock, flags);

	/* If there is no driver handler to take the TXB, don't bother
	 * creating it...
	 */
	if (!(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) ||
	   ((!ieee->softmac_data_hard_start_xmit &&
	   (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
		netdev_warn(ieee->dev, "No xmit handler.\n");
		goto success;
	}

	if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
		netdev_warn(ieee->dev, "skb too small (%d).\n",
			    skb->len);
		goto success;
	}
	/* Save source and destination addresses */
	ether_addr_copy(dest, skb->data);
	ether_addr_copy(src, skb->data + ETH_ALEN);

	memset(skb->cb, 0, sizeof(skb->cb));
	ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);

	if (ieee->iw_mode == IW_MODE_MONITOR) {
		txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
		if (unlikely(!txb)) {
			netdev_warn(ieee->dev,
				    "Could not allocate TXB\n");
			goto failed;
		}

		txb->encrypted = 0;
		txb->payload_size = cpu_to_le16(skb->len);
		skb_put_data(txb->fragments[0], skb->data, skb->len);

		goto success;
	}

	if (skb->len > 282) {
		if (ether_type == ETH_P_IP) {
			const struct iphdr *ip = (struct iphdr *)
				((u8 *)skb->data + 14);
			if (ip->protocol == IPPROTO_UDP) {
				struct udphdr *udp;

				udp = (struct udphdr *)((u8 *)ip +
				      (ip->ihl << 2));
				if (((((u8 *)udp)[1] == 68) &&
				     (((u8 *)udp)[3] == 67)) ||
				   ((((u8 *)udp)[1] == 67) &&
				   (((u8 *)udp)[3] == 68))) {
					bdhcp = true;
					ieee->lps_delay_cnt = 200;
				}
			}
		} else if (ether_type == ETH_P_ARP) {
			netdev_info(ieee->dev,
				    "=================>DHCP Protocol start tx ARP pkt!!\n");
			bdhcp = true;
			ieee->lps_delay_cnt =
				 ieee->current_network.tim.tim_count;
		}
	}

	skb->priority = rtllib_classify(skb, IsAmsdu);
	crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
	encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) && crypt && crypt->ops;
	if (!encrypt && ieee->ieee802_1x &&
	    ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
		stats->tx_dropped++;
		goto success;
	}
	if (crypt && !encrypt && ether_type == ETH_P_PAE) {
		struct eapol *eap = (struct eapol *)(skb->data +
			sizeof(struct ethhdr) - SNAP_SIZE -
			sizeof(u16));
		netdev_dbg(ieee->dev,
			   "TX: IEEE 802.11 EAPOL frame: %s\n",
			   eap_get_type(eap->type));
	}

	/* Advance the SKB to the start of the payload */
	skb_pull(skb, sizeof(struct ethhdr));

	/* Determine total amount of storage required for TXB packets */
	bytes = skb->len + SNAP_SIZE + sizeof(u16);

	if (encrypt)
		fc = RTLLIB_FTYPE_DATA | IEEE80211_FCTL_PROTECTED;
	else
		fc = RTLLIB_FTYPE_DATA;

	if (qos_activated)
		fc |= IEEE80211_STYPE_QOS_DATA;
	else
		fc |= IEEE80211_STYPE_DATA;

	if (ieee->iw_mode == IW_MODE_INFRA) {
		fc |= IEEE80211_FCTL_TODS;
		/* To DS: Addr1 = BSSID, Addr2 = SA,
		 * Addr3 = DA
		 */
		ether_addr_copy(header.addr1,
				ieee->current_network.bssid);
		ether_addr_copy(header.addr2, src);
		if (IsAmsdu)
			ether_addr_copy(header.addr3,
					ieee->current_network.bssid);
		else
			ether_addr_copy(header.addr3, dest);
	}

	bIsMulticast = is_multicast_ether_addr(header.addr1);

	header.frame_control = cpu_to_le16(fc);

	/* Determine fragmentation size based on destination (multicast
	 * and broadcast are not fragmented)
	 */
	if (bIsMulticast) {
		frag_size = MAX_FRAG_THRESHOLD;
		qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
	} else {
		frag_size = ieee->fts;
		qos_ctl = 0;
	}

	if (qos_activated) {
		hdr_len = RTLLIB_3ADDR_LEN + 2;

		/* in case we are a client verify acm is not set for this ac */
		while (unlikely(ieee->wmm_acm & (0x01 << skb->priority))) {
			netdev_info(ieee->dev, "skb->priority = %x\n",
				    skb->priority);
			if (wme_downgrade_ac(skb))
				break;
			netdev_info(ieee->dev, "converted skb->priority = %x\n",
				    skb->priority);
		}

		qos_ctl |= skb->priority;
		header.qos_ctrl = cpu_to_le16(qos_ctl & RTLLIB_QOS_TID);

	} else {
		hdr_len = RTLLIB_3ADDR_LEN;
	}
	/* Determine amount of payload per fragment.  Regardless of if
	 * this stack is providing the full 802.11 header, one will
	 * eventually be affixed to this fragment -- so we must account
	 * for it when determining the amount of payload space.
	 */
	bytes_per_frag = frag_size - hdr_len;
	if (ieee->config &
	   (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
		bytes_per_frag -= RTLLIB_FCS_LEN;

	/* Each fragment may need to have room for encrypting
	 * pre/postfix
	 */
	if (encrypt) {
		bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
			crypt->ops->extra_mpdu_postfix_len +
			crypt->ops->extra_msdu_prefix_len +
			crypt->ops->extra_msdu_postfix_len;
	}
	/* Number of fragments is the total bytes_per_frag /
	 * payload_per_fragment
	 */
	nr_frags = bytes / bytes_per_frag;
	bytes_last_frag = bytes % bytes_per_frag;
	if (bytes_last_frag)
		nr_frags++;
	else
		bytes_last_frag = bytes_per_frag;

	/* When we allocate the TXB we allocate enough space for the
	 * reserve and full fragment bytes (bytes_per_frag doesn't
	 * include prefix, postfix, header, FCS, etc.)
	 */
	txb = rtllib_alloc_txb(nr_frags, frag_size +
			       ieee->tx_headroom, GFP_ATOMIC);
	if (unlikely(!txb)) {
		netdev_warn(ieee->dev, "Could not allocate TXB\n");
		goto failed;
	}
	txb->encrypted = encrypt;
	txb->payload_size = cpu_to_le16(bytes);

	if (qos_activated)
		txb->queue_index = UP2AC(skb->priority);
	else
		txb->queue_index = WME_AC_BE;

	for (i = 0; i < nr_frags; i++) {
		skb_frag = txb->fragments[i];
		tcb_desc = (struct cb_desc *)(skb_frag->cb +
			    MAX_DEV_ADDR_SIZE);
		if (qos_activated) {
			skb_frag->priority = skb->priority;
			tcb_desc->queue_index =  UP2AC(skb->priority);
		} else {
			skb_frag->priority = WME_AC_BE;
			tcb_desc->queue_index = WME_AC_BE;
		}
		skb_reserve(skb_frag, ieee->tx_headroom);

		if (encrypt) {
			if (ieee->hwsec_active)
				tcb_desc->bHwSec = 1;
			else
				tcb_desc->bHwSec = 0;
			skb_reserve(skb_frag,
				    crypt->ops->extra_mpdu_prefix_len +
				    crypt->ops->extra_msdu_prefix_len);
		} else {
			tcb_desc->bHwSec = 0;
		}
		frag_hdr = skb_put_data(skb_frag, &header, hdr_len);

		/* If this is not the last fragment, then add the
		 * MOREFRAGS bit to the frame control
		 */
		if (i != nr_frags - 1) {
			frag_hdr->frame_control = cpu_to_le16(fc |
							  IEEE80211_FCTL_MOREFRAGS);
			bytes = bytes_per_frag;

		} else {
			/* The last fragment has the remaining length */
			bytes = bytes_last_frag;
		}
		if ((qos_activated) && (!bIsMulticast)) {
			frag_hdr->seq_ctrl =
				 cpu_to_le16(rtllib_query_seqnum(ieee, skb_frag,
								 header.addr1));
			frag_hdr->seq_ctrl =
				 cpu_to_le16(le16_to_cpu(frag_hdr->seq_ctrl) << 4 | i);
		} else {
			frag_hdr->seq_ctrl =
				 cpu_to_le16(ieee->seq_ctrl[0] << 4 | i);
		}
		/* Put a SNAP header on the first fragment */
		if (i == 0) {
			rtllib_put_snap(skb_put(skb_frag,
						SNAP_SIZE +
						sizeof(u16)), ether_type);
			bytes -= SNAP_SIZE + sizeof(u16);
		}

		skb_put_data(skb_frag, skb->data, bytes);

		/* Advance the SKB... */
		skb_pull(skb, bytes);

		/* Encryption routine will move the header forward in
		 * order to insert the IV between the header and the
		 * payload
		 */
		if (encrypt)
			rtllib_encrypt_fragment(ieee, skb_frag,
						hdr_len);
		if (ieee->config &
		   (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
			skb_put(skb_frag, 4);
	}

	if ((qos_activated) && (!bIsMulticast)) {
		if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
			ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
		else
			ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
	} else {
		if (ieee->seq_ctrl[0] == 0xFFF)
			ieee->seq_ctrl[0] = 0;
		else
			ieee->seq_ctrl[0]++;
	}

 success:
	if (txb) {
		tcb_desc = (struct cb_desc *)
				(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
		tcb_desc->tx_enable_fw_calc_dur = 1;
		tcb_desc->priority = skb->priority;

		if (ether_type == ETH_P_PAE) {
			if (ieee->ht_info->iot_action &
			    HT_IOT_ACT_WA_IOT_Broadcom) {
				tcb_desc->data_rate =
					 mgnt_query_tx_rate_exclude_cck_rates(ieee);
				tcb_desc->tx_dis_rate_fallback = false;
			} else {
				tcb_desc->data_rate = ieee->basic_rate;
				tcb_desc->tx_dis_rate_fallback = 1;
			}

			tcb_desc->ratr_index = 7;
			tcb_desc->tx_use_drv_assinged_rate = 1;
		} else {
			if (is_multicast_ether_addr(header.addr1))
				tcb_desc->multicast = 1;
			if (is_broadcast_ether_addr(header.addr1))
				tcb_desc->bBroadcast = 1;
			rtllib_txrate_selectmode(ieee, tcb_desc);
			if (tcb_desc->multicast ||  tcb_desc->bBroadcast)
				tcb_desc->data_rate = ieee->basic_rate;
			else
				tcb_desc->data_rate = rtllib_current_rate(ieee);

			if (bdhcp) {
				if (ieee->ht_info->iot_action &
				    HT_IOT_ACT_WA_IOT_Broadcom) {
					tcb_desc->data_rate =
					   mgnt_query_tx_rate_exclude_cck_rates(ieee);
					tcb_desc->tx_dis_rate_fallback = false;
				} else {
					tcb_desc->data_rate = MGN_1M;
					tcb_desc->tx_dis_rate_fallback = 1;
				}

				tcb_desc->ratr_index = 7;
				tcb_desc->tx_use_drv_assinged_rate = 1;
				tcb_desc->bdhcp = 1;
			}

			rtllib_query_ShortPreambleMode(ieee, tcb_desc);
			rtllib_tx_query_agg_cap(ieee, txb->fragments[0],
						tcb_desc);
			rtllib_query_HTCapShortGI(ieee, tcb_desc);
			rtllib_query_BandwidthMode(ieee, tcb_desc);
			rtllib_query_protectionmode(ieee, tcb_desc,
						    txb->fragments[0]);
		}
	}
	spin_unlock_irqrestore(&ieee->lock, flags);
	dev_kfree_skb_any(skb);
	if (txb) {
		if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) {
			dev->stats.tx_packets++;
			dev->stats.tx_bytes += le16_to_cpu(txb->payload_size);
			rtllib_softmac_xmit(txb, ieee);
		} else {
			rtllib_txb_free(txb);
		}
	}

	return 0;

 failed:
	spin_unlock_irqrestore(&ieee->lock, flags);
	netif_stop_queue(dev);
	stats->tx_errors++;
	return 1;
}

netdev_tx_t rtllib_xmit(struct sk_buff *skb, struct net_device *dev)
{
	memset(skb->cb, 0, sizeof(skb->cb));
	return rtllib_xmit_inter(skb, dev) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
}
EXPORT_SYMBOL(rtllib_xmit);