Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved. * * Contact Information: * James P. Ketrenos <ipw2100-admin@linux.intel.com> * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * Few modifications for Realtek's Wi-Fi drivers by * Andrea Merello <andrea.merello@gmail.com> * * A special thanks goes to Realtek for their support ! */ #include <linux/compiler.h> #include <linux/errno.h> #include <linux/if_arp.h> #include <linux/in6.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/pci.h> #include <linux/proc_fs.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/tcp.h> #include <linux/types.h> #include <linux/wireless.h> #include <linux/etherdevice.h> #include <linux/uaccess.h> #include <linux/if_vlan.h> #include "rtllib.h" /* 802.11 Data Frame * * * 802.11 frame_control for data frames - 2 bytes * ,--------------------------------------------------------------------. * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----| * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x | * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----| * desc | ver | type | ^-subtype-^ |to |from|more|retry| pwr |more |wep | * | | | x=0 data |DS | DS |frag| | mgm |data | | * | | | x=1 data+ack | | | | | | | | * '--------------------------------------------------------------------' * /\ * | * 802.11 Data Frame | * ,--------- 'ctrl' expands to >---' * | * ,--'---,-------------------------------------------------------------. * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 | * |------|------|---------|---------|---------|------|---------|------| * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs | * | | tion | (BSSID) | | | ence | data | | * `--------------------------------------------------| |------' * Total: 28 non-data bytes `----.----' * | * .- 'Frame data' expands to <---------------------------' * | * V * ,---------------------------------------------------. * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 | * |------|------|---------|----------|------|---------| * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP | * | DSAP | SSAP | | | | Packet | * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | | * `-----------------------------------------| | * Total: 8 non-data bytes `----.----' * | * .- 'IP Packet' expands, if WEP enabled, to <--' * | * V * ,-----------------------. * Bytes | 4 | 0-2296 | 4 | * |-----|-----------|-----| * Desc. | IV | Encrypted | ICV | * | | IP Packet | | * `-----------------------' * Total: 8 non-data bytes * * * 802.3 Ethernet Data Frame * * ,-----------------------------------------. * Bytes | 6 | 6 | 2 | Variable | 4 | * |-------|-------|------|-----------|------| * Desc. | Dest. | Source| Type | IP Packet | fcs | * | MAC | MAC | | | | * `-----------------------------------------' * Total: 18 non-data bytes * * In the event that fragmentation is required, the incoming payload is split * into N parts of size ieee->fts. The first fragment contains the SNAP header * and the remaining packets are just data. * * If encryption is enabled, each fragment payload size is reduced by enough * space to add the prefix and postfix (IV and ICV totalling 8 bytes in * the case of WEP) So if you have 1500 bytes of payload with ieee->fts set to * 500 without encryption it will take 3 frames. With WEP it will take 4 frames * as the payload of each frame is reduced to 492 bytes. * * SKB visualization * * ,- skb->data * | * | ETHERNET HEADER ,-<-- PAYLOAD * | | 14 bytes from skb->data * | 2 bytes for Type --> ,T. | (sizeof ethhdr) * | | | | * |,-Dest.--. ,--Src.---. | | | * | 6 bytes| | 6 bytes | | | | * v | | | | | | * 0 | v 1 | v | v 2 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 * ^ | ^ | ^ | * | | | | | | * | | | | `T' <---- 2 bytes for Type * | | | | * | | '---SNAP--' <-------- 6 bytes for SNAP * | | * `-IV--' <-------------------- 4 bytes for IV (WEP) * * SNAP HEADER * */ static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 }; static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 }; static int rtllib_put_snap(u8 *data, u16 h_proto) { struct rtllib_snap_hdr *snap; u8 *oui; snap = (struct rtllib_snap_hdr *)data; snap->dsap = 0xaa; snap->ssap = 0xaa; snap->ctrl = 0x03; if (h_proto == 0x8137 || h_proto == 0x80f3) oui = P802_1H_OUI; else oui = RFC1042_OUI; snap->oui[0] = oui[0]; snap->oui[1] = oui[1]; snap->oui[2] = oui[2]; *(__be16 *)(data + SNAP_SIZE) = htons(h_proto); return SNAP_SIZE + sizeof(u16); } int rtllib_encrypt_fragment(struct rtllib_device *ieee, struct sk_buff *frag, int hdr_len) { struct lib80211_crypt_data *crypt = NULL; int res; crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; if (!(crypt && crypt->ops)) { netdev_info(ieee->dev, "=========>%s(), crypt is null\n", __func__); return -1; } /* To encrypt, frame format is: * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) */ /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so * call both MSDU and MPDU encryption functions from here. */ atomic_inc(&crypt->refcnt); res = 0; if (crypt->ops->encrypt_msdu) res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv); if (res == 0 && crypt->ops->encrypt_mpdu) res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv); atomic_dec(&crypt->refcnt); if (res < 0) { netdev_info(ieee->dev, "%s: Encryption failed: len=%d.\n", ieee->dev->name, frag->len); return -1; } return 0; } void rtllib_txb_free(struct rtllib_txb *txb) { if (unlikely(!txb)) return; kfree(txb); } static struct rtllib_txb *rtllib_alloc_txb(int nr_frags, int txb_size, gfp_t gfp_mask) { struct rtllib_txb *txb; int i; txb = kzalloc(struct_size(txb, fragments, nr_frags), gfp_mask); if (!txb) return NULL; txb->nr_frags = nr_frags; txb->frag_size = cpu_to_le16(txb_size); for (i = 0; i < nr_frags; i++) { txb->fragments[i] = dev_alloc_skb(txb_size); if (unlikely(!txb->fragments[i])) goto err_free; memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb)); } return txb; err_free: while (--i >= 0) dev_kfree_skb_any(txb->fragments[i]); kfree(txb); return NULL; } static int rtllib_classify(struct sk_buff *skb, u8 bIsAmsdu) { struct ethhdr *eth; struct iphdr *ip; eth = (struct ethhdr *)skb->data; if (eth->h_proto != htons(ETH_P_IP)) return 0; #ifdef VERBOSE_DEBUG print_hex_dump_bytes("%s: ", __func__, DUMP_PREFIX_NONE, skb->data, skb->len); #endif ip = ip_hdr(skb); switch (ip->tos & 0xfc) { case 0x20: return 2; case 0x40: return 1; case 0x60: return 3; case 0x80: return 4; case 0xa0: return 5; case 0xc0: return 6; case 0xe0: return 7; default: return 0; } } static void rtllib_tx_query_agg_cap(struct rtllib_device *ieee, struct sk_buff *skb, struct cb_desc *tcb_desc) { struct rt_hi_throughput *ht_info = ieee->ht_info; struct tx_ts_record *ts = NULL; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; if (rtllib_act_scanning(ieee, false)) return; if (!ht_info->current_ht_support || !ht_info->enable_ht) return; if (!IsQoSDataFrame(skb->data)) return; if (is_multicast_ether_addr(hdr->addr1)) return; if (tcb_desc->bdhcp || ieee->CntAfterLink < 2) return; if (ht_info->iot_action & HT_IOT_ACT_TX_NO_AGGREGATION) return; if (!ieee->get_nmode_support_by_sec_cfg(ieee->dev)) return; if (ht_info->current_ampdu_enable) { if (!rtllib_get_ts(ieee, (struct ts_common_info **)(&ts), hdr->addr1, skb->priority, TX_DIR, true)) { netdev_info(ieee->dev, "%s: can't get TS\n", __func__); return; } if (!ts->tx_admitted_ba_record.b_valid) { if (ieee->wpa_ie_len && (ieee->pairwise_key_type == KEY_TYPE_NA)) { ; } else if (tcb_desc->bdhcp == 1) { ; } else if (!ts->disable_add_ba) { TsStartAddBaProcess(ieee, ts); } return; } else if (!ts->using_ba) { if (SN_LESS(ts->tx_admitted_ba_record.ba_start_seq_ctrl.field.seq_num, (ts->tx_cur_seq + 1) % 4096)) ts->using_ba = true; else return; } if (ieee->iw_mode == IW_MODE_INFRA) { tcb_desc->ampdu_enable = true; tcb_desc->ampdu_factor = ht_info->current_ampdu_factor; tcb_desc->ampdu_density = ht_info->current_mpdu_density; } } } static void rtllib_query_ShortPreambleMode(struct rtllib_device *ieee, struct cb_desc *tcb_desc) { tcb_desc->bUseShortPreamble = false; if (tcb_desc->data_rate == 2) return; else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE) tcb_desc->bUseShortPreamble = true; } static void rtllib_query_HTCapShortGI(struct rtllib_device *ieee, struct cb_desc *tcb_desc) { struct rt_hi_throughput *ht_info = ieee->ht_info; tcb_desc->bUseShortGI = false; if (!ht_info->current_ht_support || !ht_info->enable_ht) return; if (ht_info->cur_bw_40mhz && ht_info->cur_short_gi_40mhz) tcb_desc->bUseShortGI = true; else if (!ht_info->cur_bw_40mhz && ht_info->cur_short_gi_20mhz) tcb_desc->bUseShortGI = true; } static void rtllib_query_BandwidthMode(struct rtllib_device *ieee, struct cb_desc *tcb_desc) { struct rt_hi_throughput *ht_info = ieee->ht_info; tcb_desc->bPacketBW = false; if (!ht_info->current_ht_support || !ht_info->enable_ht) return; if (tcb_desc->multicast || tcb_desc->bBroadcast) return; if ((tcb_desc->data_rate & 0x80) == 0) return; if (ht_info->cur_bw_40mhz && ht_info->cur_tx_bw40mhz && !ieee->bandwidth_auto_switch.bforced_tx20Mhz) tcb_desc->bPacketBW = true; } static void rtllib_query_protectionmode(struct rtllib_device *ieee, struct cb_desc *tcb_desc, struct sk_buff *skb) { struct rt_hi_throughput *ht_info; tcb_desc->bRTSSTBC = false; tcb_desc->bRTSUseShortGI = false; tcb_desc->bCTSEnable = false; tcb_desc->RTSSC = 0; tcb_desc->bRTSBW = false; if (tcb_desc->bBroadcast || tcb_desc->multicast) return; if (is_broadcast_ether_addr(skb->data + 16)) return; if (ieee->mode < WIRELESS_MODE_N_24G) { if (skb->len > ieee->rts) { tcb_desc->bRTSEnable = true; tcb_desc->rts_rate = MGN_24M; } else if (ieee->current_network.buseprotection) { tcb_desc->bRTSEnable = true; tcb_desc->bCTSEnable = true; tcb_desc->rts_rate = MGN_24M; } return; } ht_info = ieee->ht_info; while (true) { if (ht_info->iot_action & HT_IOT_ACT_FORCED_CTS2SELF) { tcb_desc->bCTSEnable = true; tcb_desc->rts_rate = MGN_24M; tcb_desc->bRTSEnable = true; break; } else if (ht_info->iot_action & (HT_IOT_ACT_FORCED_RTS | HT_IOT_ACT_PURE_N_MODE)) { tcb_desc->bRTSEnable = true; tcb_desc->rts_rate = MGN_24M; break; } if (ieee->current_network.buseprotection) { tcb_desc->bRTSEnable = true; tcb_desc->bCTSEnable = true; tcb_desc->rts_rate = MGN_24M; break; } if (ht_info->current_ht_support && ht_info->enable_ht) { u8 HTOpMode = ht_info->current_op_mode; if ((ht_info->cur_bw_40mhz && (HTOpMode == 2 || HTOpMode == 3)) || (!ht_info->cur_bw_40mhz && HTOpMode == 3)) { tcb_desc->rts_rate = MGN_24M; tcb_desc->bRTSEnable = true; break; } } if (skb->len > ieee->rts) { tcb_desc->rts_rate = MGN_24M; tcb_desc->bRTSEnable = true; break; } if (tcb_desc->ampdu_enable) { tcb_desc->rts_rate = MGN_24M; tcb_desc->bRTSEnable = false; break; } goto NO_PROTECTION; } if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE) tcb_desc->bUseShortPreamble = true; return; NO_PROTECTION: tcb_desc->bRTSEnable = false; tcb_desc->bCTSEnable = false; tcb_desc->rts_rate = 0; tcb_desc->RTSSC = 0; tcb_desc->bRTSBW = false; } static void rtllib_txrate_selectmode(struct rtllib_device *ieee, struct cb_desc *tcb_desc) { if (ieee->tx_dis_rate_fallback) tcb_desc->tx_dis_rate_fallback = true; if (ieee->tx_use_drv_assinged_rate) tcb_desc->tx_use_drv_assinged_rate = true; if (!tcb_desc->tx_dis_rate_fallback || !tcb_desc->tx_use_drv_assinged_rate) { if (ieee->iw_mode == IW_MODE_INFRA) tcb_desc->ratr_index = 0; } } static u16 rtllib_query_seqnum(struct rtllib_device *ieee, struct sk_buff *skb, u8 *dst) { u16 seqnum = 0; if (is_multicast_ether_addr(dst)) return 0; if (IsQoSDataFrame(skb->data)) { struct tx_ts_record *ts = NULL; if (!rtllib_get_ts(ieee, (struct ts_common_info **)(&ts), dst, skb->priority, TX_DIR, true)) return 0; seqnum = ts->tx_cur_seq; ts->tx_cur_seq = (ts->tx_cur_seq + 1) % 4096; return seqnum; } return 0; } static int wme_downgrade_ac(struct sk_buff *skb) { switch (skb->priority) { case 6: case 7: skb->priority = 5; /* VO -> VI */ return 0; case 4: case 5: skb->priority = 3; /* VI -> BE */ return 0; case 0: case 3: skb->priority = 1; /* BE -> BK */ return 0; default: return -1; } } static u8 rtllib_current_rate(struct rtllib_device *ieee) { if (ieee->mode & IEEE_MODE_MASK) return ieee->rate; if (ieee->HTCurrentOperaRate) return ieee->HTCurrentOperaRate; else return ieee->rate & 0x7F; } static int rtllib_xmit_inter(struct sk_buff *skb, struct net_device *dev) { struct rtllib_device *ieee = (struct rtllib_device *) netdev_priv_rsl(dev); struct rtllib_txb *txb = NULL; struct ieee80211_qos_hdr *frag_hdr; int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size; unsigned long flags; struct net_device_stats *stats = &ieee->stats; int ether_type = 0, encrypt; int bytes, fc, qos_ctl = 0, hdr_len; struct sk_buff *skb_frag; struct ieee80211_qos_hdr header = { /* Ensure zero initialized */ .duration_id = 0, .seq_ctrl = 0, .qos_ctrl = 0 }; int qos_activated = ieee->current_network.qos_data.active; u8 dest[ETH_ALEN]; u8 src[ETH_ALEN]; struct lib80211_crypt_data *crypt = NULL; struct cb_desc *tcb_desc; u8 bIsMulticast = false; u8 IsAmsdu = false; bool bdhcp = false; spin_lock_irqsave(&ieee->lock, flags); /* If there is no driver handler to take the TXB, don't bother * creating it... */ if (!(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) || ((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) { netdev_warn(ieee->dev, "No xmit handler.\n"); goto success; } if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) { netdev_warn(ieee->dev, "skb too small (%d).\n", skb->len); goto success; } /* Save source and destination addresses */ ether_addr_copy(dest, skb->data); ether_addr_copy(src, skb->data + ETH_ALEN); memset(skb->cb, 0, sizeof(skb->cb)); ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto); if (ieee->iw_mode == IW_MODE_MONITOR) { txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC); if (unlikely(!txb)) { netdev_warn(ieee->dev, "Could not allocate TXB\n"); goto failed; } txb->encrypted = 0; txb->payload_size = cpu_to_le16(skb->len); skb_put_data(txb->fragments[0], skb->data, skb->len); goto success; } if (skb->len > 282) { if (ether_type == ETH_P_IP) { const struct iphdr *ip = (struct iphdr *) ((u8 *)skb->data + 14); if (ip->protocol == IPPROTO_UDP) { struct udphdr *udp; udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); if (((((u8 *)udp)[1] == 68) && (((u8 *)udp)[3] == 67)) || ((((u8 *)udp)[1] == 67) && (((u8 *)udp)[3] == 68))) { bdhcp = true; ieee->lps_delay_cnt = 200; } } } else if (ether_type == ETH_P_ARP) { netdev_info(ieee->dev, "=================>DHCP Protocol start tx ARP pkt!!\n"); bdhcp = true; ieee->lps_delay_cnt = ieee->current_network.tim.tim_count; } } skb->priority = rtllib_classify(skb, IsAmsdu); crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) && crypt && crypt->ops; if (!encrypt && ieee->ieee802_1x && ieee->drop_unencrypted && ether_type != ETH_P_PAE) { stats->tx_dropped++; goto success; } if (crypt && !encrypt && ether_type == ETH_P_PAE) { struct eapol *eap = (struct eapol *)(skb->data + sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16)); netdev_dbg(ieee->dev, "TX: IEEE 802.11 EAPOL frame: %s\n", eap_get_type(eap->type)); } /* Advance the SKB to the start of the payload */ skb_pull(skb, sizeof(struct ethhdr)); /* Determine total amount of storage required for TXB packets */ bytes = skb->len + SNAP_SIZE + sizeof(u16); if (encrypt) fc = RTLLIB_FTYPE_DATA | IEEE80211_FCTL_PROTECTED; else fc = RTLLIB_FTYPE_DATA; if (qos_activated) fc |= IEEE80211_STYPE_QOS_DATA; else fc |= IEEE80211_STYPE_DATA; if (ieee->iw_mode == IW_MODE_INFRA) { fc |= IEEE80211_FCTL_TODS; /* To DS: Addr1 = BSSID, Addr2 = SA, * Addr3 = DA */ ether_addr_copy(header.addr1, ieee->current_network.bssid); ether_addr_copy(header.addr2, src); if (IsAmsdu) ether_addr_copy(header.addr3, ieee->current_network.bssid); else ether_addr_copy(header.addr3, dest); } bIsMulticast = is_multicast_ether_addr(header.addr1); header.frame_control = cpu_to_le16(fc); /* Determine fragmentation size based on destination (multicast * and broadcast are not fragmented) */ if (bIsMulticast) { frag_size = MAX_FRAG_THRESHOLD; qos_ctl |= QOS_CTL_NOTCONTAIN_ACK; } else { frag_size = ieee->fts; qos_ctl = 0; } if (qos_activated) { hdr_len = RTLLIB_3ADDR_LEN + 2; /* in case we are a client verify acm is not set for this ac */ while (unlikely(ieee->wmm_acm & (0x01 << skb->priority))) { netdev_info(ieee->dev, "skb->priority = %x\n", skb->priority); if (wme_downgrade_ac(skb)) break; netdev_info(ieee->dev, "converted skb->priority = %x\n", skb->priority); } qos_ctl |= skb->priority; header.qos_ctrl = cpu_to_le16(qos_ctl & RTLLIB_QOS_TID); } else { hdr_len = RTLLIB_3ADDR_LEN; } /* Determine amount of payload per fragment. Regardless of if * this stack is providing the full 802.11 header, one will * eventually be affixed to this fragment -- so we must account * for it when determining the amount of payload space. */ bytes_per_frag = frag_size - hdr_len; if (ieee->config & (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS)) bytes_per_frag -= RTLLIB_FCS_LEN; /* Each fragment may need to have room for encrypting * pre/postfix */ if (encrypt) { bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len + crypt->ops->extra_mpdu_postfix_len + crypt->ops->extra_msdu_prefix_len + crypt->ops->extra_msdu_postfix_len; } /* Number of fragments is the total bytes_per_frag / * payload_per_fragment */ nr_frags = bytes / bytes_per_frag; bytes_last_frag = bytes % bytes_per_frag; if (bytes_last_frag) nr_frags++; else bytes_last_frag = bytes_per_frag; /* When we allocate the TXB we allocate enough space for the * reserve and full fragment bytes (bytes_per_frag doesn't * include prefix, postfix, header, FCS, etc.) */ txb = rtllib_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC); if (unlikely(!txb)) { netdev_warn(ieee->dev, "Could not allocate TXB\n"); goto failed; } txb->encrypted = encrypt; txb->payload_size = cpu_to_le16(bytes); if (qos_activated) txb->queue_index = UP2AC(skb->priority); else txb->queue_index = WME_AC_BE; for (i = 0; i < nr_frags; i++) { skb_frag = txb->fragments[i]; tcb_desc = (struct cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE); if (qos_activated) { skb_frag->priority = skb->priority; tcb_desc->queue_index = UP2AC(skb->priority); } else { skb_frag->priority = WME_AC_BE; tcb_desc->queue_index = WME_AC_BE; } skb_reserve(skb_frag, ieee->tx_headroom); if (encrypt) { if (ieee->hwsec_active) tcb_desc->bHwSec = 1; else tcb_desc->bHwSec = 0; skb_reserve(skb_frag, crypt->ops->extra_mpdu_prefix_len + crypt->ops->extra_msdu_prefix_len); } else { tcb_desc->bHwSec = 0; } frag_hdr = skb_put_data(skb_frag, &header, hdr_len); /* If this is not the last fragment, then add the * MOREFRAGS bit to the frame control */ if (i != nr_frags - 1) { frag_hdr->frame_control = cpu_to_le16(fc | IEEE80211_FCTL_MOREFRAGS); bytes = bytes_per_frag; } else { /* The last fragment has the remaining length */ bytes = bytes_last_frag; } if ((qos_activated) && (!bIsMulticast)) { frag_hdr->seq_ctrl = cpu_to_le16(rtllib_query_seqnum(ieee, skb_frag, header.addr1)); frag_hdr->seq_ctrl = cpu_to_le16(le16_to_cpu(frag_hdr->seq_ctrl) << 4 | i); } else { frag_hdr->seq_ctrl = cpu_to_le16(ieee->seq_ctrl[0] << 4 | i); } /* Put a SNAP header on the first fragment */ if (i == 0) { rtllib_put_snap(skb_put(skb_frag, SNAP_SIZE + sizeof(u16)), ether_type); bytes -= SNAP_SIZE + sizeof(u16); } skb_put_data(skb_frag, skb->data, bytes); /* Advance the SKB... */ skb_pull(skb, bytes); /* Encryption routine will move the header forward in * order to insert the IV between the header and the * payload */ if (encrypt) rtllib_encrypt_fragment(ieee, skb_frag, hdr_len); if (ieee->config & (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS)) skb_put(skb_frag, 4); } if ((qos_activated) && (!bIsMulticast)) { if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF) ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0; else ieee->seq_ctrl[UP2AC(skb->priority) + 1]++; } else { if (ieee->seq_ctrl[0] == 0xFFF) ieee->seq_ctrl[0] = 0; else ieee->seq_ctrl[0]++; } success: if (txb) { tcb_desc = (struct cb_desc *) (txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE); tcb_desc->tx_enable_fw_calc_dur = 1; tcb_desc->priority = skb->priority; if (ether_type == ETH_P_PAE) { if (ieee->ht_info->iot_action & HT_IOT_ACT_WA_IOT_Broadcom) { tcb_desc->data_rate = mgnt_query_tx_rate_exclude_cck_rates(ieee); tcb_desc->tx_dis_rate_fallback = false; } else { tcb_desc->data_rate = ieee->basic_rate; tcb_desc->tx_dis_rate_fallback = 1; } tcb_desc->ratr_index = 7; tcb_desc->tx_use_drv_assinged_rate = 1; } else { if (is_multicast_ether_addr(header.addr1)) tcb_desc->multicast = 1; if (is_broadcast_ether_addr(header.addr1)) tcb_desc->bBroadcast = 1; rtllib_txrate_selectmode(ieee, tcb_desc); if (tcb_desc->multicast || tcb_desc->bBroadcast) tcb_desc->data_rate = ieee->basic_rate; else tcb_desc->data_rate = rtllib_current_rate(ieee); if (bdhcp) { if (ieee->ht_info->iot_action & HT_IOT_ACT_WA_IOT_Broadcom) { tcb_desc->data_rate = mgnt_query_tx_rate_exclude_cck_rates(ieee); tcb_desc->tx_dis_rate_fallback = false; } else { tcb_desc->data_rate = MGN_1M; tcb_desc->tx_dis_rate_fallback = 1; } tcb_desc->ratr_index = 7; tcb_desc->tx_use_drv_assinged_rate = 1; tcb_desc->bdhcp = 1; } rtllib_query_ShortPreambleMode(ieee, tcb_desc); rtllib_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc); rtllib_query_HTCapShortGI(ieee, tcb_desc); rtllib_query_BandwidthMode(ieee, tcb_desc); rtllib_query_protectionmode(ieee, tcb_desc, txb->fragments[0]); } } spin_unlock_irqrestore(&ieee->lock, flags); dev_kfree_skb_any(skb); if (txb) { if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) { dev->stats.tx_packets++; dev->stats.tx_bytes += le16_to_cpu(txb->payload_size); rtllib_softmac_xmit(txb, ieee); } else { rtllib_txb_free(txb); } } return 0; failed: spin_unlock_irqrestore(&ieee->lock, flags); netif_stop_queue(dev); stats->tx_errors++; return 1; } netdev_tx_t rtllib_xmit(struct sk_buff *skb, struct net_device *dev) { memset(skb->cb, 0, sizeof(skb->cb)); return rtllib_xmit_inter(skb, dev) ? NETDEV_TX_BUSY : NETDEV_TX_OK; } EXPORT_SYMBOL(rtllib_xmit); |