Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
/* SPDX-License-Identifier: GPL-2.0 */
/*
 *  linux/boot/head.S
 *
 *  Copyright (C) 1991, 1992, 1993  Linus Torvalds
 */

/*
 *  head.S contains the 32-bit startup code.
 *
 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
 * the page directory will exist. The startup code will be overwritten by
 * the page directory. [According to comments etc elsewhere on a compressed
 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
 *
 * Page 0 is deliberately kept safe, since System Management Mode code in 
 * laptops may need to access the BIOS data stored there.  This is also
 * useful for future device drivers that either access the BIOS via VM86 
 * mode.
 */

/*
 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
 */
	.code32
	.text

#include <linux/init.h>
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/boot.h>
#include <asm/msr.h>
#include <asm/processor-flags.h>
#include <asm/asm-offsets.h>
#include <asm/bootparam.h>
#include <asm/desc_defs.h>
#include <asm/trapnr.h>
#include "pgtable.h"

/*
 * Fix alignment at 16 bytes. Following CONFIG_FUNCTION_ALIGNMENT will result
 * in assembly errors due to trying to move .org backward due to the excessive
 * alignment.
 */
#undef __ALIGN
#define __ALIGN		.balign	16, 0x90

/*
 * Locally defined symbols should be marked hidden:
 */
	.hidden _bss
	.hidden _ebss
	.hidden _end

	__HEAD

/*
 * This macro gives the relative virtual address of X, i.e. the offset of X
 * from startup_32. This is the same as the link-time virtual address of X,
 * since startup_32 is at 0, but defining it this way tells the
 * assembler/linker that we do not want the actual run-time address of X. This
 * prevents the linker from trying to create unwanted run-time relocation
 * entries for the reference when the compressed kernel is linked as PIE.
 *
 * A reference X(%reg) will result in the link-time VA of X being stored with
 * the instruction, and a run-time R_X86_64_RELATIVE relocation entry that
 * adds the 64-bit base address where the kernel is loaded.
 *
 * Replacing it with (X-startup_32)(%reg) results in the offset being stored,
 * and no run-time relocation.
 *
 * The macro should be used as a displacement with a base register containing
 * the run-time address of startup_32 [i.e. rva(X)(%reg)], or as an immediate
 * [$ rva(X)].
 *
 * This macro can only be used from within the .head.text section, since the
 * expression requires startup_32 to be in the same section as the code being
 * assembled.
 */
#define rva(X) ((X) - startup_32)

	.code32
SYM_FUNC_START(startup_32)
	/*
	 * 32bit entry is 0 and it is ABI so immutable!
	 * If we come here directly from a bootloader,
	 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
	 * all need to be under the 4G limit.
	 */
	cld
	cli

/*
 * Calculate the delta between where we were compiled to run
 * at and where we were actually loaded at.  This can only be done
 * with a short local call on x86.  Nothing  else will tell us what
 * address we are running at.  The reserved chunk of the real-mode
 * data at 0x1e4 (defined as a scratch field) are used as the stack
 * for this calculation. Only 4 bytes are needed.
 */
	leal	(BP_scratch+4)(%esi), %esp
	call	1f
1:	popl	%ebp
	subl	$ rva(1b), %ebp

	/* Load new GDT with the 64bit segments using 32bit descriptor */
	leal	rva(gdt)(%ebp), %eax
	movl	%eax, 2(%eax)
	lgdt	(%eax)

	/* Load segment registers with our descriptors */
	movl	$__BOOT_DS, %eax
	movl	%eax, %ds
	movl	%eax, %es
	movl	%eax, %fs
	movl	%eax, %gs
	movl	%eax, %ss

	/* Setup a stack and load CS from current GDT */
	leal	rva(boot_stack_end)(%ebp), %esp

	pushl	$__KERNEL32_CS
	leal	rva(1f)(%ebp), %eax
	pushl	%eax
	lretl
1:

	/* Setup Exception handling for SEV-ES */
#ifdef CONFIG_AMD_MEM_ENCRYPT
	call	startup32_load_idt
#endif

	/* Make sure cpu supports long mode. */
	call	verify_cpu
	testl	%eax, %eax
	jnz	.Lno_longmode

/*
 * Compute the delta between where we were compiled to run at
 * and where the code will actually run at.
 *
 * %ebp contains the address we are loaded at by the boot loader and %ebx
 * contains the address where we should move the kernel image temporarily
 * for safe in-place decompression.
 */

#ifdef CONFIG_RELOCATABLE
	movl	%ebp, %ebx
	movl	BP_kernel_alignment(%esi), %eax
	decl	%eax
	addl	%eax, %ebx
	notl	%eax
	andl	%eax, %ebx
	cmpl	$LOAD_PHYSICAL_ADDR, %ebx
	jae	1f
#endif
	movl	$LOAD_PHYSICAL_ADDR, %ebx
1:

	/* Target address to relocate to for decompression */
	addl	BP_init_size(%esi), %ebx
	subl	$ rva(_end), %ebx

/*
 * Prepare for entering 64 bit mode
 */

	/* Enable PAE mode */
	movl	%cr4, %eax
	orl	$X86_CR4_PAE, %eax
	movl	%eax, %cr4

 /*
  * Build early 4G boot pagetable
  */
	/*
	 * If SEV is active then set the encryption mask in the page tables.
	 * This will ensure that when the kernel is copied and decompressed
	 * it will be done so encrypted.
	 */
	xorl	%edx, %edx
#ifdef	CONFIG_AMD_MEM_ENCRYPT
	call	get_sev_encryption_bit
	xorl	%edx, %edx
	testl	%eax, %eax
	jz	1f
	subl	$32, %eax	/* Encryption bit is always above bit 31 */
	bts	%eax, %edx	/* Set encryption mask for page tables */
	/*
	 * Set MSR_AMD64_SEV_ENABLED_BIT in sev_status so that
	 * startup32_check_sev_cbit() will do a check. sev_enable() will
	 * initialize sev_status with all the bits reported by
	 * MSR_AMD_SEV_STATUS later, but only MSR_AMD64_SEV_ENABLED_BIT
	 * needs to be set for now.
	 */
	movl	$1, rva(sev_status)(%ebp)
1:
#endif

	/* Initialize Page tables to 0 */
	leal	rva(pgtable)(%ebx), %edi
	xorl	%eax, %eax
	movl	$(BOOT_INIT_PGT_SIZE/4), %ecx
	rep	stosl

	/* Build Level 4 */
	leal	rva(pgtable + 0)(%ebx), %edi
	leal	0x1007 (%edi), %eax
	movl	%eax, 0(%edi)
	addl	%edx, 4(%edi)

	/* Build Level 3 */
	leal	rva(pgtable + 0x1000)(%ebx), %edi
	leal	0x1007(%edi), %eax
	movl	$4, %ecx
1:	movl	%eax, 0x00(%edi)
	addl	%edx, 0x04(%edi)
	addl	$0x00001000, %eax
	addl	$8, %edi
	decl	%ecx
	jnz	1b

	/* Build Level 2 */
	leal	rva(pgtable + 0x2000)(%ebx), %edi
	movl	$0x00000183, %eax
	movl	$2048, %ecx
1:	movl	%eax, 0(%edi)
	addl	%edx, 4(%edi)
	addl	$0x00200000, %eax
	addl	$8, %edi
	decl	%ecx
	jnz	1b

	/* Enable the boot page tables */
	leal	rva(pgtable)(%ebx), %eax
	movl	%eax, %cr3

	/* Enable Long mode in EFER (Extended Feature Enable Register) */
	movl	$MSR_EFER, %ecx
	rdmsr
	btsl	$_EFER_LME, %eax
	wrmsr

	/* After gdt is loaded */
	xorl	%eax, %eax
	lldt	%ax
	movl    $__BOOT_TSS, %eax
	ltr	%ax

#ifdef CONFIG_AMD_MEM_ENCRYPT
	/* Check if the C-bit position is correct when SEV is active */
	call	startup32_check_sev_cbit
#endif

	/*
	 * Setup for the jump to 64bit mode
	 *
	 * When the jump is performed we will be in long mode but
	 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
	 * (and in turn EFER.LMA = 1).	To jump into 64bit mode we use
	 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
	 * We place all of the values on our mini stack so lret can
	 * used to perform that far jump.
	 */
	leal	rva(startup_64)(%ebp), %eax
#ifdef CONFIG_EFI_MIXED
	cmpb	$1, rva(efi_is64)(%ebp)
	je	1f
	leal	rva(startup_64_mixed_mode)(%ebp), %eax
1:
#endif

	pushl	$__KERNEL_CS
	pushl	%eax

	/* Enter paged protected Mode, activating Long Mode */
	movl	$CR0_STATE, %eax
	movl	%eax, %cr0

	/* Jump from 32bit compatibility mode into 64bit mode. */
	lret
SYM_FUNC_END(startup_32)

	.code64
	.org 0x200
SYM_CODE_START(startup_64)
	/*
	 * 64bit entry is 0x200 and it is ABI so immutable!
	 * We come here either from startup_32 or directly from a
	 * 64bit bootloader.
	 * If we come here from a bootloader, kernel(text+data+bss+brk),
	 * ramdisk, zero_page, command line could be above 4G.
	 * We depend on an identity mapped page table being provided
	 * that maps our entire kernel(text+data+bss+brk), zero page
	 * and command line.
	 */

	cld
	cli

	/* Setup data segments. */
	xorl	%eax, %eax
	movl	%eax, %ds
	movl	%eax, %es
	movl	%eax, %ss
	movl	%eax, %fs
	movl	%eax, %gs

	/*
	 * Compute the decompressed kernel start address.  It is where
	 * we were loaded at aligned to a 2M boundary. %rbp contains the
	 * decompressed kernel start address.
	 *
	 * If it is a relocatable kernel then decompress and run the kernel
	 * from load address aligned to 2MB addr, otherwise decompress and
	 * run the kernel from LOAD_PHYSICAL_ADDR
	 *
	 * We cannot rely on the calculation done in 32-bit mode, since we
	 * may have been invoked via the 64-bit entry point.
	 */

	/* Start with the delta to where the kernel will run at. */
#ifdef CONFIG_RELOCATABLE
	leaq	startup_32(%rip) /* - $startup_32 */, %rbp
	movl	BP_kernel_alignment(%rsi), %eax
	decl	%eax
	addq	%rax, %rbp
	notq	%rax
	andq	%rax, %rbp
	cmpq	$LOAD_PHYSICAL_ADDR, %rbp
	jae	1f
#endif
	movq	$LOAD_PHYSICAL_ADDR, %rbp
1:

	/* Target address to relocate to for decompression */
	movl	BP_init_size(%rsi), %ebx
	subl	$ rva(_end), %ebx
	addq	%rbp, %rbx

	/* Set up the stack */
	leaq	rva(boot_stack_end)(%rbx), %rsp

	/*
	 * At this point we are in long mode with 4-level paging enabled,
	 * but we might want to enable 5-level paging or vice versa.
	 *
	 * The problem is that we cannot do it directly. Setting or clearing
	 * CR4.LA57 in long mode would trigger #GP. So we need to switch off
	 * long mode and paging first.
	 *
	 * We also need a trampoline in lower memory to switch over from
	 * 4- to 5-level paging for cases when the bootloader puts the kernel
	 * above 4G, but didn't enable 5-level paging for us.
	 *
	 * The same trampoline can be used to switch from 5- to 4-level paging
	 * mode, like when starting 4-level paging kernel via kexec() when
	 * original kernel worked in 5-level paging mode.
	 *
	 * For the trampoline, we need the top page table to reside in lower
	 * memory as we don't have a way to load 64-bit values into CR3 in
	 * 32-bit mode.
	 */

	/* Make sure we have GDT with 32-bit code segment */
	leaq	gdt64(%rip), %rax
	addq	%rax, 2(%rax)
	lgdt	(%rax)

	/* Reload CS so IRET returns to a CS actually in the GDT */
	pushq	$__KERNEL_CS
	leaq	.Lon_kernel_cs(%rip), %rax
	pushq	%rax
	lretq

.Lon_kernel_cs:
	/*
	 * RSI holds a pointer to a boot_params structure provided by the
	 * loader, and this needs to be preserved across C function calls. So
	 * move it into a callee saved register.
	 */
	movq	%rsi, %r15

	call	load_stage1_idt

#ifdef CONFIG_AMD_MEM_ENCRYPT
	/*
	 * Now that the stage1 interrupt handlers are set up, #VC exceptions from
	 * CPUID instructions can be properly handled for SEV-ES guests.
	 *
	 * For SEV-SNP, the CPUID table also needs to be set up in advance of any
	 * CPUID instructions being issued, so go ahead and do that now via
	 * sev_enable(), which will also handle the rest of the SEV-related
	 * detection/setup to ensure that has been done in advance of any dependent
	 * code. Pass the boot_params pointer as the first argument.
	 */
	movq	%r15, %rdi
	call	sev_enable
#endif

	/* Preserve only the CR4 bits that must be preserved, and clear the rest */
	movq	%cr4, %rax
	andl	$(X86_CR4_PAE | X86_CR4_MCE | X86_CR4_LA57), %eax
	movq	%rax, %cr4

	/*
	 * configure_5level_paging() updates the number of paging levels using
	 * a trampoline in 32-bit addressable memory if the current number does
	 * not match the desired number.
	 *
	 * Pass the boot_params pointer as the first argument. The second
	 * argument is the relocated address of the page table to use instead
	 * of the page table in trampoline memory (if required).
	 */
	movq	%r15, %rdi
	leaq	rva(top_pgtable)(%rbx), %rsi
	call	configure_5level_paging

	/* Zero EFLAGS */
	pushq	$0
	popfq

/*
 * Copy the compressed kernel to the end of our buffer
 * where decompression in place becomes safe.
 */
	leaq	(_bss-8)(%rip), %rsi
	leaq	rva(_bss-8)(%rbx), %rdi
	movl	$(_bss - startup_32), %ecx
	shrl	$3, %ecx
	std
	rep	movsq
	cld

	/*
	 * The GDT may get overwritten either during the copy we just did or
	 * during extract_kernel below. To avoid any issues, repoint the GDTR
	 * to the new copy of the GDT.
	 */
	leaq	rva(gdt64)(%rbx), %rax
	leaq	rva(gdt)(%rbx), %rdx
	movq	%rdx, 2(%rax)
	lgdt	(%rax)

/*
 * Jump to the relocated address.
 */
	leaq	rva(.Lrelocated)(%rbx), %rax
	jmp	*%rax
SYM_CODE_END(startup_64)

	.text
SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)

/*
 * Clear BSS (stack is currently empty)
 */
	xorl	%eax, %eax
	leaq    _bss(%rip), %rdi
	leaq    _ebss(%rip), %rcx
	subq	%rdi, %rcx
	shrq	$3, %rcx
	rep	stosq

	call	load_stage2_idt

	/* Pass boot_params to initialize_identity_maps() */
	movq	%r15, %rdi
	call	initialize_identity_maps

/*
 * Do the extraction, and jump to the new kernel..
 */
	/* pass struct boot_params pointer and output target address */
	movq	%r15, %rdi
	movq	%rbp, %rsi
	call	extract_kernel		/* returns kernel entry point in %rax */

/*
 * Jump to the decompressed kernel.
 */
	movq	%r15, %rsi
	jmp	*%rax
SYM_FUNC_END(.Lrelocated)

/*
 * This is the 32-bit trampoline that will be copied over to low memory. It
 * will be called using the ordinary 64-bit calling convention from code
 * running in 64-bit mode.
 *
 * Return address is at the top of the stack (might be above 4G).
 * The first argument (EDI) contains the address of the temporary PGD level
 * page table in 32-bit addressable memory which will be programmed into
 * register CR3.
 */
	.section ".rodata", "a", @progbits
SYM_CODE_START(trampoline_32bit_src)
	/*
	 * Preserve callee save 64-bit registers on the stack: this is
	 * necessary because the architecture does not guarantee that GPRs will
	 * retain their full 64-bit values across a 32-bit mode switch.
	 */
	pushq	%r15
	pushq	%r14
	pushq	%r13
	pushq	%r12
	pushq	%rbp
	pushq	%rbx

	/* Preserve top half of RSP in a legacy mode GPR to avoid truncation */
	movq	%rsp, %rbx
	shrq	$32, %rbx

	/* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
	pushq	$__KERNEL32_CS
	leaq	0f(%rip), %rax
	pushq	%rax
	lretq

	/*
	 * The 32-bit code below will do a far jump back to long mode and end
	 * up here after reconfiguring the number of paging levels. First, the
	 * stack pointer needs to be restored to its full 64-bit value before
	 * the callee save register contents can be popped from the stack.
	 */
.Lret:
	shlq	$32, %rbx
	orq	%rbx, %rsp

	/* Restore the preserved 64-bit registers */
	popq	%rbx
	popq	%rbp
	popq	%r12
	popq	%r13
	popq	%r14
	popq	%r15
	retq

	.code32
0:
	/* Disable paging */
	movl	%cr0, %eax
	btrl	$X86_CR0_PG_BIT, %eax
	movl	%eax, %cr0

	/* Point CR3 to the trampoline's new top level page table */
	movl	%edi, %cr3

	/* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
	movl	$MSR_EFER, %ecx
	rdmsr
	btsl	$_EFER_LME, %eax
	/* Avoid writing EFER if no change was made (for TDX guest) */
	jc	1f
	wrmsr
1:
	/* Toggle CR4.LA57 */
	movl	%cr4, %eax
	btcl	$X86_CR4_LA57_BIT, %eax
	movl	%eax, %cr4

	/* Enable paging again. */
	movl	%cr0, %eax
	btsl	$X86_CR0_PG_BIT, %eax
	movl	%eax, %cr0

	/*
	 * Return to the 64-bit calling code using LJMP rather than LRET, to
	 * avoid the need for a 32-bit addressable stack. The destination
	 * address will be adjusted after the template code is copied into a
	 * 32-bit addressable buffer.
	 */
.Ljmp:	ljmpl	$__KERNEL_CS, $(.Lret - trampoline_32bit_src)
SYM_CODE_END(trampoline_32bit_src)

/*
 * This symbol is placed right after trampoline_32bit_src() so its address can
 * be used to infer the size of the trampoline code.
 */
SYM_DATA(trampoline_ljmp_imm_offset, .word  .Ljmp + 1 - trampoline_32bit_src)

	/*
         * The trampoline code has a size limit.
         * Make sure we fail to compile if the trampoline code grows
         * beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
	 */
	.org	trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE

	.text
SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
	/* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
1:
	hlt
	jmp     1b
SYM_FUNC_END(.Lno_longmode)

	.globl	verify_cpu
#include "../../kernel/verify_cpu.S"

	.data
SYM_DATA_START_LOCAL(gdt64)
	.word	gdt_end - gdt - 1
	.quad   gdt - gdt64
SYM_DATA_END(gdt64)
	.balign	8
SYM_DATA_START_LOCAL(gdt)
	.word	gdt_end - gdt - 1
	.long	0
	.word	0
	.quad	0x00cf9a000000ffff	/* __KERNEL32_CS */
	.quad	0x00af9a000000ffff	/* __KERNEL_CS */
	.quad	0x00cf92000000ffff	/* __KERNEL_DS */
	.quad	0x0080890000000000	/* TS descriptor */
	.quad   0x0000000000000000	/* TS continued */
SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)

SYM_DATA_START(boot_idt_desc)
	.word	boot_idt_end - boot_idt - 1
	.quad	0
SYM_DATA_END(boot_idt_desc)
	.balign 8
SYM_DATA_START(boot_idt)
	.rept	BOOT_IDT_ENTRIES
	.quad	0
	.quad	0
	.endr
SYM_DATA_END_LABEL(boot_idt, SYM_L_GLOBAL, boot_idt_end)

/*
 * Stack and heap for uncompression
 */
	.bss
	.balign 4
SYM_DATA_START_LOCAL(boot_stack)
	.fill BOOT_STACK_SIZE, 1, 0
	.balign 16
SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end)

/*
 * Space for page tables (not in .bss so not zeroed)
 */
	.section ".pgtable","aw",@nobits
	.balign 4096
SYM_DATA_LOCAL(pgtable,		.fill BOOT_PGT_SIZE, 1, 0)

/*
 * The page table is going to be used instead of page table in the trampoline
 * memory.
 */
SYM_DATA_LOCAL(top_pgtable,	.fill PAGE_SIZE, 1, 0)