/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "dcn10_init.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn10_resource.h"
#include "dcn10_ipp.h"
#include "dcn10_mpc.h"
#include "irq/dcn10/irq_service_dcn10.h"
#include "dcn10_dpp.h"
#include "dcn10_optc.h"
#include "dcn10_hw_sequencer.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn10_opp.h"
#include "dcn10_link_encoder.h"
#include "dcn10_stream_encoder.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "virtual/virtual_stream_encoder.h"
#include "dce110/dce110_resource.h"
#include "dce112/dce112_resource.h"
#include "dcn10_hubp.h"
#include "dcn10_hubbub.h"
#include "dce/dce_panel_cntl.h"
#include "soc15_hw_ip.h"
#include "vega10_ip_offset.h"
#include "dcn/dcn_1_0_offset.h"
#include "dcn/dcn_1_0_sh_mask.h"
#include "nbio/nbio_7_0_offset.h"
#include "mmhub/mmhub_9_1_offset.h"
#include "mmhub/mmhub_9_1_sh_mask.h"
#include "reg_helper.h"
#include "dce/dce_abm.h"
#include "dce/dce_dmcu.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"
#ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f
#define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f
#define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f
#define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f
#define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f
#define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f
#define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f
#define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#endif
enum dcn10_clk_src_array_id {
DCN10_CLK_SRC_PLL0,
DCN10_CLK_SRC_PLL1,
DCN10_CLK_SRC_PLL2,
DCN10_CLK_SRC_PLL3,
DCN10_CLK_SRC_TOTAL,
DCN101_CLK_SRC_TOTAL = DCN10_CLK_SRC_PLL3
};
/* begin *********************
* macros to expend register list macro defined in HW object header file */
/* DCN */
#define BASE_INNER(seg) \
DCE_BASE__INST0_SEG ## seg
#define BASE(seg) \
BASE_INNER(seg)
#define SR(reg_name)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRI(reg_name, block, id)\
.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define VUPDATE_SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## reg_name ## 0 ## _ ## block ## id ## _BASE_IDX) + \
mm ## reg_name ## 0 ## _ ## block ## id
/* set field/register/bitfield name */
#define SFRB(field_name, reg_name, bitfield, post_fix)\
.field_name = reg_name ## __ ## bitfield ## post_fix
/* NBIO */
#define NBIO_BASE_INNER(seg) \
NBIF_BASE__INST0_SEG ## seg
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
#define NBIO_SR(reg_name)\
.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
/* MMHUB */
#define MMHUB_BASE_INNER(seg) \
MMHUB_BASE__INST0_SEG ## seg
#define MMHUB_BASE(seg) \
MMHUB_BASE_INNER(seg)
#define MMHUB_SR(reg_name)\
.reg_name = MMHUB_BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
/* macros to expend register list macro defined in HW object header file
* end *********************/
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCN10_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCN10(_MASK)
};
static const struct dce_abm_registers abm_regs = {
ABM_DCN10_REG_LIST(0)
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCN10(_MASK)
};
#define stream_enc_regs(id)\
[id] = {\
SE_DCN_REG_LIST(id)\
}
static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
};
static const struct dcn10_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dcn10_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCN10(_MASK)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
};
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define aux_regs(id)\
[id] = {\
AUX_REG_LIST(id)\
}
static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3)
};
#define link_regs(id)\
[id] = {\
LE_DCN10_REG_LIST(id), \
SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
}
static const struct dcn10_link_enc_registers link_enc_regs[] = {
link_regs(0),
link_regs(1),
link_regs(2),
link_regs(3)
};
static const struct dcn10_link_enc_shift le_shift = {
LINK_ENCODER_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dcn10_link_enc_mask le_mask = {
LINK_ENCODER_MASK_SH_LIST_DCN10(_MASK)
};
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
{ DCN_PANEL_CNTL_REG_LIST() }
};
static const struct dce_panel_cntl_shift panel_cntl_shift = {
DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dce_panel_cntl_mask panel_cntl_mask = {
DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
static const struct dce110_aux_registers_shift aux_shift = {
DCN10_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCN10_AUX_MASK_SH_LIST(_MASK)
};
#define ipp_regs(id)\
[id] = {\
IPP_REG_LIST_DCN10(id),\
}
static const struct dcn10_ipp_registers ipp_regs[] = {
ipp_regs(0),
ipp_regs(1),
ipp_regs(2),
ipp_regs(3),
};
static const struct dcn10_ipp_shift ipp_shift = {
IPP_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dcn10_ipp_mask ipp_mask = {
IPP_MASK_SH_LIST_DCN10(_MASK),
};
#define opp_regs(id)\
[id] = {\
OPP_REG_LIST_DCN10(id),\
}
static const struct dcn10_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
};
static const struct dcn10_opp_shift opp_shift = {
OPP_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dcn10_opp_mask opp_mask = {
OPP_MASK_SH_LIST_DCN10(_MASK),
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST(id), \
.AUX_RESET_MASK = 0 \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
aux_engine_regs(4),
aux_engine_regs(5)
};
#define tf_regs(id)\
[id] = {\
TF_REG_LIST_DCN10(id),\
}
static const struct dcn_dpp_registers tf_regs[] = {
tf_regs(0),
tf_regs(1),
tf_regs(2),
tf_regs(3),
};
static const struct dcn_dpp_shift tf_shift = {
TF_REG_LIST_SH_MASK_DCN10(__SHIFT),
TF_DEBUG_REG_LIST_SH_DCN10
};
static const struct dcn_dpp_mask tf_mask = {
TF_REG_LIST_SH_MASK_DCN10(_MASK),
TF_DEBUG_REG_LIST_MASK_DCN10
};
static const struct dcn_mpc_registers mpc_regs = {
MPC_COMMON_REG_LIST_DCN1_0(0),
MPC_COMMON_REG_LIST_DCN1_0(1),
MPC_COMMON_REG_LIST_DCN1_0(2),
MPC_COMMON_REG_LIST_DCN1_0(3),
MPC_OUT_MUX_COMMON_REG_LIST_DCN1_0(0),
MPC_OUT_MUX_COMMON_REG_LIST_DCN1_0(1),
MPC_OUT_MUX_COMMON_REG_LIST_DCN1_0(2),
MPC_OUT_MUX_COMMON_REG_LIST_DCN1_0(3)
};
static const struct dcn_mpc_shift mpc_shift = {
MPC_COMMON_MASK_SH_LIST_DCN1_0(__SHIFT),\
SFRB(CUR_VUPDATE_LOCK_SET, CUR0_VUPDATE_LOCK_SET0, CUR0_VUPDATE_LOCK_SET, __SHIFT)
};
static const struct dcn_mpc_mask mpc_mask = {
MPC_COMMON_MASK_SH_LIST_DCN1_0(_MASK),\
SFRB(CUR_VUPDATE_LOCK_SET, CUR0_VUPDATE_LOCK_SET0, CUR0_VUPDATE_LOCK_SET, _MASK)
};
#define tg_regs(id)\
[id] = {TG_COMMON_REG_LIST_DCN1_0(id)}
static const struct dcn_optc_registers tg_regs[] = {
tg_regs(0),
tg_regs(1),
tg_regs(2),
tg_regs(3),
};
static const struct dcn_optc_shift tg_shift = {
TG_COMMON_MASK_SH_LIST_DCN1_0(__SHIFT)
};
static const struct dcn_optc_mask tg_mask = {
TG_COMMON_MASK_SH_LIST_DCN1_0(_MASK)
};
static const struct bios_registers bios_regs = {
NBIO_SR(BIOS_SCRATCH_3),
NBIO_SR(BIOS_SCRATCH_6)
};
#define hubp_regs(id)\
[id] = {\
HUBP_REG_LIST_DCN10(id)\
}
static const struct dcn_mi_registers hubp_regs[] = {
hubp_regs(0),
hubp_regs(1),
hubp_regs(2),
hubp_regs(3),
};
static const struct dcn_mi_shift hubp_shift = {
HUBP_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dcn_mi_mask hubp_mask = {
HUBP_MASK_SH_LIST_DCN10(_MASK)
};
static const struct dcn_hubbub_registers hubbub_reg = {
HUBBUB_REG_LIST_DCN10(0)
};
static const struct dcn_hubbub_shift hubbub_shift = {
HUBBUB_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dcn_hubbub_mask hubbub_mask = {
HUBBUB_MASK_SH_LIST_DCN10(_MASK)
};
static int map_transmitter_id_to_phy_instance(
enum transmitter transmitter)
{
switch (transmitter) {
case TRANSMITTER_UNIPHY_A:
return 0;
break;
case TRANSMITTER_UNIPHY_B:
return 1;
break;
case TRANSMITTER_UNIPHY_C:
return 2;
break;
case TRANSMITTER_UNIPHY_D:
return 3;
break;
default:
ASSERT(0);
return 0;
}
}
#define clk_src_regs(index, pllid)\
[index] = {\
CS_COMMON_REG_LIST_DCN1_0(index, pllid),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B),
clk_src_regs(2, C),
clk_src_regs(3, D)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCN1_0(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCN1_0(_MASK)
};
static const struct resource_caps res_cap = {
.num_timing_generator = 4,
.num_opp = 4,
.num_video_plane = 4,
.num_audio = 4,
.num_stream_encoder = 4,
.num_pll = 4,
.num_ddc = 4,
};
static const struct resource_caps rv2_res_cap = {
.num_timing_generator = 3,
.num_opp = 3,
.num_video_plane = 3,
.num_audio = 3,
.num_stream_encoder = 3,
.num_pll = 3,
.num_ddc = 4,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
.blends_with_above = true,
.blends_with_below = true,
.per_pixel_alpha = true,
.pixel_format_support = {
.argb8888 = true,
.nv12 = true,
.fp16 = true,
.p010 = true
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 16000,
.fp16 = 1
},
.max_downscale_factor = {
.argb8888 = 250,
.nv12 = 250,
.fp16 = 1
}
};
static const struct dc_debug_options debug_defaults_drv = {
.sanity_checks = true,
.disable_dmcu = false,
.force_abm_enable = false,
.timing_trace = false,
.clock_trace = true,
/* raven smu dones't allow 0 disp clk,
* smu min disp clk limit is 50Mhz
* keep min disp clk 100Mhz avoid smu hang
*/
.min_disp_clk_khz = 100000,
.disable_pplib_clock_request = false,
.disable_pplib_wm_range = false,
.pplib_wm_report_mode = WM_REPORT_DEFAULT,
.pipe_split_policy = MPC_SPLIT_AVOID,
.force_single_disp_pipe_split = false,
.disable_dcc = DCC_ENABLE,
.voltage_align_fclk = true,
.disable_stereo_support = true,
.vsr_support = true,
.performance_trace = false,
.az_endpoint_mute_only = true,
.recovery_enabled = false, /*enable this by default after testing.*/
.max_downscale_src_width = 3840,
.underflow_assert_delay_us = 0xFFFFFFFF,
};
static const struct dc_debug_options debug_defaults_diags = {
.disable_dmcu = false,
.force_abm_enable = false,
.timing_trace = true,
.clock_trace = true,
.disable_stutter = true,
.disable_pplib_clock_request = true,
.disable_pplib_wm_range = true,
.underflow_assert_delay_us = 0xFFFFFFFF,
};
static void dcn10_dpp_destroy(struct dpp **dpp)
{
kfree(TO_DCN10_DPP(*dpp));
*dpp = NULL;
}
static struct dpp *dcn10_dpp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn10_dpp *dpp =
kzalloc(sizeof(struct dcn10_dpp), GFP_KERNEL);
if (!dpp)
return NULL;
dpp1_construct(dpp, ctx, inst,
&tf_regs[inst], &tf_shift, &tf_mask);
return &dpp->base;
}
static struct input_pixel_processor *dcn10_ipp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn10_ipp *ipp =
kzalloc(sizeof(struct dcn10_ipp), GFP_KERNEL);
if (!ipp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn10_ipp_construct(ipp, ctx, inst,
&ipp_regs[inst], &ipp_shift, &ipp_mask);
return &ipp->base;
}
static struct output_pixel_processor *dcn10_opp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn10_opp *opp =
kzalloc(sizeof(struct dcn10_opp), GFP_KERNEL);
if (!opp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn10_opp_construct(opp, ctx, inst,
&opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
static struct dce_aux *dcn10_aux_engine_create(struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
i2c_inst_regs(5),
i2c_inst_regs(6),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
static struct dce_i2c_hw *dcn10_i2c_hw_create(struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dcn1_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static struct mpc *dcn10_mpc_create(struct dc_context *ctx)
{
struct dcn10_mpc *mpc10 = kzalloc(sizeof(struct dcn10_mpc),
GFP_KERNEL);
if (!mpc10)
return NULL;
dcn10_mpc_construct(mpc10, ctx,
&mpc_regs,
&mpc_shift,
&mpc_mask,
4);
return &mpc10->base;
}
static struct hubbub *dcn10_hubbub_create(struct dc_context *ctx)
{
struct dcn10_hubbub *dcn10_hubbub = kzalloc(sizeof(struct dcn10_hubbub),
GFP_KERNEL);
if (!dcn10_hubbub)
return NULL;
hubbub1_construct(&dcn10_hubbub->base, ctx,
&hubbub_reg,
&hubbub_shift,
&hubbub_mask);
return &dcn10_hubbub->base;
}
static struct timing_generator *dcn10_timing_generator_create(
struct dc_context *ctx,
uint32_t instance)
{
struct optc *tgn10 =
kzalloc(sizeof(struct optc), GFP_KERNEL);
if (!tgn10)
return NULL;
tgn10->base.inst = instance;
tgn10->base.ctx = ctx;
tgn10->tg_regs = &tg_regs[instance];
tgn10->tg_shift = &tg_shift;
tgn10->tg_mask = &tg_mask;
dcn10_timing_generator_init(tgn10);
return &tgn10->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true
};
static struct link_encoder *dcn10_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dcn10_link_encoder *enc10 =
kzalloc(sizeof(struct dcn10_link_encoder), GFP_KERNEL);
int link_regs_id;
if (!enc10)
return NULL;
link_regs_id =
map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
dcn10_link_encoder_construct(enc10,
enc_init_data,
&link_enc_feature,
&link_enc_regs[link_regs_id],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source],
&le_shift,
&le_mask);
return &enc10->base;
}
static struct panel_cntl *dcn10_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dce_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dce_panel_cntl_construct(panel_cntl,
init_data,
&panel_cntl_regs[init_data->inst],
&panel_cntl_shift,
&panel_cntl_mask);
return &panel_cntl->base;
}
static struct clock_source *dcn10_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dce112_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
}
static struct audio *create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct stream_encoder *dcn10_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn10_stream_encoder *enc1 =
kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
if (!enc1)
return NULL;
dcn10_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc1->base;
}
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCN1_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCN1_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCN1_MASK_SH_LIST(_MASK)
};
static struct dce_hwseq *dcn10_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
hws->wa.DEGVIDCN10_253 = true;
hws->wa.false_optc_underflow = true;
hws->wa.DEGVIDCN10_254 = true;
if ((ctx->asic_id.chip_family == FAMILY_RV) &&
ASICREV_IS_RAVEN2(ctx->asic_id.hw_internal_rev))
switch (ctx->asic_id.pci_revision_id) {
case PRID_POLLOCK_94:
case PRID_POLLOCK_95:
case PRID_POLLOCK_E9:
case PRID_POLLOCK_EA:
case PRID_POLLOCK_EB:
hws->wa.wait_hubpret_read_start_during_mpo_transition = true;
break;
default:
hws->wa.wait_hubpret_read_start_during_mpo_transition = false;
break;
}
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dcn10_stream_encoder_create,
.create_hwseq = dcn10_hwseq_create,
};
static const struct resource_create_funcs res_create_maximus_funcs = {
.read_dce_straps = NULL,
.create_audio = NULL,
.create_stream_encoder = NULL,
.create_hwseq = dcn10_hwseq_create,
};
static void dcn10_clock_source_destroy(struct clock_source **clk_src)
{
kfree(TO_DCE110_CLK_SRC(*clk_src));
*clk_src = NULL;
}
static struct pp_smu_funcs *dcn10_pp_smu_create(struct dc_context *ctx)
{
struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_KERNEL);
if (!pp_smu)
return pp_smu;
dm_pp_get_funcs(ctx, pp_smu);
return pp_smu;
}
static void dcn10_resource_destruct(struct dcn10_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL) {
kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
pool->base.stream_enc[i] = NULL;
}
}
if (pool->base.mpc != NULL) {
kfree(TO_DCN10_MPC(pool->base.mpc));
pool->base.mpc = NULL;
}
kfree(pool->base.hubbub);
pool->base.hubbub = NULL;
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.opps[i] != NULL)
pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
if (pool->base.dpps[i] != NULL)
dcn10_dpp_destroy(&pool->base.dpps[i]);
if (pool->base.ipps[i] != NULL)
pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
if (pool->base.hubps[i] != NULL) {
kfree(TO_DCN10_HUBP(pool->base.hubps[i]));
pool->base.hubps[i] = NULL;
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
if (pool->base.timing_generators[i] != NULL) {
kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dcn10_clock_source_destroy(&pool->base.clock_sources[i]);
pool->base.clock_sources[i] = NULL;
}
}
if (pool->base.dp_clock_source != NULL) {
dcn10_clock_source_destroy(&pool->base.dp_clock_source);
pool->base.dp_clock_source = NULL;
}
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
kfree(pool->base.pp_smu);
}
static struct hubp *dcn10_hubp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn10_hubp *hubp1 =
kzalloc(sizeof(struct dcn10_hubp), GFP_KERNEL);
if (!hubp1)
return NULL;
dcn10_hubp_construct(hubp1, ctx, inst,
&hubp_regs[inst], &hubp_shift, &hubp_mask);
return &hubp1->base;
}
static void get_pixel_clock_parameters(
const struct pipe_ctx *pipe_ctx,
struct pixel_clk_params *pixel_clk_params)
{
const struct dc_stream_state *stream = pipe_ctx->stream;
pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
pixel_clk_params->encoder_object_id = stream->link->link_enc->id;
pixel_clk_params->signal_type = pipe_ctx->stream->signal;
pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
/* TODO: un-hardcode*/
pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
LINK_RATE_REF_FREQ_IN_KHZ;
pixel_clk_params->flags.ENABLE_SS = 0;
pixel_clk_params->color_depth =
stream->timing.display_color_depth;
pixel_clk_params->flags.DISPLAY_BLANKED = 1;
pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
pixel_clk_params->color_depth = COLOR_DEPTH_888;
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
pixel_clk_params->requested_pix_clk_100hz /= 2;
if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
pixel_clk_params->requested_pix_clk_100hz *= 2;
}
static void build_clamping_params(struct dc_stream_state *stream)
{
stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
stream->clamping.c_depth = stream->timing.display_color_depth;
stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
}
static void build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
{
get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
&pipe_ctx->pll_settings);
pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
resource_build_bit_depth_reduction_params(pipe_ctx->stream,
&pipe_ctx->stream->bit_depth_params);
build_clamping_params(pipe_ctx->stream);
}
static enum dc_status build_mapped_resource(
const struct dc *dc,
struct dc_state *context,
struct dc_stream_state *stream)
{
struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
if (!pipe_ctx)
return DC_ERROR_UNEXPECTED;
build_pipe_hw_param(pipe_ctx);
return DC_OK;
}
static enum dc_status dcn10_add_stream_to_ctx(
struct dc *dc,
struct dc_state *new_ctx,
struct dc_stream_state *dc_stream)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
result = resource_map_pool_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = build_mapped_resource(dc, new_ctx, dc_stream);
return result;
}
static struct pipe_ctx *dcn10_acquire_idle_pipe_for_layer(
struct dc_state *context,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
struct resource_context *res_ctx = &context->res_ctx;
struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe);
if (!head_pipe) {
ASSERT(0);
return NULL;
}
if (!idle_pipe)
return NULL;
idle_pipe->stream = head_pipe->stream;
idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
idle_pipe->stream_res.abm = head_pipe->stream_res.abm;
idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
return idle_pipe;
}
static bool dcn10_get_dcc_compression_cap(const struct dc *dc,
const struct dc_dcc_surface_param *input,
struct dc_surface_dcc_cap *output)
{
return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
dc->res_pool->hubbub,
input,
output);
}
static void dcn10_destroy_resource_pool(struct resource_pool **pool)
{
struct dcn10_resource_pool *dcn10_pool = TO_DCN10_RES_POOL(*pool);
dcn10_resource_destruct(dcn10_pool);
kfree(dcn10_pool);
*pool = NULL;
}
static bool dcn10_validate_bandwidth(
struct dc *dc,
struct dc_state *context,
bool fast_validate)
{
bool voltage_supported;
DC_FP_START();
voltage_supported = dcn_validate_bandwidth(dc, context, fast_validate);
DC_FP_END();
return voltage_supported;
}
static enum dc_status dcn10_validate_plane(const struct dc_plane_state *plane_state, struct dc_caps *caps)
{
if (plane_state->format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN
&& caps->max_video_width != 0
&& plane_state->src_rect.width > caps->max_video_width)
return DC_FAIL_SURFACE_VALIDATE;
return DC_OK;
}
static enum dc_status dcn10_validate_global(struct dc *dc, struct dc_state *context)
{
int i, j;
bool video_down_scaled = false;
bool video_large = false;
bool desktop_large = false;
bool dcc_disabled = false;
bool mpo_enabled = false;
for (i = 0; i < context->stream_count; i++) {
if (context->stream_status[i].plane_count == 0)
continue;
if (context->stream_status[i].plane_count > 2)
return DC_FAIL_UNSUPPORTED_1;
if (context->stream_status[i].plane_count > 1)
mpo_enabled = true;
for (j = 0; j < context->stream_status[i].plane_count; j++) {
struct dc_plane_state *plane =
context->stream_status[i].plane_states[j];
if (plane->format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) {
if (plane->src_rect.width > plane->dst_rect.width ||
plane->src_rect.height > plane->dst_rect.height)
video_down_scaled = true;
if (plane->src_rect.width >= 3840)
video_large = true;
} else {
if (plane->src_rect.width >= 3840)
desktop_large = true;
if (!plane->dcc.enable)
dcc_disabled = true;
}
}
}
/* Disable MPO in multi-display configurations. */
if (context->stream_count > 1 && mpo_enabled)
return DC_FAIL_UNSUPPORTED_1;
/*
* Workaround: On DCN10 there is UMC issue that causes underflow when
* playing 4k video on 4k desktop with video downscaled and single channel
* memory
*/
if (video_large && desktop_large && video_down_scaled && dcc_disabled &&
dc->dcn_soc->number_of_channels == 1)
return DC_FAIL_SURFACE_VALIDATE;
return DC_OK;
}
static enum dc_status dcn10_patch_unknown_plane_state(struct dc_plane_state *plane_state)
{
enum surface_pixel_format surf_pix_format = plane_state->format;
unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
enum swizzle_mode_values swizzle = DC_SW_LINEAR;
if (bpp == 64)
swizzle = DC_SW_64KB_D;
else
swizzle = DC_SW_64KB_S;
plane_state->tiling_info.gfx9.swizzle = swizzle;
return DC_OK;
}
struct stream_encoder *dcn10_find_first_free_match_stream_enc_for_link(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
int i;
int j = -1;
struct dc_link *link = stream->link;
for (i = 0; i < pool->stream_enc_count; i++) {
if (!res_ctx->is_stream_enc_acquired[i] &&
pool->stream_enc[i]) {
/* Store first available for MST second display
* in daisy chain use case
*/
j = i;
if (link->ep_type == DISPLAY_ENDPOINT_PHY && pool->stream_enc[i]->id ==
link->link_enc->preferred_engine)
return pool->stream_enc[i];
}
}
/*
* For CZ and later, we can allow DIG FE and BE to differ for all display types
*/
if (j >= 0)
return pool->stream_enc[j];
return NULL;
}
static const struct dc_cap_funcs cap_funcs = {
.get_dcc_compression_cap = dcn10_get_dcc_compression_cap
};
static const struct resource_funcs dcn10_res_pool_funcs = {
.destroy = dcn10_destroy_resource_pool,
.link_enc_create = dcn10_link_encoder_create,
.panel_cntl_create = dcn10_panel_cntl_create,
.validate_bandwidth = dcn10_validate_bandwidth,
.acquire_idle_pipe_for_layer = dcn10_acquire_idle_pipe_for_layer,
.validate_plane = dcn10_validate_plane,
.validate_global = dcn10_validate_global,
.add_stream_to_ctx = dcn10_add_stream_to_ctx,
.patch_unknown_plane_state = dcn10_patch_unknown_plane_state,
.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link
};
static uint32_t read_pipe_fuses(struct dc_context *ctx)
{
uint32_t value = dm_read_reg_soc15(ctx, mmCC_DC_PIPE_DIS, 0);
/* RV1 support max 4 pipes */
value = value & 0xf;
return value;
}
/*
* Some architectures don't support soft-float (e.g. aarch64), on those
* this function has to be called with hardfloat enabled, make sure not
* to inline it so whatever fp stuff is done stays inside
*/
static noinline void dcn10_resource_construct_fp(
struct dc *dc)
{
if (dc->ctx->dce_version == DCN_VERSION_1_01) {
struct dcn_soc_bounding_box *dcn_soc = dc->dcn_soc;
struct dcn_ip_params *dcn_ip = dc->dcn_ip;
struct display_mode_lib *dml = &dc->dml;
dml->ip.max_num_dpp = 3;
/* TODO how to handle 23.84? */
dcn_soc->dram_clock_change_latency = 23;
dcn_ip->max_num_dpp = 3;
}
if (ASICREV_IS_RV1_F0(dc->ctx->asic_id.hw_internal_rev)) {
dc->dcn_soc->urgent_latency = 3;
dc->debug.disable_dmcu = true;
dc->dcn_soc->fabric_and_dram_bandwidth_vmax0p9 = 41.60f;
}
dc->dcn_soc->number_of_channels = dc->ctx->asic_id.vram_width / ddr4_dram_width;
ASSERT(dc->dcn_soc->number_of_channels < 3);
if (dc->dcn_soc->number_of_channels == 0)/*old sbios bug*/
dc->dcn_soc->number_of_channels = 2;
if (dc->dcn_soc->number_of_channels == 1) {
dc->dcn_soc->fabric_and_dram_bandwidth_vmax0p9 = 19.2f;
dc->dcn_soc->fabric_and_dram_bandwidth_vnom0p8 = 17.066f;
dc->dcn_soc->fabric_and_dram_bandwidth_vmid0p72 = 14.933f;
dc->dcn_soc->fabric_and_dram_bandwidth_vmin0p65 = 12.8f;
if (ASICREV_IS_RV1_F0(dc->ctx->asic_id.hw_internal_rev)) {
dc->dcn_soc->fabric_and_dram_bandwidth_vmax0p9 = 20.80f;
}
}
}
static bool verify_clock_values(struct dm_pp_clock_levels_with_voltage *clks)
{
int i;
if (clks->num_levels == 0)
return false;
for (i = 0; i < clks->num_levels; i++)
/* Ensure that the result is sane */
if (clks->data[i].clocks_in_khz == 0)
return false;
return true;
}
static bool dcn10_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dcn10_resource_pool *pool)
{
int i;
int j;
struct dc_context *ctx = dc->ctx;
uint32_t pipe_fuses = read_pipe_fuses(ctx);
struct dm_pp_clock_levels_with_voltage fclks = {0}, dcfclks = {0};
int min_fclk_khz, min_dcfclk_khz, socclk_khz;
bool res;
ctx->dc_bios->regs = &bios_regs;
if (ctx->dce_version == DCN_VERSION_1_01)
pool->base.res_cap = &rv2_res_cap;
else
pool->base.res_cap = &res_cap;
pool->base.funcs = &dcn10_res_pool_funcs;
/*
* TODO fill in from actual raven resource when we create
* more than virtual encoder
*/
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
/* max pipe num for ASIC before check pipe fuses */
pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
if (dc->ctx->dce_version == DCN_VERSION_1_01)
pool->base.pipe_count = 3;
dc->caps.max_video_width = 3840;
dc->caps.max_downscale_ratio = 200;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
dc->caps.max_cursor_size = 256;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.max_slave_planes = 1;
dc->caps.max_slave_yuv_planes = 1;
dc->caps.max_slave_rgb_planes = 0;
dc->caps.is_apu = true;
dc->caps.post_blend_color_processing = false;
dc->caps.extended_aux_timeout_support = false;
/* Raven DP PHY HBR2 eye diagram pattern is not stable. Use TP4 */
dc->caps.force_dp_tps4_for_cp2520 = true;
/* Color pipeline capabilities */
dc->caps.color.dpp.dcn_arch = 1;
dc->caps.color.dpp.input_lut_shared = 1;
dc->caps.color.dpp.icsc = 1;
dc->caps.color.dpp.dgam_ram = 1;
dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0;
dc->caps.color.dpp.dgam_rom_caps.pq = 0;
dc->caps.color.dpp.dgam_rom_caps.hlg = 0;
dc->caps.color.dpp.post_csc = 0;
dc->caps.color.dpp.gamma_corr = 0;
dc->caps.color.dpp.dgam_rom_for_yuv = 1;
dc->caps.color.dpp.hw_3d_lut = 0;
dc->caps.color.dpp.ogam_ram = 1; // RGAM on DCN1
dc->caps.color.dpp.ogam_rom_caps.srgb = 1;
dc->caps.color.dpp.ogam_rom_caps.bt2020 = 1;
dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.dpp.ogam_rom_caps.pq = 0;
dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
dc->caps.color.dpp.ocsc = 1;
/* no post-blend color operations */
dc->caps.color.mpc.gamut_remap = 0;
dc->caps.color.mpc.num_3dluts = 0;
dc->caps.color.mpc.shared_3d_lut = 0;
dc->caps.color.mpc.ogam_ram = 0;
dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.mpc.ogam_rom_caps.pq = 0;
dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
dc->caps.color.mpc.ocsc = 0;
if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
dc->debug = debug_defaults_drv;
else
dc->debug = debug_defaults_diags;
/*************************************************
* Create resources *
*************************************************/
pool->base.clock_sources[DCN10_CLK_SRC_PLL0] =
dcn10_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCN10_CLK_SRC_PLL1] =
dcn10_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCN10_CLK_SRC_PLL2] =
dcn10_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
if (dc->ctx->dce_version == DCN_VERSION_1_0) {
pool->base.clock_sources[DCN10_CLK_SRC_PLL3] =
dcn10_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
}
pool->base.clk_src_count = DCN10_CLK_SRC_TOTAL;
if (dc->ctx->dce_version == DCN_VERSION_1_01)
pool->base.clk_src_count = DCN101_CLK_SRC_TOTAL;
pool->base.dp_clock_source =
dcn10_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
/* todo: not reuse phy_pll registers */
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto fail;
}
}
pool->base.dmcu = dcn10_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto fail;
}
dml_init_instance(&dc->dml, &dcn1_0_soc, &dcn1_0_ip, DML_PROJECT_RAVEN1);
memcpy(dc->dcn_ip, &dcn10_ip_defaults, sizeof(dcn10_ip_defaults));
memcpy(dc->dcn_soc, &dcn10_soc_defaults, sizeof(dcn10_soc_defaults));
/* Other architectures we build for build this with soft-float */
dcn10_resource_construct_fp(dc);
if (!dc->config.is_vmin_only_asic)
if (ASICREV_IS_RAVEN2(dc->ctx->asic_id.hw_internal_rev))
switch (dc->ctx->asic_id.pci_revision_id) {
case PRID_DALI_DE:
case PRID_DALI_DF:
case PRID_DALI_E3:
case PRID_DALI_E4:
case PRID_POLLOCK_94:
case PRID_POLLOCK_95:
case PRID_POLLOCK_E9:
case PRID_POLLOCK_EA:
case PRID_POLLOCK_EB:
dc->config.is_vmin_only_asic = true;
break;
default:
break;
}
pool->base.pp_smu = dcn10_pp_smu_create(ctx);
/*
* Right now SMU/PPLIB and DAL all have the AZ D3 force PME notification *
* implemented. So AZ D3 should work.For issue 197007. *
*/
if (pool->base.pp_smu != NULL
&& pool->base.pp_smu->rv_funcs.set_pme_wa_enable != NULL)
dc->debug.az_endpoint_mute_only = false;
if (!dc->debug.disable_pplib_clock_request) {
/*
* TODO: This is not the proper way to obtain
* fabric_and_dram_bandwidth, should be min(fclk, memclk).
*/
res = dm_pp_get_clock_levels_by_type_with_voltage(
ctx, DM_PP_CLOCK_TYPE_FCLK, &fclks);
DC_FP_START();
if (res)
res = verify_clock_values(&fclks);
if (res)
dcn_bw_update_from_pplib_fclks(dc, &fclks);
else
BREAK_TO_DEBUGGER();
DC_FP_END();
res = dm_pp_get_clock_levels_by_type_with_voltage(
ctx, DM_PP_CLOCK_TYPE_DCFCLK, &dcfclks);
DC_FP_START();
if (res)
res = verify_clock_values(&dcfclks);
if (res)
dcn_bw_update_from_pplib_dcfclks(dc, &dcfclks);
else
BREAK_TO_DEBUGGER();
DC_FP_END();
}
dcn_bw_sync_calcs_and_dml(dc);
if (!dc->debug.disable_pplib_wm_range) {
dc->res_pool = &pool->base;
DC_FP_START();
dcn_get_soc_clks(
dc, &min_fclk_khz, &min_dcfclk_khz, &socclk_khz);
DC_FP_END();
dcn_bw_notify_pplib_of_wm_ranges(
dc, min_fclk_khz, min_dcfclk_khz, socclk_khz);
}
{
struct irq_service_init_data init_data;
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dcn10_create(&init_data);
if (!pool->base.irqs)
goto fail;
}
/* index to valid pipe resource */
j = 0;
/* mem input -> ipp -> dpp -> opp -> TG */
for (i = 0; i < pool->base.pipe_count; i++) {
/* if pipe is disabled, skip instance of HW pipe,
* i.e, skip ASIC register instance
*/
if ((pipe_fuses & (1 << i)) != 0)
continue;
pool->base.hubps[j] = dcn10_hubp_create(ctx, i);
if (pool->base.hubps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto fail;
}
pool->base.ipps[j] = dcn10_ipp_create(ctx, i);
if (pool->base.ipps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create input pixel processor!\n");
goto fail;
}
pool->base.dpps[j] = dcn10_dpp_create(ctx, i);
if (pool->base.dpps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create dpp!\n");
goto fail;
}
pool->base.opps[j] = dcn10_opp_create(ctx, i);
if (pool->base.opps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto fail;
}
pool->base.timing_generators[j] = dcn10_timing_generator_create(
ctx, i);
if (pool->base.timing_generators[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto fail;
}
/* check next valid pipe */
j++;
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dcn10_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto fail;
}
pool->base.hw_i2cs[i] = dcn10_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create hw i2c!!\n");
goto fail;
}
pool->base.sw_i2cs[i] = NULL;
}
/* valid pipe num */
pool->base.pipe_count = j;
pool->base.timing_generator_count = j;
/* within dml lib, it is hard code to 4. If ASIC pipe is fused,
* the value may be changed
*/
dc->dml.ip.max_num_dpp = pool->base.pipe_count;
dc->dcn_ip->max_num_dpp = pool->base.pipe_count;
pool->base.mpc = dcn10_mpc_create(ctx);
if (pool->base.mpc == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mpc!\n");
goto fail;
}
pool->base.hubbub = dcn10_hubbub_create(ctx);
if (pool->base.hubbub == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create hubbub!\n");
goto fail;
}
if (!resource_construct(num_virtual_links, dc, &pool->base,
(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
&res_create_funcs : &res_create_maximus_funcs)))
goto fail;
dcn10_hw_sequencer_construct(dc);
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->cap_funcs = cap_funcs;
return true;
fail:
dcn10_resource_destruct(pool);
return false;
}
struct resource_pool *dcn10_create_resource_pool(
const struct dc_init_data *init_data,
struct dc *dc)
{
struct dcn10_resource_pool *pool =
kzalloc(sizeof(struct dcn10_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dcn10_resource_construct(init_data->num_virtual_links, dc, pool))
return &pool->base;
kfree(pool);
BREAK_TO_DEBUGGER();
return NULL;
}