Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 */
#define pr_fmt(fmt) "numa: " fmt

#include <linux/threads.h>
#include <linux/memblock.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/export.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/pfn.h>
#include <linux/cpuset.h>
#include <linux/node.h>
#include <linux/stop_machine.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <asm/cputhreads.h>
#include <asm/sparsemem.h>
#include <asm/smp.h>
#include <asm/topology.h>
#include <asm/firmware.h>
#include <asm/paca.h>
#include <asm/hvcall.h>
#include <asm/setup.h>
#include <asm/vdso.h>
#include <asm/drmem.h>

static int numa_enabled = 1;

static char *cmdline __initdata;

int numa_cpu_lookup_table[NR_CPUS];
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
struct pglist_data *node_data[MAX_NUMNODES];

EXPORT_SYMBOL(numa_cpu_lookup_table);
EXPORT_SYMBOL(node_to_cpumask_map);
EXPORT_SYMBOL(node_data);

static int primary_domain_index;
static int n_mem_addr_cells, n_mem_size_cells;

#define FORM0_AFFINITY 0
#define FORM1_AFFINITY 1
#define FORM2_AFFINITY 2
static int affinity_form;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
static const __be32 *distance_ref_points;
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
	[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
};
static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };

/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
 * Note: cpumask_of_node() is not valid until after this is done.
 */
static void __init setup_node_to_cpumask_map(void)
{
	unsigned int node;

	/* setup nr_node_ids if not done yet */
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();

	/* allocate the map */
	for_each_node(node)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
}

static int __init fake_numa_create_new_node(unsigned long end_pfn,
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		pr_debug("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

static void __init reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);

	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
		pr_debug("adding cpu %d to node %d\n", cpu, node);
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
	}
}

#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
		pr_debug("removing cpu %lu from node %d\n", cpu, node);
	} else {
		pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
	}
}
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */

static int __associativity_to_nid(const __be32 *associativity,
				  int max_array_sz)
{
	int nid;
	/*
	 * primary_domain_index is 1 based array index.
	 */
	int index = primary_domain_index  - 1;

	if (!numa_enabled || index >= max_array_sz)
		return NUMA_NO_NODE;

	nid = of_read_number(&associativity[index], 1);

	/* POWER4 LPAR uses 0xffff as invalid node */
	if (nid == 0xffff || nid >= nr_node_ids)
		nid = NUMA_NO_NODE;
	return nid;
}
/*
 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
 * info is found.
 */
static int associativity_to_nid(const __be32 *associativity)
{
	int array_sz = of_read_number(associativity, 1);

	/* Skip the first element in the associativity array */
	return __associativity_to_nid((associativity + 1), array_sz);
}

static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
{
	int dist;
	int node1, node2;

	node1 = associativity_to_nid(cpu1_assoc);
	node2 = associativity_to_nid(cpu2_assoc);

	dist = numa_distance_table[node1][node2];
	if (dist <= LOCAL_DISTANCE)
		return 0;
	else if (dist <= REMOTE_DISTANCE)
		return 1;
	else
		return 2;
}

static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
{
	int dist = 0;

	int i, index;

	for (i = 0; i < distance_ref_points_depth; i++) {
		index = be32_to_cpu(distance_ref_points[i]);
		if (cpu1_assoc[index] == cpu2_assoc[index])
			break;
		dist++;
	}

	return dist;
}

int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
{
	/* We should not get called with FORM0 */
	VM_WARN_ON(affinity_form == FORM0_AFFINITY);
	if (affinity_form == FORM1_AFFINITY)
		return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
	return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
}

/* must hold reference to node during call */
static const __be32 *of_get_associativity(struct device_node *dev)
{
	return of_get_property(dev, "ibm,associativity", NULL);
}

int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (affinity_form == FORM2_AFFINITY)
		return numa_distance_table[a][b];
	else if (affinity_form == FORM0_AFFINITY)
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
EXPORT_SYMBOL(__node_distance);

/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = NUMA_NO_NODE;
	const __be32 *tmp;

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	int nid = NUMA_NO_NODE;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

		device = of_get_next_parent(device);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL(of_node_to_nid);

static void __initialize_form1_numa_distance(const __be32 *associativity,
					     int max_array_sz)
{
	int i, nid;

	if (affinity_form != FORM1_AFFINITY)
		return;

	nid = __associativity_to_nid(associativity, max_array_sz);
	if (nid != NUMA_NO_NODE) {
		for (i = 0; i < distance_ref_points_depth; i++) {
			const __be32 *entry;
			int index = be32_to_cpu(distance_ref_points[i]) - 1;

			/*
			 * broken hierarchy, return with broken distance table
			 */
			if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
				return;

			entry = &associativity[index];
			distance_lookup_table[nid][i] = of_read_number(entry, 1);
		}
	}
}

static void initialize_form1_numa_distance(const __be32 *associativity)
{
	int array_sz;

	array_sz = of_read_number(associativity, 1);
	/* Skip the first element in the associativity array */
	__initialize_form1_numa_distance(associativity + 1, array_sz);
}

/*
 * Used to update distance information w.r.t newly added node.
 */
void update_numa_distance(struct device_node *node)
{
	int nid;

	if (affinity_form == FORM0_AFFINITY)
		return;
	else if (affinity_form == FORM1_AFFINITY) {
		const __be32 *associativity;

		associativity = of_get_associativity(node);
		if (!associativity)
			return;

		initialize_form1_numa_distance(associativity);
		return;
	}

	/* FORM2 affinity  */
	nid = of_node_to_nid_single(node);
	if (nid == NUMA_NO_NODE)
		return;

	/*
	 * With FORM2 we expect NUMA distance of all possible NUMA
	 * nodes to be provided during boot.
	 */
	WARN(numa_distance_table[nid][nid] == -1,
	     "NUMA distance details for node %d not provided\n", nid);
}
EXPORT_SYMBOL_GPL(update_numa_distance);

/*
 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
 */
static void __init initialize_form2_numa_distance_lookup_table(void)
{
	int i, j;
	struct device_node *root;
	const __u8 *form2_distances;
	const __be32 *numa_lookup_index;
	int form2_distances_length;
	int max_numa_index, distance_index;

	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
	if (!root)
		root = of_find_node_by_path("/");

	numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
	max_numa_index = of_read_number(&numa_lookup_index[0], 1);

	/* first element of the array is the size and is encode-int */
	form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
	form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
	/* Skip the size which is encoded int */
	form2_distances += sizeof(__be32);

	pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
		 form2_distances_length, max_numa_index);

	for (i = 0; i < max_numa_index; i++)
		/* +1 skip the max_numa_index in the property */
		numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);


	if (form2_distances_length != max_numa_index * max_numa_index) {
		WARN(1, "Wrong NUMA distance information\n");
		form2_distances = NULL; // don't use it
	}
	distance_index = 0;
	for (i = 0;  i < max_numa_index; i++) {
		for (j = 0; j < max_numa_index; j++) {
			int nodeA = numa_id_index_table[i];
			int nodeB = numa_id_index_table[j];
			int dist;

			if (form2_distances)
				dist = form2_distances[distance_index++];
			else if (nodeA == nodeB)
				dist = LOCAL_DISTANCE;
			else
				dist = REMOTE_DISTANCE;
			numa_distance_table[nodeA][nodeB] = dist;
			pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
		}
	}

	of_node_put(root);
}

static int __init find_primary_domain_index(void)
{
	int index;
	struct device_node *root;

	/*
	 * Check for which form of affinity.
	 */
	if (firmware_has_feature(FW_FEATURE_OPAL)) {
		affinity_form = FORM1_AFFINITY;
	} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
		pr_debug("Using form 2 affinity\n");
		affinity_form = FORM2_AFFINITY;
	} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
		pr_debug("Using form 1 affinity\n");
		affinity_form = FORM1_AFFINITY;
	} else
		affinity_form = FORM0_AFFINITY;

	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
	if (!root)
		root = of_find_node_by_path("/");

	/*
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
	 */
	distance_ref_points = of_get_property(root,
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		pr_debug("ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
	if (affinity_form == FORM0_AFFINITY) {
		if (distance_ref_points_depth < 2) {
			pr_warn("short ibm,associativity-reference-points\n");
			goto err;
		}

		index = of_read_number(&distance_ref_points[1], 1);
	} else {
		/*
		 * Both FORM1 and FORM2 affinity find the primary domain details
		 * at the same offset.
		 */
		index = of_read_number(distance_ref_points, 1);
	}
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		pr_warn("distance array capped at %d entries\n",
			MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

	of_node_put(root);
	return index;

err:
	of_node_put(root);
	return -1;
}

static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
	if (!memory)
		panic("numa.c: No memory nodes found!");

	*n_addr_cells = of_n_addr_cells(memory);
	*n_size_cells = of_n_size_cells(memory);
	of_node_put(memory);
}

static unsigned long read_n_cells(int n, const __be32 **buf)
{
	unsigned long result = 0;

	while (n--) {
		result = (result << 32) | of_read_number(*buf, 1);
		(*buf)++;
	}
	return result;
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
	const __be32 *arrays;
};

/*
 * Retrieve and validate the list of associativity arrays for drconf
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct assoc_arrays *aa)
{
	struct device_node *memory;
	const __be32 *prop;
	u32 len;

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (!memory)
		return -1;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int)) {
		of_node_put(memory);
		return -1;
	}

	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);

	of_node_put(memory);

	/* Now that we know the number of arrays and size of each array,
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
{
	struct assoc_arrays aa = { .arrays = NULL };
	int default_nid = NUMA_NO_NODE;
	int nid = default_nid;
	int rc, index;

	if ((primary_domain_index < 0) || !numa_enabled)
		return default_nid;

	rc = of_get_assoc_arrays(&aa);
	if (rc)
		return default_nid;

	if (primary_domain_index <= aa.array_sz &&
	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
		const __be32 *associativity;

		index = lmb->aa_index * aa.array_sz;
		associativity = &aa.arrays[index];
		nid = __associativity_to_nid(associativity, aa.array_sz);
		if (nid > 0 && affinity_form == FORM1_AFFINITY) {
			/*
			 * lookup array associativity entries have
			 * no length of the array as the first element.
			 */
			__initialize_form1_numa_distance(associativity, aa.array_sz);
		}
	}
	return nid;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
int of_drconf_to_nid_single(struct drmem_lmb *lmb)
{
	struct assoc_arrays aa = { .arrays = NULL };
	int default_nid = NUMA_NO_NODE;
	int nid = default_nid;
	int rc, index;

	if ((primary_domain_index < 0) || !numa_enabled)
		return default_nid;

	rc = of_get_assoc_arrays(&aa);
	if (rc)
		return default_nid;

	if (primary_domain_index <= aa.array_sz &&
	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
		const __be32 *associativity;

		index = lmb->aa_index * aa.array_sz;
		associativity = &aa.arrays[index];
		nid = __associativity_to_nid(associativity, aa.array_sz);
	}
	return nid;
}

#ifdef CONFIG_PPC_SPLPAR

static int __vphn_get_associativity(long lcpu, __be32 *associativity)
{
	long rc, hwid;

	/*
	 * On a shared lpar, device tree will not have node associativity.
	 * At this time lppaca, or its __old_status field may not be
	 * updated. Hence kernel cannot detect if its on a shared lpar. So
	 * request an explicit associativity irrespective of whether the
	 * lpar is shared or dedicated. Use the device tree property as a
	 * fallback. cpu_to_phys_id is only valid between
	 * smp_setup_cpu_maps() and smp_setup_pacas().
	 */
	if (firmware_has_feature(FW_FEATURE_VPHN)) {
		if (cpu_to_phys_id)
			hwid = cpu_to_phys_id[lcpu];
		else
			hwid = get_hard_smp_processor_id(lcpu);

		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
		if (rc == H_SUCCESS)
			return 0;
	}

	return -1;
}

static int vphn_get_nid(long lcpu)
{
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};


	if (!__vphn_get_associativity(lcpu, associativity))
		return associativity_to_nid(associativity);

	return NUMA_NO_NODE;

}
#else

static int __vphn_get_associativity(long lcpu, __be32 *associativity)
{
	return -1;
}

static int vphn_get_nid(long unused)
{
	return NUMA_NO_NODE;
}
#endif  /* CONFIG_PPC_SPLPAR */

/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
static int numa_setup_cpu(unsigned long lcpu)
{
	struct device_node *cpu;
	int fcpu = cpu_first_thread_sibling(lcpu);
	int nid = NUMA_NO_NODE;

	if (!cpu_present(lcpu)) {
		set_cpu_numa_node(lcpu, first_online_node);
		return first_online_node;
	}

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 * Since cpu_to_node binding remains the same for all threads in the
	 * core. If a valid cpu-to-node mapping is already available, for
	 * the first thread in the core, use it.
	 */
	nid = numa_cpu_lookup_table[fcpu];
	if (nid >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	nid = vphn_get_nid(lcpu);
	if (nid != NUMA_NO_NODE)
		goto out_present;

	cpu = of_get_cpu_node(lcpu, NULL);

	if (!cpu) {
		WARN_ON(1);
		if (cpu_present(lcpu))
			goto out_present;
		else
			goto out;
	}

	nid = of_node_to_nid_single(cpu);
	of_node_put(cpu);

out_present:
	if (nid < 0 || !node_possible(nid))
		nid = first_online_node;

	/*
	 * Update for the first thread of the core. All threads of a core
	 * have to be part of the same node. This not only avoids querying
	 * for every other thread in the core, but always avoids a case
	 * where virtual node associativity change causes subsequent threads
	 * of a core to be associated with different nid. However if first
	 * thread is already online, expect it to have a valid mapping.
	 */
	if (fcpu != lcpu) {
		WARN_ON(cpu_online(fcpu));
		map_cpu_to_node(fcpu, nid);
	}

	map_cpu_to_node(lcpu, nid);
out:
	return nid;
}

static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

/* Must run before sched domains notifier. */
static int ppc_numa_cpu_prepare(unsigned int cpu)
{
	int nid;

	nid = numa_setup_cpu(cpu);
	verify_cpu_node_mapping(cpu, nid);
	return 0;
}

static int ppc_numa_cpu_dead(unsigned int cpu)
{
	return 0;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
 * discarded as it lies wholly above the memory limit.
 */
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
{
	/*
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
	 * we've already adjusted it for the limit and it takes care of
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
	 */

	if (start + size <= memblock_end_of_DRAM())
		return size;

	if (start >= memblock_end_of_DRAM())
		return 0;

	return memblock_end_of_DRAM() - start;
}

/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
static inline int __init read_usm_ranges(const __be32 **usm)
{
	/*
	 * For each lmb in ibm,dynamic-memory a corresponding
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
					const __be32 **usm,
					void *data)
{
	unsigned int ranges, is_kexec_kdump = 0;
	unsigned long base, size, sz;
	int nid;

	/*
	 * Skip this block if the reserved bit is set in flags (0x80)
	 * or if the block is not assigned to this partition (0x8)
	 */
	if ((lmb->flags & DRCONF_MEM_RESERVED)
	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
		return 0;

	if (*usm)
		is_kexec_kdump = 1;

	base = lmb->base_addr;
	size = drmem_lmb_size();
	ranges = 1;

	if (is_kexec_kdump) {
		ranges = read_usm_ranges(usm);
		if (!ranges) /* there are no (base, size) duple */
			return 0;
	}

	do {
		if (is_kexec_kdump) {
			base = read_n_cells(n_mem_addr_cells, usm);
			size = read_n_cells(n_mem_size_cells, usm);
		}

		nid = get_nid_and_numa_distance(lmb);
		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
					  &nid);
		node_set_online(nid);
		sz = numa_enforce_memory_limit(base, size);
		if (sz)
			memblock_set_node(base, sz, &memblock.memory, nid);
	} while (--ranges);

	return 0;
}

static int __init parse_numa_properties(void)
{
	struct device_node *memory;
	int default_nid = 0;
	unsigned long i;
	const __be32 *associativity;

	if (numa_enabled == 0) {
		pr_warn("disabled by user\n");
		return -1;
	}

	primary_domain_index = find_primary_domain_index();

	if (primary_domain_index < 0) {
		/*
		 * if we fail to parse primary_domain_index from device tree
		 * mark the numa disabled, boot with numa disabled.
		 */
		numa_enabled = false;
		return primary_domain_index;
	}

	pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);

	/*
	 * If it is FORM2 initialize the distance table here.
	 */
	if (affinity_form == FORM2_AFFINITY)
		initialize_form2_numa_distance_lookup_table();

	/*
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
	 */
	for_each_present_cpu(i) {
		__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
		struct device_node *cpu;
		int nid = NUMA_NO_NODE;

		memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));

		if (__vphn_get_associativity(i, vphn_assoc) == 0) {
			nid = associativity_to_nid(vphn_assoc);
			initialize_form1_numa_distance(vphn_assoc);
		} else {

			/*
			 * Don't fall back to default_nid yet -- we will plug
			 * cpus into nodes once the memory scan has discovered
			 * the topology.
			 */
			cpu = of_get_cpu_node(i, NULL);
			BUG_ON(!cpu);

			associativity = of_get_associativity(cpu);
			if (associativity) {
				nid = associativity_to_nid(associativity);
				initialize_form1_numa_distance(associativity);
			}
			of_node_put(cpu);
		}

		/* node_set_online() is an UB if 'nid' is negative */
		if (likely(nid >= 0))
			node_set_online(nid);
	}

	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);

	for_each_node_by_type(memory, "memory") {
		unsigned long start;
		unsigned long size;
		int nid;
		int ranges;
		const __be32 *memcell_buf;
		unsigned int len;

		memcell_buf = of_get_property(memory,
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
			memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);

		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
		associativity = of_get_associativity(memory);
		if (associativity) {
			nid = associativity_to_nid(associativity);
			initialize_form1_numa_distance(associativity);
		} else
			nid = default_nid;

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
		node_set_online(nid);

		size = numa_enforce_memory_limit(start, size);
		if (size)
			memblock_set_node(start, size, &memblock.memory, nid);

		if (--ranges)
			goto new_range;
	}

	/*
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
		of_node_put(memory);
	}

	return 0;
}

static void __init setup_nonnuma(void)
{
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
	unsigned long start_pfn, end_pfn;
	unsigned int nid = 0;
	int i;

	pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
	pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
		fake_numa_create_new_node(end_pfn, &nid);
		memblock_set_node(PFN_PHYS(start_pfn),
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
		node_set_online(nid);
	}
}

void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (!numa_enabled)
		return;

	for_each_online_node(node) {
		pr_info("Node %d CPUs:", node);

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
				if (count == 0)
					pr_cont(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					pr_cont("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
			pr_cont("-%u", nr_cpu_ids - 1);
		pr_cont("\n");
	}
}

/* Initialize NODE_DATA for a node on the local memory */
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
{
	u64 spanned_pages = end_pfn - start_pfn;
	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
	u64 nd_pa;
	void *nd;
	int tnid;

	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
	if (!nd_pa)
		panic("Cannot allocate %zu bytes for node %d data\n",
		      nd_size, nid);

	nd = __va(nd_pa);

	/* report and initialize */
	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
		nd_pa, nd_pa + nd_size - 1);
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
	if (tnid != nid)
		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);

	node_data[nid] = nd;
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
	NODE_DATA(nid)->node_id = nid;
	NODE_DATA(nid)->node_start_pfn = start_pfn;
	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
}

static void __init find_possible_nodes(void)
{
	struct device_node *rtas;
	const __be32 *domains = NULL;
	int prop_length, max_nodes;
	u32 i;

	if (!numa_enabled)
		return;

	rtas = of_find_node_by_path("/rtas");
	if (!rtas)
		return;

	/*
	 * ibm,current-associativity-domains is a fairly recent property. If
	 * it doesn't exist, then fallback on ibm,max-associativity-domains.
	 * Current denotes what the platform can support compared to max
	 * which denotes what the Hypervisor can support.
	 *
	 * If the LPAR is migratable, new nodes might be activated after a LPM,
	 * so we should consider the max number in that case.
	 */
	if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
		domains = of_get_property(rtas,
					  "ibm,current-associativity-domains",
					  &prop_length);
	if (!domains) {
		domains = of_get_property(rtas, "ibm,max-associativity-domains",
					&prop_length);
		if (!domains)
			goto out;
	}

	max_nodes = of_read_number(&domains[primary_domain_index], 1);
	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);

	for (i = 0; i < max_nodes; i++) {
		if (!node_possible(i))
			node_set(i, node_possible_map);
	}

	prop_length /= sizeof(int);
	if (prop_length > primary_domain_index + 2)
		coregroup_enabled = 1;

out:
	of_node_put(rtas);
}

void __init mem_topology_setup(void)
{
	int cpu;

	max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
	min_low_pfn = MEMORY_START >> PAGE_SHIFT;

	/*
	 * Linux/mm assumes node 0 to be online at boot. However this is not
	 * true on PowerPC, where node 0 is similar to any other node, it
	 * could be cpuless, memoryless node. So force node 0 to be offline
	 * for now. This will prevent cpuless, memoryless node 0 showing up
	 * unnecessarily as online. If a node has cpus or memory that need
	 * to be online, then node will anyway be marked online.
	 */
	node_set_offline(0);

	if (parse_numa_properties())
		setup_nonnuma();

	/*
	 * Modify the set of possible NUMA nodes to reflect information
	 * available about the set of online nodes, and the set of nodes
	 * that we expect to make use of for this platform's affinity
	 * calculations.
	 */
	nodes_and(node_possible_map, node_possible_map, node_online_map);

	find_possible_nodes();

	setup_node_to_cpumask_map();

	reset_numa_cpu_lookup_table();

	for_each_possible_cpu(cpu) {
		/*
		 * Powerpc with CONFIG_NUMA always used to have a node 0,
		 * even if it was memoryless or cpuless. For all cpus that
		 * are possible but not present, cpu_to_node() would point
		 * to node 0. To remove a cpuless, memoryless dummy node,
		 * powerpc need to make sure all possible but not present
		 * cpu_to_node are set to a proper node.
		 */
		numa_setup_cpu(cpu);
	}
}

void __init initmem_init(void)
{
	int nid;

	memblock_dump_all();

	for_each_online_node(nid) {
		unsigned long start_pfn, end_pfn;

		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
		setup_node_data(nid, start_pfn, end_pfn);
	}

	sparse_init();

	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
	 * _nocalls() + manual invocation is used because cpuhp is not yet
	 * initialized for the boot CPU.
	 */
	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

	return 0;
}
early_param("numa", early_numa);

#ifdef CONFIG_MEMORY_HOTPLUG
/*
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
 */
static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
{
	struct drmem_lmb *lmb;
	unsigned long lmb_size;
	int nid = NUMA_NO_NODE;

	lmb_size = drmem_lmb_size();

	for_each_drmem_lmb(lmb) {
		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((lmb->flags & DRCONF_MEM_RESERVED)
		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
			continue;

		if ((scn_addr < lmb->base_addr)
		    || (scn_addr >= (lmb->base_addr + lmb_size)))
			continue;

		nid = of_drconf_to_nid_single(lmb);
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
 * each memblock.
 */
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory;
	int nid = NUMA_NO_NODE;

	for_each_node_by_type(memory, "memory") {
		unsigned long start, size;
		int ranges;
		const __be32 *memcell_buf;
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}

		if (nid >= 0)
			break;
	}

	of_node_put(memory);

	return nid;
}

/*
 * Find the node associated with a hot added memory section.  Section
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
	int nid;

	if (!numa_enabled)
		return first_online_node;

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(scn_addr);
		of_node_put(memory);
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
	}

	if (nid < 0 || !node_possible(nid))
		nid = first_online_node;

	return nid;
}

static u64 hot_add_drconf_memory_max(void)
{
	struct device_node *memory = NULL;
	struct device_node *dn = NULL;
	const __be64 *lrdr = NULL;

	dn = of_find_node_by_path("/rtas");
	if (dn) {
		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
		of_node_put(dn);
		if (lrdr)
			return be64_to_cpup(lrdr);
	}

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		of_node_put(memory);
		return drmem_lmb_memory_max();
	}
	return 0;
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
#endif /* CONFIG_MEMORY_HOTPLUG */

/* Virtual Processor Home Node (VPHN) support */
#ifdef CONFIG_PPC_SPLPAR
static int topology_inited;

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
static long vphn_get_associativity(unsigned long cpu,
					__be32 *associativity)
{
	long rc;

	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
				VPHN_FLAG_VCPU, associativity);

	switch (rc) {
	case H_SUCCESS:
		pr_debug("VPHN hcall succeeded. Reset polling...\n");
		goto out;

	case H_FUNCTION:
		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
		break;
	case H_HARDWARE:
		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		break;
	case H_PARAMETER:
		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
			"Disabling polling...\n");
		break;
	default:
		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
			, rc);
		break;
	}
out:
	return rc;
}

void find_and_update_cpu_nid(int cpu)
{
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
	int new_nid;

	/* Use associativity from first thread for all siblings */
	if (vphn_get_associativity(cpu, associativity))
		return;

	/* Do not have previous associativity, so find it now. */
	new_nid = associativity_to_nid(associativity);

	if (new_nid < 0 || !node_possible(new_nid))
		new_nid = first_online_node;
	else
		// Associate node <-> cpu, so cpu_up() calls
		// try_online_node() on the right node.
		set_cpu_numa_node(cpu, new_nid);

	pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
}

int cpu_to_coregroup_id(int cpu)
{
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
	int index;

	if (cpu < 0 || cpu > nr_cpu_ids)
		return -1;

	if (!coregroup_enabled)
		goto out;

	if (!firmware_has_feature(FW_FEATURE_VPHN))
		goto out;

	if (vphn_get_associativity(cpu, associativity))
		goto out;

	index = of_read_number(associativity, 1);
	if (index > primary_domain_index + 1)
		return of_read_number(&associativity[index - 1], 1);

out:
	return cpu_to_core_id(cpu);
}

static int topology_update_init(void)
{
	topology_inited = 1;
	return 0;
}
device_initcall(topology_update_init);
#endif /* CONFIG_PPC_SPLPAR */