// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the Atmel USBA high speed USB device controller
*
* Copyright (C) 2005-2007 Atmel Corporation
*/
#include <linux/clk.h>
#include <linux/clk/at91_pmc.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/list.h>
#include <linux/mfd/syscon.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/ctype.h>
#include <linux/usb.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/irq.h>
#include <linux/gpio/consumer.h>
#include "atmel_usba_udc.h"
#define USBA_VBUS_IRQFLAGS (IRQF_ONESHOT \
| IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING)
#ifdef CONFIG_USB_GADGET_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/uaccess.h>
static int queue_dbg_open(struct inode *inode, struct file *file)
{
struct usba_ep *ep = inode->i_private;
struct usba_request *req, *req_copy;
struct list_head *queue_data;
queue_data = kmalloc(sizeof(*queue_data), GFP_KERNEL);
if (!queue_data)
return -ENOMEM;
INIT_LIST_HEAD(queue_data);
spin_lock_irq(&ep->udc->lock);
list_for_each_entry(req, &ep->queue, queue) {
req_copy = kmemdup(req, sizeof(*req_copy), GFP_ATOMIC);
if (!req_copy)
goto fail;
list_add_tail(&req_copy->queue, queue_data);
}
spin_unlock_irq(&ep->udc->lock);
file->private_data = queue_data;
return 0;
fail:
spin_unlock_irq(&ep->udc->lock);
list_for_each_entry_safe(req, req_copy, queue_data, queue) {
list_del(&req->queue);
kfree(req);
}
kfree(queue_data);
return -ENOMEM;
}
/*
* bbbbbbbb llllllll IZS sssss nnnn FDL\n\0
*
* b: buffer address
* l: buffer length
* I/i: interrupt/no interrupt
* Z/z: zero/no zero
* S/s: short ok/short not ok
* s: status
* n: nr_packets
* F/f: submitted/not submitted to FIFO
* D/d: using/not using DMA
* L/l: last transaction/not last transaction
*/
static ssize_t queue_dbg_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct list_head *queue = file->private_data;
struct usba_request *req, *tmp_req;
size_t len, remaining, actual = 0;
char tmpbuf[38];
if (!access_ok(buf, nbytes))
return -EFAULT;
inode_lock(file_inode(file));
list_for_each_entry_safe(req, tmp_req, queue, queue) {
len = snprintf(tmpbuf, sizeof(tmpbuf),
"%8p %08x %c%c%c %5d %c%c%c\n",
req->req.buf, req->req.length,
req->req.no_interrupt ? 'i' : 'I',
req->req.zero ? 'Z' : 'z',
req->req.short_not_ok ? 's' : 'S',
req->req.status,
req->submitted ? 'F' : 'f',
req->using_dma ? 'D' : 'd',
req->last_transaction ? 'L' : 'l');
len = min(len, sizeof(tmpbuf));
if (len > nbytes)
break;
list_del(&req->queue);
kfree(req);
remaining = __copy_to_user(buf, tmpbuf, len);
actual += len - remaining;
if (remaining)
break;
nbytes -= len;
buf += len;
}
inode_unlock(file_inode(file));
return actual;
}
static int queue_dbg_release(struct inode *inode, struct file *file)
{
struct list_head *queue_data = file->private_data;
struct usba_request *req, *tmp_req;
list_for_each_entry_safe(req, tmp_req, queue_data, queue) {
list_del(&req->queue);
kfree(req);
}
kfree(queue_data);
return 0;
}
static int regs_dbg_open(struct inode *inode, struct file *file)
{
struct usba_udc *udc;
unsigned int i;
u32 *data;
int ret = -ENOMEM;
inode_lock(inode);
udc = inode->i_private;
data = kmalloc(inode->i_size, GFP_KERNEL);
if (!data)
goto out;
spin_lock_irq(&udc->lock);
for (i = 0; i < inode->i_size / 4; i++)
data[i] = readl_relaxed(udc->regs + i * 4);
spin_unlock_irq(&udc->lock);
file->private_data = data;
ret = 0;
out:
inode_unlock(inode);
return ret;
}
static ssize_t regs_dbg_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct inode *inode = file_inode(file);
int ret;
inode_lock(inode);
ret = simple_read_from_buffer(buf, nbytes, ppos,
file->private_data,
file_inode(file)->i_size);
inode_unlock(inode);
return ret;
}
static int regs_dbg_release(struct inode *inode, struct file *file)
{
kfree(file->private_data);
return 0;
}
static const struct file_operations queue_dbg_fops = {
.owner = THIS_MODULE,
.open = queue_dbg_open,
.llseek = no_llseek,
.read = queue_dbg_read,
.release = queue_dbg_release,
};
static const struct file_operations regs_dbg_fops = {
.owner = THIS_MODULE,
.open = regs_dbg_open,
.llseek = generic_file_llseek,
.read = regs_dbg_read,
.release = regs_dbg_release,
};
static void usba_ep_init_debugfs(struct usba_udc *udc,
struct usba_ep *ep)
{
struct dentry *ep_root;
ep_root = debugfs_create_dir(ep->ep.name, udc->debugfs_root);
ep->debugfs_dir = ep_root;
debugfs_create_file("queue", 0400, ep_root, ep, &queue_dbg_fops);
if (ep->can_dma)
debugfs_create_u32("dma_status", 0400, ep_root,
&ep->last_dma_status);
if (ep_is_control(ep))
debugfs_create_u32("state", 0400, ep_root, &ep->state);
}
static void usba_ep_cleanup_debugfs(struct usba_ep *ep)
{
debugfs_remove_recursive(ep->debugfs_dir);
}
static void usba_init_debugfs(struct usba_udc *udc)
{
struct dentry *root;
struct resource *regs_resource;
root = debugfs_create_dir(udc->gadget.name, usb_debug_root);
udc->debugfs_root = root;
regs_resource = platform_get_resource(udc->pdev, IORESOURCE_MEM,
CTRL_IOMEM_ID);
if (regs_resource) {
debugfs_create_file_size("regs", 0400, root, udc,
®s_dbg_fops,
resource_size(regs_resource));
}
usba_ep_init_debugfs(udc, to_usba_ep(udc->gadget.ep0));
}
static void usba_cleanup_debugfs(struct usba_udc *udc)
{
usba_ep_cleanup_debugfs(to_usba_ep(udc->gadget.ep0));
debugfs_remove_recursive(udc->debugfs_root);
}
#else
static inline void usba_ep_init_debugfs(struct usba_udc *udc,
struct usba_ep *ep)
{
}
static inline void usba_ep_cleanup_debugfs(struct usba_ep *ep)
{
}
static inline void usba_init_debugfs(struct usba_udc *udc)
{
}
static inline void usba_cleanup_debugfs(struct usba_udc *udc)
{
}
#endif
static ushort fifo_mode;
module_param(fifo_mode, ushort, 0x0);
MODULE_PARM_DESC(fifo_mode, "Endpoint configuration mode");
/* mode 0 - uses autoconfig */
/* mode 1 - fits in 8KB, generic max fifo configuration */
static struct usba_fifo_cfg mode_1_cfg[] = {
{ .hw_ep_num = 0, .fifo_size = 64, .nr_banks = 1, },
{ .hw_ep_num = 1, .fifo_size = 1024, .nr_banks = 2, },
{ .hw_ep_num = 2, .fifo_size = 1024, .nr_banks = 1, },
{ .hw_ep_num = 3, .fifo_size = 1024, .nr_banks = 1, },
{ .hw_ep_num = 4, .fifo_size = 1024, .nr_banks = 1, },
{ .hw_ep_num = 5, .fifo_size = 1024, .nr_banks = 1, },
{ .hw_ep_num = 6, .fifo_size = 1024, .nr_banks = 1, },
};
/* mode 2 - fits in 8KB, performance max fifo configuration */
static struct usba_fifo_cfg mode_2_cfg[] = {
{ .hw_ep_num = 0, .fifo_size = 64, .nr_banks = 1, },
{ .hw_ep_num = 1, .fifo_size = 1024, .nr_banks = 3, },
{ .hw_ep_num = 2, .fifo_size = 1024, .nr_banks = 2, },
{ .hw_ep_num = 3, .fifo_size = 1024, .nr_banks = 2, },
};
/* mode 3 - fits in 8KB, mixed fifo configuration */
static struct usba_fifo_cfg mode_3_cfg[] = {
{ .hw_ep_num = 0, .fifo_size = 64, .nr_banks = 1, },
{ .hw_ep_num = 1, .fifo_size = 1024, .nr_banks = 2, },
{ .hw_ep_num = 2, .fifo_size = 512, .nr_banks = 2, },
{ .hw_ep_num = 3, .fifo_size = 512, .nr_banks = 2, },
{ .hw_ep_num = 4, .fifo_size = 512, .nr_banks = 2, },
{ .hw_ep_num = 5, .fifo_size = 512, .nr_banks = 2, },
{ .hw_ep_num = 6, .fifo_size = 512, .nr_banks = 2, },
};
/* mode 4 - fits in 8KB, custom fifo configuration */
static struct usba_fifo_cfg mode_4_cfg[] = {
{ .hw_ep_num = 0, .fifo_size = 64, .nr_banks = 1, },
{ .hw_ep_num = 1, .fifo_size = 512, .nr_banks = 2, },
{ .hw_ep_num = 2, .fifo_size = 512, .nr_banks = 2, },
{ .hw_ep_num = 3, .fifo_size = 8, .nr_banks = 2, },
{ .hw_ep_num = 4, .fifo_size = 512, .nr_banks = 2, },
{ .hw_ep_num = 5, .fifo_size = 512, .nr_banks = 2, },
{ .hw_ep_num = 6, .fifo_size = 16, .nr_banks = 2, },
{ .hw_ep_num = 7, .fifo_size = 8, .nr_banks = 2, },
{ .hw_ep_num = 8, .fifo_size = 8, .nr_banks = 2, },
};
/* Add additional configurations here */
static int usba_config_fifo_table(struct usba_udc *udc)
{
int n;
switch (fifo_mode) {
default:
fifo_mode = 0;
fallthrough;
case 0:
udc->fifo_cfg = NULL;
n = 0;
break;
case 1:
udc->fifo_cfg = mode_1_cfg;
n = ARRAY_SIZE(mode_1_cfg);
break;
case 2:
udc->fifo_cfg = mode_2_cfg;
n = ARRAY_SIZE(mode_2_cfg);
break;
case 3:
udc->fifo_cfg = mode_3_cfg;
n = ARRAY_SIZE(mode_3_cfg);
break;
case 4:
udc->fifo_cfg = mode_4_cfg;
n = ARRAY_SIZE(mode_4_cfg);
break;
}
DBG(DBG_HW, "Setup fifo_mode %d\n", fifo_mode);
return n;
}
static inline u32 usba_int_enb_get(struct usba_udc *udc)
{
return udc->int_enb_cache;
}
static inline void usba_int_enb_set(struct usba_udc *udc, u32 mask)
{
u32 val;
val = udc->int_enb_cache | mask;
usba_writel(udc, INT_ENB, val);
udc->int_enb_cache = val;
}
static inline void usba_int_enb_clear(struct usba_udc *udc, u32 mask)
{
u32 val;
val = udc->int_enb_cache & ~mask;
usba_writel(udc, INT_ENB, val);
udc->int_enb_cache = val;
}
static int vbus_is_present(struct usba_udc *udc)
{
if (udc->vbus_pin)
return gpiod_get_value(udc->vbus_pin);
/* No Vbus detection: Assume always present */
return 1;
}
static void toggle_bias(struct usba_udc *udc, int is_on)
{
if (udc->errata && udc->errata->toggle_bias)
udc->errata->toggle_bias(udc, is_on);
}
static void generate_bias_pulse(struct usba_udc *udc)
{
if (!udc->bias_pulse_needed)
return;
if (udc->errata && udc->errata->pulse_bias)
udc->errata->pulse_bias(udc);
udc->bias_pulse_needed = false;
}
static void next_fifo_transaction(struct usba_ep *ep, struct usba_request *req)
{
unsigned int transaction_len;
transaction_len = req->req.length - req->req.actual;
req->last_transaction = 1;
if (transaction_len > ep->ep.maxpacket) {
transaction_len = ep->ep.maxpacket;
req->last_transaction = 0;
} else if (transaction_len == ep->ep.maxpacket && req->req.zero)
req->last_transaction = 0;
DBG(DBG_QUEUE, "%s: submit_transaction, req %p (length %d)%s\n",
ep->ep.name, req, transaction_len,
req->last_transaction ? ", done" : "");
memcpy_toio(ep->fifo, req->req.buf + req->req.actual, transaction_len);
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
req->req.actual += transaction_len;
}
static void submit_request(struct usba_ep *ep, struct usba_request *req)
{
DBG(DBG_QUEUE, "%s: submit_request: req %p (length %d)\n",
ep->ep.name, req, req->req.length);
req->req.actual = 0;
req->submitted = 1;
if (req->using_dma) {
if (req->req.length == 0) {
usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY);
return;
}
if (req->req.zero)
usba_ep_writel(ep, CTL_ENB, USBA_SHORT_PACKET);
else
usba_ep_writel(ep, CTL_DIS, USBA_SHORT_PACKET);
usba_dma_writel(ep, ADDRESS, req->req.dma);
usba_dma_writel(ep, CONTROL, req->ctrl);
} else {
next_fifo_transaction(ep, req);
if (req->last_transaction) {
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
if (ep_is_control(ep))
usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
} else {
if (ep_is_control(ep))
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY);
}
}
}
static void submit_next_request(struct usba_ep *ep)
{
struct usba_request *req;
if (list_empty(&ep->queue)) {
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY | USBA_RX_BK_RDY);
return;
}
req = list_entry(ep->queue.next, struct usba_request, queue);
if (!req->submitted)
submit_request(ep, req);
}
static void send_status(struct usba_udc *udc, struct usba_ep *ep)
{
ep->state = STATUS_STAGE_IN;
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
}
static void receive_data(struct usba_ep *ep)
{
struct usba_udc *udc = ep->udc;
struct usba_request *req;
unsigned long status;
unsigned int bytecount, nr_busy;
int is_complete = 0;
status = usba_ep_readl(ep, STA);
nr_busy = USBA_BFEXT(BUSY_BANKS, status);
DBG(DBG_QUEUE, "receive data: nr_busy=%u\n", nr_busy);
while (nr_busy > 0) {
if (list_empty(&ep->queue)) {
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
break;
}
req = list_entry(ep->queue.next,
struct usba_request, queue);
bytecount = USBA_BFEXT(BYTE_COUNT, status);
if (status & (1 << 31))
is_complete = 1;
if (req->req.actual + bytecount >= req->req.length) {
is_complete = 1;
bytecount = req->req.length - req->req.actual;
}
memcpy_fromio(req->req.buf + req->req.actual,
ep->fifo, bytecount);
req->req.actual += bytecount;
usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
if (is_complete) {
DBG(DBG_QUEUE, "%s: request done\n", ep->ep.name);
req->req.status = 0;
list_del_init(&req->queue);
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
spin_unlock(&udc->lock);
usb_gadget_giveback_request(&ep->ep, &req->req);
spin_lock(&udc->lock);
}
status = usba_ep_readl(ep, STA);
nr_busy = USBA_BFEXT(BUSY_BANKS, status);
if (is_complete && ep_is_control(ep)) {
send_status(udc, ep);
break;
}
}
}
static void
request_complete(struct usba_ep *ep, struct usba_request *req, int status)
{
struct usba_udc *udc = ep->udc;
WARN_ON(!list_empty(&req->queue));
if (req->req.status == -EINPROGRESS)
req->req.status = status;
if (req->using_dma)
usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
DBG(DBG_GADGET | DBG_REQ,
"%s: req %p complete: status %d, actual %u\n",
ep->ep.name, req, req->req.status, req->req.actual);
spin_unlock(&udc->lock);
usb_gadget_giveback_request(&ep->ep, &req->req);
spin_lock(&udc->lock);
}
static void
request_complete_list(struct usba_ep *ep, struct list_head *list, int status)
{
struct usba_request *req, *tmp_req;
list_for_each_entry_safe(req, tmp_req, list, queue) {
list_del_init(&req->queue);
request_complete(ep, req, status);
}
}
static int
usba_ep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
unsigned long flags, maxpacket;
unsigned int nr_trans;
DBG(DBG_GADGET, "%s: ep_enable: desc=%p\n", ep->ep.name, desc);
maxpacket = usb_endpoint_maxp(desc);
if (((desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK) != ep->index)
|| ep->index == 0
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| maxpacket == 0
|| maxpacket > ep->fifo_size) {
DBG(DBG_ERR, "ep_enable: Invalid argument");
return -EINVAL;
}
ep->is_isoc = 0;
ep->is_in = 0;
DBG(DBG_ERR, "%s: EPT_CFG = 0x%lx (maxpacket = %lu)\n",
ep->ep.name, ep->ept_cfg, maxpacket);
if (usb_endpoint_dir_in(desc)) {
ep->is_in = 1;
ep->ept_cfg |= USBA_EPT_DIR_IN;
}
switch (usb_endpoint_type(desc)) {
case USB_ENDPOINT_XFER_CONTROL:
ep->ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_CONTROL);
break;
case USB_ENDPOINT_XFER_ISOC:
if (!ep->can_isoc) {
DBG(DBG_ERR, "ep_enable: %s is not isoc capable\n",
ep->ep.name);
return -EINVAL;
}
/*
* Bits 11:12 specify number of _additional_
* transactions per microframe.
*/
nr_trans = usb_endpoint_maxp_mult(desc);
if (nr_trans > 3)
return -EINVAL;
ep->is_isoc = 1;
ep->ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_ISO);
ep->ept_cfg |= USBA_BF(NB_TRANS, nr_trans);
break;
case USB_ENDPOINT_XFER_BULK:
ep->ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK);
break;
case USB_ENDPOINT_XFER_INT:
ep->ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_INT);
break;
}
spin_lock_irqsave(&ep->udc->lock, flags);
ep->ep.desc = desc;
ep->ep.maxpacket = maxpacket;
usba_ep_writel(ep, CFG, ep->ept_cfg);
usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);
if (ep->can_dma) {
u32 ctrl;
usba_int_enb_set(udc, USBA_BF(EPT_INT, 1 << ep->index) |
USBA_BF(DMA_INT, 1 << ep->index));
ctrl = USBA_AUTO_VALID | USBA_INTDIS_DMA;
usba_ep_writel(ep, CTL_ENB, ctrl);
} else {
usba_int_enb_set(udc, USBA_BF(EPT_INT, 1 << ep->index));
}
spin_unlock_irqrestore(&udc->lock, flags);
DBG(DBG_HW, "EPT_CFG%d after init: %#08lx\n", ep->index,
(unsigned long)usba_ep_readl(ep, CFG));
DBG(DBG_HW, "INT_ENB after init: %#08lx\n",
(unsigned long)usba_int_enb_get(udc));
return 0;
}
static int usba_ep_disable(struct usb_ep *_ep)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
LIST_HEAD(req_list);
unsigned long flags;
DBG(DBG_GADGET, "ep_disable: %s\n", ep->ep.name);
spin_lock_irqsave(&udc->lock, flags);
if (!ep->ep.desc) {
spin_unlock_irqrestore(&udc->lock, flags);
DBG(DBG_ERR, "ep_disable: %s not enabled\n", ep->ep.name);
return -EINVAL;
}
ep->ep.desc = NULL;
list_splice_init(&ep->queue, &req_list);
if (ep->can_dma) {
usba_dma_writel(ep, CONTROL, 0);
usba_dma_writel(ep, ADDRESS, 0);
usba_dma_readl(ep, STATUS);
}
usba_ep_writel(ep, CTL_DIS, USBA_EPT_ENABLE);
usba_int_enb_clear(udc, USBA_BF(EPT_INT, 1 << ep->index));
request_complete_list(ep, &req_list, -ESHUTDOWN);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static struct usb_request *
usba_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
struct usba_request *req;
DBG(DBG_GADGET, "ep_alloc_request: %p, 0x%x\n", _ep, gfp_flags);
req = kzalloc(sizeof(*req), gfp_flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
static void
usba_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
struct usba_request *req = to_usba_req(_req);
DBG(DBG_GADGET, "ep_free_request: %p, %p\n", _ep, _req);
kfree(req);
}
static int queue_dma(struct usba_udc *udc, struct usba_ep *ep,
struct usba_request *req, gfp_t gfp_flags)
{
unsigned long flags;
int ret;
DBG(DBG_DMA, "%s: req l/%u d/%pad %c%c%c\n",
ep->ep.name, req->req.length, &req->req.dma,
req->req.zero ? 'Z' : 'z',
req->req.short_not_ok ? 'S' : 's',
req->req.no_interrupt ? 'I' : 'i');
if (req->req.length > 0x10000) {
/* Lengths from 0 to 65536 (inclusive) are supported */
DBG(DBG_ERR, "invalid request length %u\n", req->req.length);
return -EINVAL;
}
ret = usb_gadget_map_request(&udc->gadget, &req->req, ep->is_in);
if (ret)
return ret;
req->using_dma = 1;
req->ctrl = USBA_BF(DMA_BUF_LEN, req->req.length)
| USBA_DMA_CH_EN | USBA_DMA_END_BUF_IE
| USBA_DMA_END_BUF_EN;
if (!ep->is_in)
req->ctrl |= USBA_DMA_END_TR_EN | USBA_DMA_END_TR_IE;
/*
* Add this request to the queue and submit for DMA if
* possible. Check if we're still alive first -- we may have
* received a reset since last time we checked.
*/
ret = -ESHUTDOWN;
spin_lock_irqsave(&udc->lock, flags);
if (ep->ep.desc) {
if (list_empty(&ep->queue))
submit_request(ep, req);
list_add_tail(&req->queue, &ep->queue);
ret = 0;
}
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static int
usba_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
struct usba_request *req = to_usba_req(_req);
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
unsigned long flags;
int ret;
DBG(DBG_GADGET | DBG_QUEUE | DBG_REQ, "%s: queue req %p, len %u\n",
ep->ep.name, req, _req->length);
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN ||
!ep->ep.desc)
return -ESHUTDOWN;
req->submitted = 0;
req->using_dma = 0;
req->last_transaction = 0;
_req->status = -EINPROGRESS;
_req->actual = 0;
if (ep->can_dma)
return queue_dma(udc, ep, req, gfp_flags);
/* May have received a reset since last time we checked */
ret = -ESHUTDOWN;
spin_lock_irqsave(&udc->lock, flags);
if (ep->ep.desc) {
list_add_tail(&req->queue, &ep->queue);
if ((!ep_is_control(ep) && ep->is_in) ||
(ep_is_control(ep)
&& (ep->state == DATA_STAGE_IN
|| ep->state == STATUS_STAGE_IN)))
usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY);
else
usba_ep_writel(ep, CTL_ENB, USBA_RX_BK_RDY);
ret = 0;
}
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static void
usba_update_req(struct usba_ep *ep, struct usba_request *req, u32 status)
{
req->req.actual = req->req.length - USBA_BFEXT(DMA_BUF_LEN, status);
}
static int stop_dma(struct usba_ep *ep, u32 *pstatus)
{
unsigned int timeout;
u32 status;
/*
* Stop the DMA controller. When writing both CH_EN
* and LINK to 0, the other bits are not affected.
*/
usba_dma_writel(ep, CONTROL, 0);
/* Wait for the FIFO to empty */
for (timeout = 40; timeout; --timeout) {
status = usba_dma_readl(ep, STATUS);
if (!(status & USBA_DMA_CH_EN))
break;
udelay(1);
}
if (pstatus)
*pstatus = status;
if (timeout == 0) {
dev_err(&ep->udc->pdev->dev,
"%s: timed out waiting for DMA FIFO to empty\n",
ep->ep.name);
return -ETIMEDOUT;
}
return 0;
}
static int usba_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
struct usba_request *req = NULL;
struct usba_request *iter;
unsigned long flags;
u32 status;
DBG(DBG_GADGET | DBG_QUEUE, "ep_dequeue: %s, req %p\n",
ep->ep.name, _req);
spin_lock_irqsave(&udc->lock, flags);
list_for_each_entry(iter, &ep->queue, queue) {
if (&iter->req != _req)
continue;
req = iter;
break;
}
if (!req) {
spin_unlock_irqrestore(&udc->lock, flags);
return -EINVAL;
}
if (req->using_dma) {
/*
* If this request is currently being transferred,
* stop the DMA controller and reset the FIFO.
*/
if (ep->queue.next == &req->queue) {
status = usba_dma_readl(ep, STATUS);
if (status & USBA_DMA_CH_EN)
stop_dma(ep, &status);
#ifdef CONFIG_USB_GADGET_DEBUG_FS
ep->last_dma_status = status;
#endif
usba_writel(udc, EPT_RST, 1 << ep->index);
usba_update_req(ep, req, status);
}
}
/*
* Errors should stop the queue from advancing until the
* completion function returns.
*/
list_del_init(&req->queue);
request_complete(ep, req, -ECONNRESET);
/* Process the next request if any */
submit_next_request(ep);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int usba_ep_set_halt(struct usb_ep *_ep, int value)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
unsigned long flags;
int ret = 0;
DBG(DBG_GADGET, "endpoint %s: %s HALT\n", ep->ep.name,
value ? "set" : "clear");
if (!ep->ep.desc) {
DBG(DBG_ERR, "Attempted to halt uninitialized ep %s\n",
ep->ep.name);
return -ENODEV;
}
if (ep->is_isoc) {
DBG(DBG_ERR, "Attempted to halt isochronous ep %s\n",
ep->ep.name);
return -ENOTTY;
}
spin_lock_irqsave(&udc->lock, flags);
/*
* We can't halt IN endpoints while there are still data to be
* transferred
*/
if (!list_empty(&ep->queue)
|| ((value && ep->is_in && (usba_ep_readl(ep, STA)
& USBA_BF(BUSY_BANKS, -1L))))) {
ret = -EAGAIN;
} else {
if (value)
usba_ep_writel(ep, SET_STA, USBA_FORCE_STALL);
else
usba_ep_writel(ep, CLR_STA,
USBA_FORCE_STALL | USBA_TOGGLE_CLR);
usba_ep_readl(ep, STA);
}
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static int usba_ep_fifo_status(struct usb_ep *_ep)
{
struct usba_ep *ep = to_usba_ep(_ep);
return USBA_BFEXT(BYTE_COUNT, usba_ep_readl(ep, STA));
}
static void usba_ep_fifo_flush(struct usb_ep *_ep)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
usba_writel(udc, EPT_RST, 1 << ep->index);
}
static const struct usb_ep_ops usba_ep_ops = {
.enable = usba_ep_enable,
.disable = usba_ep_disable,
.alloc_request = usba_ep_alloc_request,
.free_request = usba_ep_free_request,
.queue = usba_ep_queue,
.dequeue = usba_ep_dequeue,
.set_halt = usba_ep_set_halt,
.fifo_status = usba_ep_fifo_status,
.fifo_flush = usba_ep_fifo_flush,
};
static int usba_udc_get_frame(struct usb_gadget *gadget)
{
struct usba_udc *udc = to_usba_udc(gadget);
return USBA_BFEXT(FRAME_NUMBER, usba_readl(udc, FNUM));
}
static int usba_udc_wakeup(struct usb_gadget *gadget)
{
struct usba_udc *udc = to_usba_udc(gadget);
unsigned long flags;
u32 ctrl;
int ret = -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
if (udc->devstatus & (1 << USB_DEVICE_REMOTE_WAKEUP)) {
ctrl = usba_readl(udc, CTRL);
usba_writel(udc, CTRL, ctrl | USBA_REMOTE_WAKE_UP);
ret = 0;
}
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static int
usba_udc_set_selfpowered(struct usb_gadget *gadget, int is_selfpowered)
{
struct usba_udc *udc = to_usba_udc(gadget);
unsigned long flags;
gadget->is_selfpowered = (is_selfpowered != 0);
spin_lock_irqsave(&udc->lock, flags);
if (is_selfpowered)
udc->devstatus |= 1 << USB_DEVICE_SELF_POWERED;
else
udc->devstatus &= ~(1 << USB_DEVICE_SELF_POWERED);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int atmel_usba_pullup(struct usb_gadget *gadget, int is_on);
static int atmel_usba_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver);
static int atmel_usba_stop(struct usb_gadget *gadget);
static struct usb_ep *atmel_usba_match_ep(struct usb_gadget *gadget,
struct usb_endpoint_descriptor *desc,
struct usb_ss_ep_comp_descriptor *ep_comp)
{
struct usb_ep *_ep;
struct usba_ep *ep;
/* Look at endpoints until an unclaimed one looks usable */
list_for_each_entry(_ep, &gadget->ep_list, ep_list) {
if (usb_gadget_ep_match_desc(gadget, _ep, desc, ep_comp))
goto found_ep;
}
/* Fail */
return NULL;
found_ep:
if (fifo_mode == 0) {
/* Optimize hw fifo size based on ep type and other info */
ep = to_usba_ep(_ep);
switch (usb_endpoint_type(desc)) {
case USB_ENDPOINT_XFER_CONTROL:
ep->nr_banks = 1;
break;
case USB_ENDPOINT_XFER_ISOC:
ep->fifo_size = 1024;
if (ep->udc->ep_prealloc)
ep->nr_banks = 2;
break;
case USB_ENDPOINT_XFER_BULK:
ep->fifo_size = 512;
if (ep->udc->ep_prealloc)
ep->nr_banks = 1;
break;
case USB_ENDPOINT_XFER_INT:
if (desc->wMaxPacketSize == 0)
ep->fifo_size =
roundup_pow_of_two(_ep->maxpacket_limit);
else
ep->fifo_size =
roundup_pow_of_two(le16_to_cpu(desc->wMaxPacketSize));
if (ep->udc->ep_prealloc)
ep->nr_banks = 1;
break;
}
/* It might be a little bit late to set this */
usb_ep_set_maxpacket_limit(&ep->ep, ep->fifo_size);
/* Generate ept_cfg basd on FIFO size and number of banks */
if (ep->fifo_size <= 8)
ep->ept_cfg = USBA_BF(EPT_SIZE, USBA_EPT_SIZE_8);
else
/* LSB is bit 1, not 0 */
ep->ept_cfg =
USBA_BF(EPT_SIZE, fls(ep->fifo_size - 1) - 3);
ep->ept_cfg |= USBA_BF(BK_NUMBER, ep->nr_banks);
}
return _ep;
}
static const struct usb_gadget_ops usba_udc_ops = {
.get_frame = usba_udc_get_frame,
.wakeup = usba_udc_wakeup,
.set_selfpowered = usba_udc_set_selfpowered,
.pullup = atmel_usba_pullup,
.udc_start = atmel_usba_start,
.udc_stop = atmel_usba_stop,
.match_ep = atmel_usba_match_ep,
};
static struct usb_endpoint_descriptor usba_ep0_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
.wMaxPacketSize = cpu_to_le16(64),
/* FIXME: I have no idea what to put here */
.bInterval = 1,
};
static const struct usb_gadget usba_gadget_template = {
.ops = &usba_udc_ops,
.max_speed = USB_SPEED_HIGH,
.name = "atmel_usba_udc",
};
/*
* Called with interrupts disabled and udc->lock held.
*/
static void reset_all_endpoints(struct usba_udc *udc)
{
struct usba_ep *ep;
struct usba_request *req, *tmp_req;
usba_writel(udc, EPT_RST, ~0UL);
ep = to_usba_ep(udc->gadget.ep0);
list_for_each_entry_safe(req, tmp_req, &ep->queue, queue) {
list_del_init(&req->queue);
request_complete(ep, req, -ECONNRESET);
}
}
static struct usba_ep *get_ep_by_addr(struct usba_udc *udc, u16 wIndex)
{
struct usba_ep *ep;
if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
return to_usba_ep(udc->gadget.ep0);
list_for_each_entry (ep, &udc->gadget.ep_list, ep.ep_list) {
u8 bEndpointAddress;
if (!ep->ep.desc)
continue;
bEndpointAddress = ep->ep.desc->bEndpointAddress;
if ((wIndex ^ bEndpointAddress) & USB_DIR_IN)
continue;
if ((bEndpointAddress & USB_ENDPOINT_NUMBER_MASK)
== (wIndex & USB_ENDPOINT_NUMBER_MASK))
return ep;
}
return NULL;
}
/* Called with interrupts disabled and udc->lock held */
static inline void set_protocol_stall(struct usba_udc *udc, struct usba_ep *ep)
{
usba_ep_writel(ep, SET_STA, USBA_FORCE_STALL);
ep->state = WAIT_FOR_SETUP;
}
static inline int is_stalled(struct usba_udc *udc, struct usba_ep *ep)
{
if (usba_ep_readl(ep, STA) & USBA_FORCE_STALL)
return 1;
return 0;
}
static inline void set_address(struct usba_udc *udc, unsigned int addr)
{
u32 regval;
DBG(DBG_BUS, "setting address %u...\n", addr);
regval = usba_readl(udc, CTRL);
regval = USBA_BFINS(DEV_ADDR, addr, regval);
usba_writel(udc, CTRL, regval);
}
static int do_test_mode(struct usba_udc *udc)
{
static const char test_packet_buffer[] = {
/* JKJKJKJK * 9 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* JJKKJJKK * 8 */
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
/* JJKKJJKK * 8 */
0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE,
/* JJJJJJJKKKKKKK * 8 */
0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
/* JJJJJJJK * 8 */
0x7F, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD,
/* {JKKKKKKK * 10}, JK */
0xFC, 0x7E, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD, 0x7E
};
struct usba_ep *ep;
struct device *dev = &udc->pdev->dev;
int test_mode;
test_mode = udc->test_mode;
/* Start from a clean slate */
reset_all_endpoints(udc);
switch (test_mode) {
case 0x0100:
/* Test_J */
usba_writel(udc, TST, USBA_TST_J_MODE);
dev_info(dev, "Entering Test_J mode...\n");
break;
case 0x0200:
/* Test_K */
usba_writel(udc, TST, USBA_TST_K_MODE);
dev_info(dev, "Entering Test_K mode...\n");
break;
case 0x0300:
/*
* Test_SE0_NAK: Force high-speed mode and set up ep0
* for Bulk IN transfers
*/
ep = &udc->usba_ep[0];
usba_writel(udc, TST,
USBA_BF(SPEED_CFG, USBA_SPEED_CFG_FORCE_HIGH));
usba_ep_writel(ep, CFG,
USBA_BF(EPT_SIZE, USBA_EPT_SIZE_64)
| USBA_EPT_DIR_IN
| USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK)
| USBA_BF(BK_NUMBER, 1));
if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED)) {
set_protocol_stall(udc, ep);
dev_err(dev, "Test_SE0_NAK: ep0 not mapped\n");
} else {
usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);
dev_info(dev, "Entering Test_SE0_NAK mode...\n");
}
break;
case 0x0400:
/* Test_Packet */
ep = &udc->usba_ep[0];
usba_ep_writel(ep, CFG,
USBA_BF(EPT_SIZE, USBA_EPT_SIZE_64)
| USBA_EPT_DIR_IN
| USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK)
| USBA_BF(BK_NUMBER, 1));
if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED)) {
set_protocol_stall(udc, ep);
dev_err(dev, "Test_Packet: ep0 not mapped\n");
} else {
usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);
usba_writel(udc, TST, USBA_TST_PKT_MODE);
memcpy_toio(ep->fifo, test_packet_buffer,
sizeof(test_packet_buffer));
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
dev_info(dev, "Entering Test_Packet mode...\n");
}
break;
default:
dev_err(dev, "Invalid test mode: 0x%04x\n", test_mode);
return -EINVAL;
}
return 0;
}
/* Avoid overly long expressions */
static inline bool feature_is_dev_remote_wakeup(struct usb_ctrlrequest *crq)
{
if (crq->wValue == cpu_to_le16(USB_DEVICE_REMOTE_WAKEUP))
return true;
return false;
}
static inline bool feature_is_dev_test_mode(struct usb_ctrlrequest *crq)
{
if (crq->wValue == cpu_to_le16(USB_DEVICE_TEST_MODE))
return true;
return false;
}
static inline bool feature_is_ep_halt(struct usb_ctrlrequest *crq)
{
if (crq->wValue == cpu_to_le16(USB_ENDPOINT_HALT))
return true;
return false;
}
static int handle_ep0_setup(struct usba_udc *udc, struct usba_ep *ep,
struct usb_ctrlrequest *crq)
{
int retval = 0;
switch (crq->bRequest) {
case USB_REQ_GET_STATUS: {
u16 status;
if (crq->bRequestType == (USB_DIR_IN | USB_RECIP_DEVICE)) {
status = cpu_to_le16(udc->devstatus);
} else if (crq->bRequestType
== (USB_DIR_IN | USB_RECIP_INTERFACE)) {
status = cpu_to_le16(0);
} else if (crq->bRequestType
== (USB_DIR_IN | USB_RECIP_ENDPOINT)) {
struct usba_ep *target;
target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
if (!target)
goto stall;
status = 0;
if (is_stalled(udc, target))
status |= cpu_to_le16(1);
} else
goto delegate;
/* Write directly to the FIFO. No queueing is done. */
if (crq->wLength != cpu_to_le16(sizeof(status)))
goto stall;
ep->state = DATA_STAGE_IN;
writew_relaxed(status, ep->fifo);
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
break;
}
case USB_REQ_CLEAR_FEATURE: {
if (crq->bRequestType == USB_RECIP_DEVICE) {
if (feature_is_dev_remote_wakeup(crq))
udc->devstatus
&= ~(1 << USB_DEVICE_REMOTE_WAKEUP);
else
/* Can't CLEAR_FEATURE TEST_MODE */
goto stall;
} else if (crq->bRequestType == USB_RECIP_ENDPOINT) {
struct usba_ep *target;
if (crq->wLength != cpu_to_le16(0)
|| !feature_is_ep_halt(crq))
goto stall;
target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
if (!target)
goto stall;
usba_ep_writel(target, CLR_STA, USBA_FORCE_STALL);
if (target->index != 0)
usba_ep_writel(target, CLR_STA,
USBA_TOGGLE_CLR);
} else {
goto delegate;
}
send_status(udc, ep);
break;
}
case USB_REQ_SET_FEATURE: {
if (crq->bRequestType == USB_RECIP_DEVICE) {
if (feature_is_dev_test_mode(crq)) {
send_status(udc, ep);
ep->state = STATUS_STAGE_TEST;
udc->test_mode = le16_to_cpu(crq->wIndex);
return 0;
} else if (feature_is_dev_remote_wakeup(crq)) {
udc->devstatus |= 1 << USB_DEVICE_REMOTE_WAKEUP;
} else {
goto stall;
}
} else if (crq->bRequestType == USB_RECIP_ENDPOINT) {
struct usba_ep *target;
if (crq->wLength != cpu_to_le16(0)
|| !feature_is_ep_halt(crq))
goto stall;
target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
if (!target)
goto stall;
usba_ep_writel(target, SET_STA, USBA_FORCE_STALL);
} else
goto delegate;
send_status(udc, ep);
break;
}
case USB_REQ_SET_ADDRESS:
if (crq->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE))
goto delegate;
set_address(udc, le16_to_cpu(crq->wValue));
send_status(udc, ep);
ep->state = STATUS_STAGE_ADDR;
break;
default:
delegate:
spin_unlock(&udc->lock);
retval = udc->driver->setup(&udc->gadget, crq);
spin_lock(&udc->lock);
}
return retval;
stall:
pr_err("udc: %s: Invalid setup request: %02x.%02x v%04x i%04x l%d, "
"halting endpoint...\n",
ep->ep.name, crq->bRequestType, crq->bRequest,
le16_to_cpu(crq->wValue), le16_to_cpu(crq->wIndex),
le16_to_cpu(crq->wLength));
set_protocol_stall(udc, ep);
return -1;
}
static void usba_control_irq(struct usba_udc *udc, struct usba_ep *ep)
{
struct usba_request *req;
u32 epstatus;
u32 epctrl;
restart:
epstatus = usba_ep_readl(ep, STA);
epctrl = usba_ep_readl(ep, CTL);
DBG(DBG_INT, "%s [%d]: s/%08x c/%08x\n",
ep->ep.name, ep->state, epstatus, epctrl);
req = NULL;
if (!list_empty(&ep->queue))
req = list_entry(ep->queue.next,
struct usba_request, queue);
if ((epctrl & USBA_TX_PK_RDY) && !(epstatus & USBA_TX_PK_RDY)) {
if (req->submitted)
next_fifo_transaction(ep, req);
else
submit_request(ep, req);
if (req->last_transaction) {
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
}
goto restart;
}
if ((epstatus & epctrl) & USBA_TX_COMPLETE) {
usba_ep_writel(ep, CLR_STA, USBA_TX_COMPLETE);
switch (ep->state) {
case DATA_STAGE_IN:
usba_ep_writel(ep, CTL_ENB, USBA_RX_BK_RDY);
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = STATUS_STAGE_OUT;
break;
case STATUS_STAGE_ADDR:
/* Activate our new address */
usba_writel(udc, CTRL, (usba_readl(udc, CTRL)
| USBA_FADDR_EN));
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = WAIT_FOR_SETUP;
break;
case STATUS_STAGE_IN:
if (req) {
list_del_init(&req->queue);
request_complete(ep, req, 0);
submit_next_request(ep);
}
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = WAIT_FOR_SETUP;
break;
case STATUS_STAGE_TEST:
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = WAIT_FOR_SETUP;
if (do_test_mode(udc))
set_protocol_stall(udc, ep);
break;
default:
pr_err("udc: %s: TXCOMP: Invalid endpoint state %d, "
"halting endpoint...\n",
ep->ep.name, ep->state);
set_protocol_stall(udc, ep);
break;
}
goto restart;
}
if ((epstatus & epctrl) & USBA_RX_BK_RDY) {
switch (ep->state) {
case STATUS_STAGE_OUT:
usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
if (req) {
list_del_init(&req->queue);
request_complete(ep, req, 0);
}
ep->state = WAIT_FOR_SETUP;
break;
case DATA_STAGE_OUT:
receive_data(ep);
break;
default:
usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
pr_err("udc: %s: RXRDY: Invalid endpoint state %d, "
"halting endpoint...\n",
ep->ep.name, ep->state);
set_protocol_stall(udc, ep);
break;
}
goto restart;
}
if (epstatus & USBA_RX_SETUP) {
union {
struct usb_ctrlrequest crq;
unsigned long data[2];
} crq;
unsigned int pkt_len;
int ret;
if (ep->state != WAIT_FOR_SETUP) {
/*
* Didn't expect a SETUP packet at this
* point. Clean up any pending requests (which
* may be successful).
*/
int status = -EPROTO;
/*
* RXRDY and TXCOMP are dropped when SETUP
* packets arrive. Just pretend we received
* the status packet.
*/
if (ep->state == STATUS_STAGE_OUT
|| ep->state == STATUS_STAGE_IN) {
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
status = 0;
}
if (req) {
list_del_init(&req->queue);
request_complete(ep, req, status);
}
}
pkt_len = USBA_BFEXT(BYTE_COUNT, usba_ep_readl(ep, STA));
DBG(DBG_HW, "Packet length: %u\n", pkt_len);
if (pkt_len != sizeof(crq)) {
pr_warn("udc: Invalid packet length %u (expected %zu)\n",
pkt_len, sizeof(crq));
set_protocol_stall(udc, ep);
return;
}
DBG(DBG_FIFO, "Copying ctrl request from 0x%p:\n", ep->fifo);
memcpy_fromio(crq.data, ep->fifo, sizeof(crq));
/* Free up one bank in the FIFO so that we can
* generate or receive a reply right away. */
usba_ep_writel(ep, CLR_STA, USBA_RX_SETUP);
/* printk(KERN_DEBUG "setup: %d: %02x.%02x\n",
ep->state, crq.crq.bRequestType,
crq.crq.bRequest); */
if (crq.crq.bRequestType & USB_DIR_IN) {
/*
* The USB 2.0 spec states that "if wLength is
* zero, there is no data transfer phase."
* However, testusb #14 seems to actually
* expect a data phase even if wLength = 0...
*/
ep->state = DATA_STAGE_IN;
} else {
if (crq.crq.wLength != cpu_to_le16(0))
ep->state = DATA_STAGE_OUT;
else
ep->state = STATUS_STAGE_IN;
}
ret = -1;
if (ep->index == 0)
ret = handle_ep0_setup(udc, ep, &crq.crq);
else {
spin_unlock(&udc->lock);
ret = udc->driver->setup(&udc->gadget, &crq.crq);
spin_lock(&udc->lock);
}
DBG(DBG_BUS, "req %02x.%02x, length %d, state %d, ret %d\n",
crq.crq.bRequestType, crq.crq.bRequest,
le16_to_cpu(crq.crq.wLength), ep->state, ret);
if (ret < 0) {
/* Let the host know that we failed */
set_protocol_stall(udc, ep);
}
}
}
static void usba_ep_irq(struct usba_udc *udc, struct usba_ep *ep)
{
struct usba_request *req;
u32 epstatus;
u32 epctrl;
epstatus = usba_ep_readl(ep, STA);
epctrl = usba_ep_readl(ep, CTL);
DBG(DBG_INT, "%s: interrupt, status: 0x%08x\n", ep->ep.name, epstatus);
while ((epctrl & USBA_TX_PK_RDY) && !(epstatus & USBA_TX_PK_RDY)) {
DBG(DBG_BUS, "%s: TX PK ready\n", ep->ep.name);
if (list_empty(&ep->queue)) {
dev_warn(&udc->pdev->dev, "ep_irq: queue empty\n");
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
return;
}
req = list_entry(ep->queue.next, struct usba_request, queue);
if (req->using_dma) {
/* Send a zero-length packet */
usba_ep_writel(ep, SET_STA,
USBA_TX_PK_RDY);
usba_ep_writel(ep, CTL_DIS,
USBA_TX_PK_RDY);
list_del_init(&req->queue);
submit_next_request(ep);
request_complete(ep, req, 0);
} else {
if (req->submitted)
next_fifo_transaction(ep, req);
else
submit_request(ep, req);
if (req->last_transaction) {
list_del_init(&req->queue);
submit_next_request(ep);
request_complete(ep, req, 0);
}
}
epstatus = usba_ep_readl(ep, STA);
epctrl = usba_ep_readl(ep, CTL);
}
if ((epstatus & epctrl) & USBA_RX_BK_RDY) {
DBG(DBG_BUS, "%s: RX data ready\n", ep->ep.name);
receive_data(ep);
}
}
static void usba_dma_irq(struct usba_udc *udc, struct usba_ep *ep)
{
struct usba_request *req;
u32 status, control, pending;
status = usba_dma_readl(ep, STATUS);
control = usba_dma_readl(ep, CONTROL);
#ifdef CONFIG_USB_GADGET_DEBUG_FS
ep->last_dma_status = status;
#endif
pending = status & control;
DBG(DBG_INT | DBG_DMA, "dma irq, s/%#08x, c/%#08x\n", status, control);
if (status & USBA_DMA_CH_EN) {
dev_err(&udc->pdev->dev,
"DMA_CH_EN is set after transfer is finished!\n");
dev_err(&udc->pdev->dev,
"status=%#08x, pending=%#08x, control=%#08x\n",
status, pending, control);
/*
* try to pretend nothing happened. We might have to
* do something here...
*/
}
if (list_empty(&ep->queue))
/* Might happen if a reset comes along at the right moment */
return;
if (pending & (USBA_DMA_END_TR_ST | USBA_DMA_END_BUF_ST)) {
req = list_entry(ep->queue.next, struct usba_request, queue);
usba_update_req(ep, req, status);
list_del_init(&req->queue);
submit_next_request(ep);
request_complete(ep, req, 0);
}
}
static int start_clock(struct usba_udc *udc);
static void stop_clock(struct usba_udc *udc);
static irqreturn_t usba_udc_irq(int irq, void *devid)
{
struct usba_udc *udc = devid;
u32 status, int_enb;
u32 dma_status;
u32 ep_status;
spin_lock(&udc->lock);
int_enb = usba_int_enb_get(udc);
status = usba_readl(udc, INT_STA) & (int_enb | USBA_HIGH_SPEED);
DBG(DBG_INT, "irq, status=%#08x\n", status);
if (status & USBA_DET_SUSPEND) {
usba_writel(udc, INT_CLR, USBA_DET_SUSPEND|USBA_WAKE_UP);
usba_int_enb_set(udc, USBA_WAKE_UP);
usba_int_enb_clear(udc, USBA_DET_SUSPEND);
udc->suspended = true;
toggle_bias(udc, 0);
udc->bias_pulse_needed = true;
stop_clock(udc);
DBG(DBG_BUS, "Suspend detected\n");
if (udc->gadget.speed != USB_SPEED_UNKNOWN
&& udc->driver && udc->driver->suspend) {
spin_unlock(&udc->lock);
udc->driver->suspend(&udc->gadget);
spin_lock(&udc->lock);
}
}
if (status & USBA_WAKE_UP) {
start_clock(udc);
toggle_bias(udc, 1);
usba_writel(udc, INT_CLR, USBA_WAKE_UP);
DBG(DBG_BUS, "Wake Up CPU detected\n");
}
if (status & USBA_END_OF_RESUME) {
udc->suspended = false;
usba_writel(udc, INT_CLR, USBA_END_OF_RESUME);
usba_int_enb_clear(udc, USBA_WAKE_UP);
usba_int_enb_set(udc, USBA_DET_SUSPEND);
generate_bias_pulse(udc);
DBG(DBG_BUS, "Resume detected\n");
if (udc->gadget.speed != USB_SPEED_UNKNOWN
&& udc->driver && udc->driver->resume) {
spin_unlock(&udc->lock);
udc->driver->resume(&udc->gadget);
spin_lock(&udc->lock);
}
}
dma_status = USBA_BFEXT(DMA_INT, status);
if (dma_status) {
int i;
usba_int_enb_set(udc, USBA_DET_SUSPEND);
for (i = 1; i <= USBA_NR_DMAS; i++)
if (dma_status & (1 << i))
usba_dma_irq(udc, &udc->usba_ep[i]);
}
ep_status = USBA_BFEXT(EPT_INT, status);
if (ep_status) {
int i;
usba_int_enb_set(udc, USBA_DET_SUSPEND);
for (i = 0; i < udc->num_ep; i++)
if (ep_status & (1 << i)) {
if (ep_is_control(&udc->usba_ep[i]))
usba_control_irq(udc, &udc->usba_ep[i]);
else
usba_ep_irq(udc, &udc->usba_ep[i]);
}
}
if (status & USBA_END_OF_RESET) {
struct usba_ep *ep0, *ep;
int i;
usba_writel(udc, INT_CLR,
USBA_END_OF_RESET|USBA_END_OF_RESUME
|USBA_DET_SUSPEND|USBA_WAKE_UP);
generate_bias_pulse(udc);
reset_all_endpoints(udc);
if (udc->gadget.speed != USB_SPEED_UNKNOWN && udc->driver) {
udc->gadget.speed = USB_SPEED_UNKNOWN;
spin_unlock(&udc->lock);
usb_gadget_udc_reset(&udc->gadget, udc->driver);
spin_lock(&udc->lock);
}
if (status & USBA_HIGH_SPEED)
udc->gadget.speed = USB_SPEED_HIGH;
else
udc->gadget.speed = USB_SPEED_FULL;
DBG(DBG_BUS, "%s bus reset detected\n",
usb_speed_string(udc->gadget.speed));
ep0 = &udc->usba_ep[0];
ep0->ep.desc = &usba_ep0_desc;
ep0->state = WAIT_FOR_SETUP;
usba_ep_writel(ep0, CFG,
(USBA_BF(EPT_SIZE, EP0_EPT_SIZE)
| USBA_BF(EPT_TYPE, USBA_EPT_TYPE_CONTROL)
| USBA_BF(BK_NUMBER, USBA_BK_NUMBER_ONE)));
usba_ep_writel(ep0, CTL_ENB,
USBA_EPT_ENABLE | USBA_RX_SETUP);
/* If we get reset while suspended... */
udc->suspended = false;
usba_int_enb_clear(udc, USBA_WAKE_UP);
usba_int_enb_set(udc, USBA_BF(EPT_INT, 1) |
USBA_DET_SUSPEND | USBA_END_OF_RESUME);
/*
* Unclear why we hit this irregularly, e.g. in usbtest,
* but it's clearly harmless...
*/
if (!(usba_ep_readl(ep0, CFG) & USBA_EPT_MAPPED))
dev_err(&udc->pdev->dev,
"ODD: EP0 configuration is invalid!\n");
/* Preallocate other endpoints */
for (i = 1; i < udc->num_ep; i++) {
ep = &udc->usba_ep[i];
if (ep->ep.claimed) {
usba_ep_writel(ep, CFG, ep->ept_cfg);
if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED))
dev_err(&udc->pdev->dev,
"ODD: EP%d configuration is invalid!\n", i);
}
}
}
spin_unlock(&udc->lock);
return IRQ_HANDLED;
}
static int start_clock(struct usba_udc *udc)
{
int ret;
if (udc->clocked)
return 0;
pm_stay_awake(&udc->pdev->dev);
ret = clk_prepare_enable(udc->pclk);
if (ret)
return ret;
ret = clk_prepare_enable(udc->hclk);
if (ret) {
clk_disable_unprepare(udc->pclk);
return ret;
}
udc->clocked = true;
return 0;
}
static void stop_clock(struct usba_udc *udc)
{
if (!udc->clocked)
return;
clk_disable_unprepare(udc->hclk);
clk_disable_unprepare(udc->pclk);
udc->clocked = false;
pm_relax(&udc->pdev->dev);
}
static int usba_start(struct usba_udc *udc)
{
unsigned long flags;
int ret;
ret = start_clock(udc);
if (ret)
return ret;
if (udc->suspended)
return 0;
spin_lock_irqsave(&udc->lock, flags);
toggle_bias(udc, 1);
usba_writel(udc, CTRL, USBA_ENABLE_MASK);
/* Clear all requested and pending interrupts... */
usba_writel(udc, INT_ENB, 0);
udc->int_enb_cache = 0;
usba_writel(udc, INT_CLR,
USBA_END_OF_RESET|USBA_END_OF_RESUME
|USBA_DET_SUSPEND|USBA_WAKE_UP);
/* ...and enable just 'reset' IRQ to get us started */
usba_int_enb_set(udc, USBA_END_OF_RESET);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static void usba_stop(struct usba_udc *udc)
{
unsigned long flags;
if (udc->suspended)
return;
spin_lock_irqsave(&udc->lock, flags);
udc->gadget.speed = USB_SPEED_UNKNOWN;
reset_all_endpoints(udc);
/* This will also disable the DP pullup */
toggle_bias(udc, 0);
usba_writel(udc, CTRL, USBA_DISABLE_MASK);
spin_unlock_irqrestore(&udc->lock, flags);
stop_clock(udc);
}
static irqreturn_t usba_vbus_irq_thread(int irq, void *devid)
{
struct usba_udc *udc = devid;
int vbus;
/* debounce */
udelay(10);
mutex_lock(&udc->vbus_mutex);
vbus = vbus_is_present(udc);
if (vbus != udc->vbus_prev) {
if (vbus) {
usba_start(udc);
} else {
udc->suspended = false;
if (udc->driver->disconnect)
udc->driver->disconnect(&udc->gadget);
usba_stop(udc);
}
udc->vbus_prev = vbus;
}
mutex_unlock(&udc->vbus_mutex);
return IRQ_HANDLED;
}
static int atmel_usba_pullup(struct usb_gadget *gadget, int is_on)
{
struct usba_udc *udc = container_of(gadget, struct usba_udc, gadget);
unsigned long flags;
u32 ctrl;
spin_lock_irqsave(&udc->lock, flags);
ctrl = usba_readl(udc, CTRL);
if (is_on)
ctrl &= ~USBA_DETACH;
else
ctrl |= USBA_DETACH;
usba_writel(udc, CTRL, ctrl);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int atmel_usba_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
int ret;
struct usba_udc *udc = container_of(gadget, struct usba_udc, gadget);
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
udc->devstatus = 1 << USB_DEVICE_SELF_POWERED;
udc->driver = driver;
spin_unlock_irqrestore(&udc->lock, flags);
mutex_lock(&udc->vbus_mutex);
if (udc->vbus_pin)
enable_irq(gpiod_to_irq(udc->vbus_pin));
/* If Vbus is present, enable the controller and wait for reset */
udc->vbus_prev = vbus_is_present(udc);
if (udc->vbus_prev) {
ret = usba_start(udc);
if (ret)
goto err;
}
mutex_unlock(&udc->vbus_mutex);
return 0;
err:
if (udc->vbus_pin)
disable_irq(gpiod_to_irq(udc->vbus_pin));
mutex_unlock(&udc->vbus_mutex);
spin_lock_irqsave(&udc->lock, flags);
udc->devstatus &= ~(1 << USB_DEVICE_SELF_POWERED);
udc->driver = NULL;
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static int atmel_usba_stop(struct usb_gadget *gadget)
{
struct usba_udc *udc = container_of(gadget, struct usba_udc, gadget);
if (udc->vbus_pin)
disable_irq(gpiod_to_irq(udc->vbus_pin));
udc->suspended = false;
usba_stop(udc);
udc->driver = NULL;
return 0;
}
static void at91sam9rl_toggle_bias(struct usba_udc *udc, int is_on)
{
regmap_update_bits(udc->pmc, AT91_CKGR_UCKR, AT91_PMC_BIASEN,
is_on ? AT91_PMC_BIASEN : 0);
}
static void at91sam9g45_pulse_bias(struct usba_udc *udc)
{
regmap_update_bits(udc->pmc, AT91_CKGR_UCKR, AT91_PMC_BIASEN, 0);
regmap_update_bits(udc->pmc, AT91_CKGR_UCKR, AT91_PMC_BIASEN,
AT91_PMC_BIASEN);
}
static const struct usba_udc_errata at91sam9rl_errata = {
.toggle_bias = at91sam9rl_toggle_bias,
};
static const struct usba_udc_errata at91sam9g45_errata = {
.pulse_bias = at91sam9g45_pulse_bias,
};
static const struct usba_ep_config ep_config_sam9[] = {
{ .nr_banks = 1 }, /* ep 0 */
{ .nr_banks = 2, .can_dma = 1, .can_isoc = 1 }, /* ep 1 */
{ .nr_banks = 2, .can_dma = 1, .can_isoc = 1 }, /* ep 2 */
{ .nr_banks = 3, .can_dma = 1 }, /* ep 3 */
{ .nr_banks = 3, .can_dma = 1 }, /* ep 4 */
{ .nr_banks = 3, .can_dma = 1, .can_isoc = 1 }, /* ep 5 */
{ .nr_banks = 3, .can_dma = 1, .can_isoc = 1 }, /* ep 6 */
};
static const struct usba_ep_config ep_config_sama5[] = {
{ .nr_banks = 1 }, /* ep 0 */
{ .nr_banks = 3, .can_dma = 1, .can_isoc = 1 }, /* ep 1 */
{ .nr_banks = 3, .can_dma = 1, .can_isoc = 1 }, /* ep 2 */
{ .nr_banks = 2, .can_dma = 1, .can_isoc = 1 }, /* ep 3 */
{ .nr_banks = 2, .can_dma = 1, .can_isoc = 1 }, /* ep 4 */
{ .nr_banks = 2, .can_dma = 1, .can_isoc = 1 }, /* ep 5 */
{ .nr_banks = 2, .can_dma = 1, .can_isoc = 1 }, /* ep 6 */
{ .nr_banks = 2, .can_dma = 1, .can_isoc = 1 }, /* ep 7 */
{ .nr_banks = 2, .can_isoc = 1 }, /* ep 8 */
{ .nr_banks = 2, .can_isoc = 1 }, /* ep 9 */
{ .nr_banks = 2, .can_isoc = 1 }, /* ep 10 */
{ .nr_banks = 2, .can_isoc = 1 }, /* ep 11 */
{ .nr_banks = 2, .can_isoc = 1 }, /* ep 12 */
{ .nr_banks = 2, .can_isoc = 1 }, /* ep 13 */
{ .nr_banks = 2, .can_isoc = 1 }, /* ep 14 */
{ .nr_banks = 2, .can_isoc = 1 }, /* ep 15 */
};
static const struct usba_udc_config udc_at91sam9rl_cfg = {
.errata = &at91sam9rl_errata,
.config = ep_config_sam9,
.num_ep = ARRAY_SIZE(ep_config_sam9),
.ep_prealloc = true,
};
static const struct usba_udc_config udc_at91sam9g45_cfg = {
.errata = &at91sam9g45_errata,
.config = ep_config_sam9,
.num_ep = ARRAY_SIZE(ep_config_sam9),
.ep_prealloc = true,
};
static const struct usba_udc_config udc_sama5d3_cfg = {
.config = ep_config_sama5,
.num_ep = ARRAY_SIZE(ep_config_sama5),
.ep_prealloc = true,
};
static const struct usba_udc_config udc_sam9x60_cfg = {
.num_ep = ARRAY_SIZE(ep_config_sam9),
.config = ep_config_sam9,
.ep_prealloc = false,
};
static const struct of_device_id atmel_udc_dt_ids[] = {
{ .compatible = "atmel,at91sam9rl-udc", .data = &udc_at91sam9rl_cfg },
{ .compatible = "atmel,at91sam9g45-udc", .data = &udc_at91sam9g45_cfg },
{ .compatible = "atmel,sama5d3-udc", .data = &udc_sama5d3_cfg },
{ .compatible = "microchip,sam9x60-udc", .data = &udc_sam9x60_cfg },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_udc_dt_ids);
static const struct of_device_id atmel_pmc_dt_ids[] = {
{ .compatible = "atmel,at91sam9g45-pmc" },
{ .compatible = "atmel,at91sam9rl-pmc" },
{ .compatible = "atmel,at91sam9x5-pmc" },
{ /* sentinel */ }
};
static struct usba_ep * atmel_udc_of_init(struct platform_device *pdev,
struct usba_udc *udc)
{
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *match;
struct device_node *pp;
int i, ret;
struct usba_ep *eps, *ep;
const struct usba_udc_config *udc_config;
match = of_match_node(atmel_udc_dt_ids, np);
if (!match)
return ERR_PTR(-EINVAL);
udc_config = match->data;
udc->ep_prealloc = udc_config->ep_prealloc;
udc->errata = udc_config->errata;
if (udc->errata) {
pp = of_find_matching_node_and_match(NULL, atmel_pmc_dt_ids,
NULL);
if (!pp)
return ERR_PTR(-ENODEV);
udc->pmc = syscon_node_to_regmap(pp);
of_node_put(pp);
if (IS_ERR(udc->pmc))
return ERR_CAST(udc->pmc);
}
udc->num_ep = 0;
udc->vbus_pin = devm_gpiod_get_optional(&pdev->dev, "atmel,vbus",
GPIOD_IN);
if (IS_ERR(udc->vbus_pin))
return ERR_CAST(udc->vbus_pin);
if (fifo_mode == 0) {
udc->num_ep = udc_config->num_ep;
} else {
udc->num_ep = usba_config_fifo_table(udc);
}
eps = devm_kcalloc(&pdev->dev, udc->num_ep, sizeof(struct usba_ep),
GFP_KERNEL);
if (!eps)
return ERR_PTR(-ENOMEM);
udc->gadget.ep0 = &eps[0].ep;
INIT_LIST_HEAD(&eps[0].ep.ep_list);
i = 0;
while (i < udc->num_ep) {
const struct usba_ep_config *ep_cfg = &udc_config->config[i];
ep = &eps[i];
ep->index = fifo_mode ? udc->fifo_cfg[i].hw_ep_num : i;
/* Only the first EP is 64 bytes */
if (ep->index == 0)
ep->fifo_size = 64;
else
ep->fifo_size = 1024;
if (fifo_mode) {
if (ep->fifo_size < udc->fifo_cfg[i].fifo_size)
dev_warn(&pdev->dev,
"Using default max fifo-size value\n");
else
ep->fifo_size = udc->fifo_cfg[i].fifo_size;
}
ep->nr_banks = ep_cfg->nr_banks;
if (fifo_mode) {
if (ep->nr_banks < udc->fifo_cfg[i].nr_banks)
dev_warn(&pdev->dev,
"Using default max nb-banks value\n");
else
ep->nr_banks = udc->fifo_cfg[i].nr_banks;
}
ep->can_dma = ep_cfg->can_dma;
ep->can_isoc = ep_cfg->can_isoc;
sprintf(ep->name, "ep%d", ep->index);
ep->ep.name = ep->name;
ep->ep_regs = udc->regs + USBA_EPT_BASE(i);
ep->dma_regs = udc->regs + USBA_DMA_BASE(i);
ep->fifo = udc->fifo + USBA_FIFO_BASE(i);
ep->ep.ops = &usba_ep_ops;
usb_ep_set_maxpacket_limit(&ep->ep, ep->fifo_size);
ep->udc = udc;
INIT_LIST_HEAD(&ep->queue);
if (ep->index == 0) {
ep->ep.caps.type_control = true;
} else {
ep->ep.caps.type_iso = ep->can_isoc;
ep->ep.caps.type_bulk = true;
ep->ep.caps.type_int = true;
}
ep->ep.caps.dir_in = true;
ep->ep.caps.dir_out = true;
if (fifo_mode != 0) {
/*
* Generate ept_cfg based on FIFO size and
* banks number
*/
if (ep->fifo_size <= 8)
ep->ept_cfg = USBA_BF(EPT_SIZE, USBA_EPT_SIZE_8);
else
/* LSB is bit 1, not 0 */
ep->ept_cfg =
USBA_BF(EPT_SIZE, fls(ep->fifo_size - 1) - 3);
ep->ept_cfg |= USBA_BF(BK_NUMBER, ep->nr_banks);
}
if (i)
list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
i++;
}
if (i == 0) {
dev_err(&pdev->dev, "of_probe: no endpoint specified\n");
ret = -EINVAL;
goto err;
}
return eps;
err:
return ERR_PTR(ret);
}
static int usba_udc_probe(struct platform_device *pdev)
{
struct resource *res;
struct clk *pclk, *hclk;
struct usba_udc *udc;
int irq, ret, i;
udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
if (!udc)
return -ENOMEM;
udc->gadget = usba_gadget_template;
INIT_LIST_HEAD(&udc->gadget.ep_list);
res = platform_get_resource(pdev, IORESOURCE_MEM, CTRL_IOMEM_ID);
udc->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(udc->regs))
return PTR_ERR(udc->regs);
dev_info(&pdev->dev, "MMIO registers at %pR mapped at %p\n",
res, udc->regs);
res = platform_get_resource(pdev, IORESOURCE_MEM, FIFO_IOMEM_ID);
udc->fifo = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(udc->fifo))
return PTR_ERR(udc->fifo);
dev_info(&pdev->dev, "FIFO at %pR mapped at %p\n", res, udc->fifo);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(pclk))
return PTR_ERR(pclk);
hclk = devm_clk_get(&pdev->dev, "hclk");
if (IS_ERR(hclk))
return PTR_ERR(hclk);
spin_lock_init(&udc->lock);
mutex_init(&udc->vbus_mutex);
udc->pdev = pdev;
udc->pclk = pclk;
udc->hclk = hclk;
platform_set_drvdata(pdev, udc);
/* Make sure we start from a clean slate */
ret = clk_prepare_enable(pclk);
if (ret) {
dev_err(&pdev->dev, "Unable to enable pclk, aborting.\n");
return ret;
}
usba_writel(udc, CTRL, USBA_DISABLE_MASK);
clk_disable_unprepare(pclk);
udc->usba_ep = atmel_udc_of_init(pdev, udc);
toggle_bias(udc, 0);
if (IS_ERR(udc->usba_ep))
return PTR_ERR(udc->usba_ep);
ret = devm_request_irq(&pdev->dev, irq, usba_udc_irq, 0,
"atmel_usba_udc", udc);
if (ret) {
dev_err(&pdev->dev, "Cannot request irq %d (error %d)\n",
irq, ret);
return ret;
}
udc->irq = irq;
if (udc->vbus_pin) {
irq_set_status_flags(gpiod_to_irq(udc->vbus_pin), IRQ_NOAUTOEN);
ret = devm_request_threaded_irq(&pdev->dev,
gpiod_to_irq(udc->vbus_pin), NULL,
usba_vbus_irq_thread, USBA_VBUS_IRQFLAGS,
"atmel_usba_udc", udc);
if (ret) {
udc->vbus_pin = NULL;
dev_warn(&udc->pdev->dev,
"failed to request vbus irq; "
"assuming always on\n");
}
}
ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
if (ret)
return ret;
device_init_wakeup(&pdev->dev, 1);
usba_init_debugfs(udc);
for (i = 1; i < udc->num_ep; i++)
usba_ep_init_debugfs(udc, &udc->usba_ep[i]);
return 0;
}
static int usba_udc_remove(struct platform_device *pdev)
{
struct usba_udc *udc;
int i;
udc = platform_get_drvdata(pdev);
device_init_wakeup(&pdev->dev, 0);
usb_del_gadget_udc(&udc->gadget);
for (i = 1; i < udc->num_ep; i++)
usba_ep_cleanup_debugfs(&udc->usba_ep[i]);
usba_cleanup_debugfs(udc);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int usba_udc_suspend(struct device *dev)
{
struct usba_udc *udc = dev_get_drvdata(dev);
/* Not started */
if (!udc->driver)
return 0;
mutex_lock(&udc->vbus_mutex);
if (!device_may_wakeup(dev)) {
udc->suspended = false;
usba_stop(udc);
goto out;
}
/*
* Device may wake up. We stay clocked if we failed
* to request vbus irq, assuming always on.
*/
if (udc->vbus_pin) {
/* FIXME: right to stop here...??? */
usba_stop(udc);
enable_irq_wake(gpiod_to_irq(udc->vbus_pin));
}
enable_irq_wake(udc->irq);
out:
mutex_unlock(&udc->vbus_mutex);
return 0;
}
static int usba_udc_resume(struct device *dev)
{
struct usba_udc *udc = dev_get_drvdata(dev);
/* Not started */
if (!udc->driver)
return 0;
if (device_may_wakeup(dev)) {
if (udc->vbus_pin)
disable_irq_wake(gpiod_to_irq(udc->vbus_pin));
disable_irq_wake(udc->irq);
}
/* If Vbus is present, enable the controller and wait for reset */
mutex_lock(&udc->vbus_mutex);
udc->vbus_prev = vbus_is_present(udc);
if (udc->vbus_prev)
usba_start(udc);
mutex_unlock(&udc->vbus_mutex);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(usba_udc_pm_ops, usba_udc_suspend, usba_udc_resume);
static struct platform_driver udc_driver = {
.probe = usba_udc_probe,
.remove = usba_udc_remove,
.driver = {
.name = "atmel_usba_udc",
.pm = &usba_udc_pm_ops,
.of_match_table = atmel_udc_dt_ids,
},
};
module_platform_driver(udc_driver);
MODULE_DESCRIPTION("Atmel USBA UDC driver");
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:atmel_usba_udc");