Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
// SPDX-License-Identifier: GPL-2.0
/*
 * AMD Encrypted Register State Support
 *
 * Author: Joerg Roedel <jroedel@suse.de>
 */

/*
 * misc.h needs to be first because it knows how to include the other kernel
 * headers in the pre-decompression code in a way that does not break
 * compilation.
 */
#include "misc.h"

#include <asm/pgtable_types.h>
#include <asm/sev.h>
#include <asm/trapnr.h>
#include <asm/trap_pf.h>
#include <asm/msr-index.h>
#include <asm/fpu/xcr.h>
#include <asm/ptrace.h>
#include <asm/svm.h>
#include <asm/cpuid.h>

#include "error.h"
#include "../msr.h"

struct ghcb boot_ghcb_page __aligned(PAGE_SIZE);
struct ghcb *boot_ghcb;

/*
 * Copy a version of this function here - insn-eval.c can't be used in
 * pre-decompression code.
 */
static bool insn_has_rep_prefix(struct insn *insn)
{
	insn_byte_t p;
	int i;

	insn_get_prefixes(insn);

	for_each_insn_prefix(insn, i, p) {
		if (p == 0xf2 || p == 0xf3)
			return true;
	}

	return false;
}

/*
 * Only a dummy for insn_get_seg_base() - Early boot-code is 64bit only and
 * doesn't use segments.
 */
static unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
{
	return 0UL;
}

static inline u64 sev_es_rd_ghcb_msr(void)
{
	struct msr m;

	boot_rdmsr(MSR_AMD64_SEV_ES_GHCB, &m);

	return m.q;
}

static inline void sev_es_wr_ghcb_msr(u64 val)
{
	struct msr m;

	m.q = val;
	boot_wrmsr(MSR_AMD64_SEV_ES_GHCB, &m);
}

static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
{
	char buffer[MAX_INSN_SIZE];
	int ret;

	memcpy(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);

	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
	if (ret < 0)
		return ES_DECODE_FAILED;

	return ES_OK;
}

static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
				   void *dst, char *buf, size_t size)
{
	memcpy(dst, buf, size);

	return ES_OK;
}

static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
				  void *src, char *buf, size_t size)
{
	memcpy(buf, src, size);

	return ES_OK;
}

static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
{
	return ES_OK;
}

static bool fault_in_kernel_space(unsigned long address)
{
	return false;
}

#undef __init
#undef __pa
#define __init
#define __pa(x)	((unsigned long)(x))

#define __BOOT_COMPRESSED

/* Basic instruction decoding support needed */
#include "../../lib/inat.c"
#include "../../lib/insn.c"

/* Include code for early handlers */
#include "../../kernel/sev-shared.c"

static inline bool sev_snp_enabled(void)
{
	return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
}

static void __page_state_change(unsigned long paddr, enum psc_op op)
{
	u64 val;

	if (!sev_snp_enabled())
		return;

	/*
	 * If private -> shared then invalidate the page before requesting the
	 * state change in the RMP table.
	 */
	if (op == SNP_PAGE_STATE_SHARED && pvalidate(paddr, RMP_PG_SIZE_4K, 0))
		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);

	/* Issue VMGEXIT to change the page state in RMP table. */
	sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
	VMGEXIT();

	/* Read the response of the VMGEXIT. */
	val = sev_es_rd_ghcb_msr();
	if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val))
		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);

	/*
	 * Now that page state is changed in the RMP table, validate it so that it is
	 * consistent with the RMP entry.
	 */
	if (op == SNP_PAGE_STATE_PRIVATE && pvalidate(paddr, RMP_PG_SIZE_4K, 1))
		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
}

void snp_set_page_private(unsigned long paddr)
{
	__page_state_change(paddr, SNP_PAGE_STATE_PRIVATE);
}

void snp_set_page_shared(unsigned long paddr)
{
	__page_state_change(paddr, SNP_PAGE_STATE_SHARED);
}

static bool early_setup_ghcb(void)
{
	if (set_page_decrypted((unsigned long)&boot_ghcb_page))
		return false;

	/* Page is now mapped decrypted, clear it */
	memset(&boot_ghcb_page, 0, sizeof(boot_ghcb_page));

	boot_ghcb = &boot_ghcb_page;

	/* Initialize lookup tables for the instruction decoder */
	inat_init_tables();

	/* SNP guest requires the GHCB GPA must be registered */
	if (sev_snp_enabled())
		snp_register_ghcb_early(__pa(&boot_ghcb_page));

	return true;
}

void sev_es_shutdown_ghcb(void)
{
	if (!boot_ghcb)
		return;

	if (!sev_es_check_cpu_features())
		error("SEV-ES CPU Features missing.");

	/*
	 * GHCB Page must be flushed from the cache and mapped encrypted again.
	 * Otherwise the running kernel will see strange cache effects when
	 * trying to use that page.
	 */
	if (set_page_encrypted((unsigned long)&boot_ghcb_page))
		error("Can't map GHCB page encrypted");

	/*
	 * GHCB page is mapped encrypted again and flushed from the cache.
	 * Mark it non-present now to catch bugs when #VC exceptions trigger
	 * after this point.
	 */
	if (set_page_non_present((unsigned long)&boot_ghcb_page))
		error("Can't unmap GHCB page");
}

static void __noreturn sev_es_ghcb_terminate(struct ghcb *ghcb, unsigned int set,
					     unsigned int reason, u64 exit_info_2)
{
	u64 exit_info_1 = SVM_VMGEXIT_TERM_REASON(set, reason);

	vc_ghcb_invalidate(ghcb);
	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_TERM_REQUEST);
	ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
	ghcb_set_sw_exit_info_2(ghcb, exit_info_2);

	sev_es_wr_ghcb_msr(__pa(ghcb));
	VMGEXIT();

	while (true)
		asm volatile("hlt\n" : : : "memory");
}

bool sev_es_check_ghcb_fault(unsigned long address)
{
	/* Check whether the fault was on the GHCB page */
	return ((address & PAGE_MASK) == (unsigned long)&boot_ghcb_page);
}

void do_boot_stage2_vc(struct pt_regs *regs, unsigned long exit_code)
{
	struct es_em_ctxt ctxt;
	enum es_result result;

	if (!boot_ghcb && !early_setup_ghcb())
		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);

	vc_ghcb_invalidate(boot_ghcb);
	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
	if (result != ES_OK)
		goto finish;

	switch (exit_code) {
	case SVM_EXIT_RDTSC:
	case SVM_EXIT_RDTSCP:
		result = vc_handle_rdtsc(boot_ghcb, &ctxt, exit_code);
		break;
	case SVM_EXIT_IOIO:
		result = vc_handle_ioio(boot_ghcb, &ctxt);
		break;
	case SVM_EXIT_CPUID:
		result = vc_handle_cpuid(boot_ghcb, &ctxt);
		break;
	default:
		result = ES_UNSUPPORTED;
		break;
	}

finish:
	if (result == ES_OK)
		vc_finish_insn(&ctxt);
	else if (result != ES_RETRY)
		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
}

static void enforce_vmpl0(void)
{
	u64 attrs;
	int err;

	/*
	 * RMPADJUST modifies RMP permissions of a lesser-privileged (numerically
	 * higher) privilege level. Here, clear the VMPL1 permission mask of the
	 * GHCB page. If the guest is not running at VMPL0, this will fail.
	 *
	 * If the guest is running at VMPL0, it will succeed. Even if that operation
	 * modifies permission bits, it is still ok to do so currently because Linux
	 * SNP guests are supported only on VMPL0 so VMPL1 or higher permission masks
	 * changing is a don't-care.
	 */
	attrs = 1;
	if (rmpadjust((unsigned long)&boot_ghcb_page, RMP_PG_SIZE_4K, attrs))
		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NOT_VMPL0);
}

/*
 * SNP_FEATURES_IMPL_REQ is the mask of SNP features that will need
 * guest side implementation for proper functioning of the guest. If any
 * of these features are enabled in the hypervisor but are lacking guest
 * side implementation, the behavior of the guest will be undefined. The
 * guest could fail in non-obvious way making it difficult to debug.
 *
 * As the behavior of reserved feature bits is unknown to be on the
 * safe side add them to the required features mask.
 */
#define SNP_FEATURES_IMPL_REQ	(MSR_AMD64_SNP_VTOM |			\
				 MSR_AMD64_SNP_REFLECT_VC |		\
				 MSR_AMD64_SNP_RESTRICTED_INJ |		\
				 MSR_AMD64_SNP_ALT_INJ |		\
				 MSR_AMD64_SNP_DEBUG_SWAP |		\
				 MSR_AMD64_SNP_VMPL_SSS |		\
				 MSR_AMD64_SNP_SECURE_TSC |		\
				 MSR_AMD64_SNP_VMGEXIT_PARAM |		\
				 MSR_AMD64_SNP_VMSA_REG_PROTECTION |	\
				 MSR_AMD64_SNP_RESERVED_BIT13 |		\
				 MSR_AMD64_SNP_RESERVED_BIT15 |		\
				 MSR_AMD64_SNP_RESERVED_MASK)

/*
 * SNP_FEATURES_PRESENT is the mask of SNP features that are implemented
 * by the guest kernel. As and when a new feature is implemented in the
 * guest kernel, a corresponding bit should be added to the mask.
 */
#define SNP_FEATURES_PRESENT (0)

u64 snp_get_unsupported_features(u64 status)
{
	if (!(status & MSR_AMD64_SEV_SNP_ENABLED))
		return 0;

	return status & SNP_FEATURES_IMPL_REQ & ~SNP_FEATURES_PRESENT;
}

void snp_check_features(void)
{
	u64 unsupported;

	/*
	 * Terminate the boot if hypervisor has enabled any feature lacking
	 * guest side implementation. Pass on the unsupported features mask through
	 * EXIT_INFO_2 of the GHCB protocol so that those features can be reported
	 * as part of the guest boot failure.
	 */
	unsupported = snp_get_unsupported_features(sev_status);
	if (unsupported) {
		if (ghcb_version < 2 || (!boot_ghcb && !early_setup_ghcb()))
			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);

		sev_es_ghcb_terminate(boot_ghcb, SEV_TERM_SET_GEN,
				      GHCB_SNP_UNSUPPORTED, unsupported);
	}
}

/*
 * sev_check_cpu_support - Check for SEV support in the CPU capabilities
 *
 * Returns < 0 if SEV is not supported, otherwise the position of the
 * encryption bit in the page table descriptors.
 */
static int sev_check_cpu_support(void)
{
	unsigned int eax, ebx, ecx, edx;

	/* Check for the SME/SEV support leaf */
	eax = 0x80000000;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);
	if (eax < 0x8000001f)
		return -ENODEV;

	/*
	 * Check for the SME/SEV feature:
	 *   CPUID Fn8000_001F[EAX]
	 *   - Bit 0 - Secure Memory Encryption support
	 *   - Bit 1 - Secure Encrypted Virtualization support
	 *   CPUID Fn8000_001F[EBX]
	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
	 */
	eax = 0x8000001f;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);
	/* Check whether SEV is supported */
	if (!(eax & BIT(1)))
		return -ENODEV;

	return ebx & 0x3f;
}

void sev_enable(struct boot_params *bp)
{
	struct msr m;
	int bitpos;
	bool snp;

	/*
	 * bp->cc_blob_address should only be set by boot/compressed kernel.
	 * Initialize it to 0 to ensure that uninitialized values from
	 * buggy bootloaders aren't propagated.
	 */
	if (bp)
		bp->cc_blob_address = 0;

	/*
	 * Do an initial SEV capability check before snp_init() which
	 * loads the CPUID page and the same checks afterwards are done
	 * without the hypervisor and are trustworthy.
	 *
	 * If the HV fakes SEV support, the guest will crash'n'burn
	 * which is good enough.
	 */

	if (sev_check_cpu_support() < 0)
		return;

	/*
	 * Setup/preliminary detection of SNP. This will be sanity-checked
	 * against CPUID/MSR values later.
	 */
	snp = snp_init(bp);

	/* Now repeat the checks with the SNP CPUID table. */

	bitpos = sev_check_cpu_support();
	if (bitpos < 0) {
		if (snp)
			error("SEV-SNP support indicated by CC blob, but not CPUID.");
		return;
	}

	/* Set the SME mask if this is an SEV guest. */
	boot_rdmsr(MSR_AMD64_SEV, &m);
	sev_status = m.q;
	if (!(sev_status & MSR_AMD64_SEV_ENABLED))
		return;

	/* Negotiate the GHCB protocol version. */
	if (sev_status & MSR_AMD64_SEV_ES_ENABLED) {
		if (!sev_es_negotiate_protocol())
			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_PROT_UNSUPPORTED);
	}

	/*
	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
	 * features.
	 */
	if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
		if (!(get_hv_features() & GHCB_HV_FT_SNP))
			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);

		enforce_vmpl0();
	}

	if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
		error("SEV-SNP supported indicated by CC blob, but not SEV status MSR.");

	sme_me_mask = BIT_ULL(bitpos);
}

/*
 * sev_get_status - Retrieve the SEV status mask
 *
 * Returns 0 if the CPU is not SEV capable, otherwise the value of the
 * AMD64_SEV MSR.
 */
u64 sev_get_status(void)
{
	struct msr m;

	if (sev_check_cpu_support() < 0)
		return 0;

	boot_rdmsr(MSR_AMD64_SEV, &m);
	return m.q;
}

/* Search for Confidential Computing blob in the EFI config table. */
static struct cc_blob_sev_info *find_cc_blob_efi(struct boot_params *bp)
{
	unsigned long cfg_table_pa;
	unsigned int cfg_table_len;
	int ret;

	ret = efi_get_conf_table(bp, &cfg_table_pa, &cfg_table_len);
	if (ret)
		return NULL;

	return (struct cc_blob_sev_info *)efi_find_vendor_table(bp, cfg_table_pa,
								cfg_table_len,
								EFI_CC_BLOB_GUID);
}

/*
 * Initial set up of SNP relies on information provided by the
 * Confidential Computing blob, which can be passed to the boot kernel
 * by firmware/bootloader in the following ways:
 *
 * - via an entry in the EFI config table
 * - via a setup_data structure, as defined by the Linux Boot Protocol
 *
 * Scan for the blob in that order.
 */
static struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
{
	struct cc_blob_sev_info *cc_info;

	cc_info = find_cc_blob_efi(bp);
	if (cc_info)
		goto found_cc_info;

	cc_info = find_cc_blob_setup_data(bp);
	if (!cc_info)
		return NULL;

found_cc_info:
	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);

	return cc_info;
}

/*
 * Indicate SNP based on presence of SNP-specific CC blob. Subsequent checks
 * will verify the SNP CPUID/MSR bits.
 */
bool snp_init(struct boot_params *bp)
{
	struct cc_blob_sev_info *cc_info;

	if (!bp)
		return false;

	cc_info = find_cc_blob(bp);
	if (!cc_info)
		return false;

	/*
	 * If a SNP-specific Confidential Computing blob is present, then
	 * firmware/bootloader have indicated SNP support. Verifying this
	 * involves CPUID checks which will be more reliable if the SNP
	 * CPUID table is used. See comments over snp_setup_cpuid_table() for
	 * more details.
	 */
	setup_cpuid_table(cc_info);

	/*
	 * Pass run-time kernel a pointer to CC info via boot_params so EFI
	 * config table doesn't need to be searched again during early startup
	 * phase.
	 */
	bp->cc_blob_address = (u32)(unsigned long)cc_info;

	return true;
}

void sev_prep_identity_maps(unsigned long top_level_pgt)
{
	/*
	 * The Confidential Computing blob is used very early in uncompressed
	 * kernel to find the in-memory CPUID table to handle CPUID
	 * instructions. Make sure an identity-mapping exists so it can be
	 * accessed after switchover.
	 */
	if (sev_snp_enabled()) {
		unsigned long cc_info_pa = boot_params_ptr->cc_blob_address;
		struct cc_blob_sev_info *cc_info;

		kernel_add_identity_map(cc_info_pa, cc_info_pa + sizeof(*cc_info));

		cc_info = (struct cc_blob_sev_info *)cc_info_pa;
		kernel_add_identity_map(cc_info->cpuid_phys, cc_info->cpuid_phys + cc_info->cpuid_len);
	}

	sev_verify_cbit(top_level_pgt);
}