Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2021, Intel Corporation. */ #include <linux/delay.h> #include "ice_common.h" #include "ice_ptp_hw.h" #include "ice_ptp_consts.h" #include "ice_cgu_regs.h" /* Low level functions for interacting with and managing the device clock used * for the Precision Time Protocol. * * The ice hardware represents the current time using three registers: * * GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R * +---------------+ +---------------+ +---------------+ * | 32 bits | | 32 bits | | 32 bits | * +---------------+ +---------------+ +---------------+ * * The registers are incremented every clock tick using a 40bit increment * value defined over two registers: * * GLTSYN_INCVAL_H GLTSYN_INCVAL_L * +---------------+ +---------------+ * | 8 bit s | | 32 bits | * +---------------+ +---------------+ * * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L * registers every clock source tick. Depending on the specific device * configuration, the clock source frequency could be one of a number of * values. * * For E810 devices, the increment frequency is 812.5 MHz * * For E822 devices the clock can be derived from different sources, and the * increment has an effective frequency of one of the following: * - 823.4375 MHz * - 783.36 MHz * - 796.875 MHz * - 816 MHz * - 830.078125 MHz * - 783.36 MHz * * The hardware captures timestamps in the PHY for incoming packets, and for * outgoing packets on request. To support this, the PHY maintains a timer * that matches the lower 64 bits of the global source timer. * * In order to ensure that the PHY timers and the source timer are equivalent, * shadow registers are used to prepare the desired initial values. A special * sync command is issued to trigger copying from the shadow registers into * the appropriate source and PHY registers simultaneously. * * The driver supports devices which have different PHYs with subtly different * mechanisms to program and control the timers. We divide the devices into * families named after the first major device, E810 and similar devices, and * E822 and similar devices. * * - E822 based devices have additional support for fine grained Vernier * calibration which requires significant setup * - The layout of timestamp data in the PHY register blocks is different * - The way timer synchronization commands are issued is different. * * To support this, very low level functions have an e810 or e822 suffix * indicating what type of device they work on. Higher level abstractions for * tasks that can be done on both devices do not have the suffix and will * correctly look up the appropriate low level function when running. * * Functions which only make sense on a single device family may not have * a suitable generic implementation */ /** * ice_get_ptp_src_clock_index - determine source clock index * @hw: pointer to HW struct * * Determine the source clock index currently in use, based on device * capabilities reported during initialization. */ u8 ice_get_ptp_src_clock_index(struct ice_hw *hw) { return hw->func_caps.ts_func_info.tmr_index_assoc; } /** * ice_ptp_read_src_incval - Read source timer increment value * @hw: pointer to HW struct * * Read the increment value of the source timer and return it. */ static u64 ice_ptp_read_src_incval(struct ice_hw *hw) { u32 lo, hi; u8 tmr_idx; tmr_idx = ice_get_ptp_src_clock_index(hw); lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo; } /** * ice_ptp_src_cmd - Prepare source timer for a timer command * @hw: pointer to HW structure * @cmd: Timer command * * Prepare the source timer for an upcoming timer sync command. */ static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) { u32 cmd_val; u8 tmr_idx; tmr_idx = ice_get_ptp_src_clock_index(hw); cmd_val = tmr_idx << SEL_CPK_SRC; switch (cmd) { case INIT_TIME: cmd_val |= GLTSYN_CMD_INIT_TIME; break; case INIT_INCVAL: cmd_val |= GLTSYN_CMD_INIT_INCVAL; break; case ADJ_TIME: cmd_val |= GLTSYN_CMD_ADJ_TIME; break; case ADJ_TIME_AT_TIME: cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME; break; case READ_TIME: cmd_val |= GLTSYN_CMD_READ_TIME; break; case ICE_PTP_NOP: break; } wr32(hw, GLTSYN_CMD, cmd_val); } /** * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands * @hw: pointer to HW struct * * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the * write immediately. This triggers the hardware to begin executing all of the * source and PHY timer commands synchronously. */ static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw) { wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD); ice_flush(hw); } /* E822 family functions * * The following functions operate on the E822 family of devices. */ /** * ice_fill_phy_msg_e822 - Fill message data for a PHY register access * @msg: the PHY message buffer to fill in * @port: the port to access * @offset: the register offset */ static void ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset) { int phy_port, phy, quadtype; phy_port = port % ICE_PORTS_PER_PHY; phy = port / ICE_PORTS_PER_PHY; quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_NUM_QUAD_TYPE; if (quadtype == 0) { msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port); msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port); } else { msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port); msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port); } if (phy == 0) msg->dest_dev = rmn_0; else if (phy == 1) msg->dest_dev = rmn_1; else msg->dest_dev = rmn_2; } /** * ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register * @low_addr: the low address to check * @high_addr: on return, contains the high address of the 64bit register * * Checks if the provided low address is one of the known 64bit PHY values * represented as two 32bit registers. If it is, return the appropriate high * register offset to use. */ static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr) { switch (low_addr) { case P_REG_PAR_PCS_TX_OFFSET_L: *high_addr = P_REG_PAR_PCS_TX_OFFSET_U; return true; case P_REG_PAR_PCS_RX_OFFSET_L: *high_addr = P_REG_PAR_PCS_RX_OFFSET_U; return true; case P_REG_PAR_TX_TIME_L: *high_addr = P_REG_PAR_TX_TIME_U; return true; case P_REG_PAR_RX_TIME_L: *high_addr = P_REG_PAR_RX_TIME_U; return true; case P_REG_TOTAL_TX_OFFSET_L: *high_addr = P_REG_TOTAL_TX_OFFSET_U; return true; case P_REG_TOTAL_RX_OFFSET_L: *high_addr = P_REG_TOTAL_RX_OFFSET_U; return true; case P_REG_UIX66_10G_40G_L: *high_addr = P_REG_UIX66_10G_40G_U; return true; case P_REG_UIX66_25G_100G_L: *high_addr = P_REG_UIX66_25G_100G_U; return true; case P_REG_TX_CAPTURE_L: *high_addr = P_REG_TX_CAPTURE_U; return true; case P_REG_RX_CAPTURE_L: *high_addr = P_REG_RX_CAPTURE_U; return true; case P_REG_TX_TIMER_INC_PRE_L: *high_addr = P_REG_TX_TIMER_INC_PRE_U; return true; case P_REG_RX_TIMER_INC_PRE_L: *high_addr = P_REG_RX_TIMER_INC_PRE_U; return true; default: return false; } } /** * ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register * @low_addr: the low address to check * @high_addr: on return, contains the high address of the 40bit value * * Checks if the provided low address is one of the known 40bit PHY values * split into two registers with the lower 8 bits in the low register and the * upper 32 bits in the high register. If it is, return the appropriate high * register offset to use. */ static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr) { switch (low_addr) { case P_REG_TIMETUS_L: *high_addr = P_REG_TIMETUS_U; return true; case P_REG_PAR_RX_TUS_L: *high_addr = P_REG_PAR_RX_TUS_U; return true; case P_REG_PAR_TX_TUS_L: *high_addr = P_REG_PAR_TX_TUS_U; return true; case P_REG_PCS_RX_TUS_L: *high_addr = P_REG_PCS_RX_TUS_U; return true; case P_REG_PCS_TX_TUS_L: *high_addr = P_REG_PCS_TX_TUS_U; return true; case P_REG_DESK_PAR_RX_TUS_L: *high_addr = P_REG_DESK_PAR_RX_TUS_U; return true; case P_REG_DESK_PAR_TX_TUS_L: *high_addr = P_REG_DESK_PAR_TX_TUS_U; return true; case P_REG_DESK_PCS_RX_TUS_L: *high_addr = P_REG_DESK_PCS_RX_TUS_U; return true; case P_REG_DESK_PCS_TX_TUS_L: *high_addr = P_REG_DESK_PCS_TX_TUS_U; return true; default: return false; } } /** * ice_read_phy_reg_e822 - Read a PHY register * @hw: pointer to the HW struct * @port: PHY port to read from * @offset: PHY register offset to read * @val: on return, the contents read from the PHY * * Read a PHY register for the given port over the device sideband queue. */ int ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val) { struct ice_sbq_msg_input msg = {0}; int err; ice_fill_phy_msg_e822(&msg, port, offset); msg.opcode = ice_sbq_msg_rd; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } *val = msg.data; return 0; } /** * ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers * @hw: pointer to the HW struct * @port: PHY port to read from * @low_addr: offset of the lower register to read from * @val: on return, the contents of the 64bit value from the PHY registers * * Reads the two registers associated with a 64bit value and returns it in the * val pointer. The offset always specifies the lower register offset to use. * The high offset is looked up. This function only operates on registers * known to be two parts of a 64bit value. */ static int ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val) { u32 low, high; u16 high_addr; int err; /* Only operate on registers known to be split into two 32bit * registers. */ if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) { ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", low_addr); return -EINVAL; } err = ice_read_phy_reg_e822(hw, port, low_addr, &low); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d", low_addr, err); return err; } err = ice_read_phy_reg_e822(hw, port, high_addr, &high); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d", high_addr, err); return err; } *val = (u64)high << 32 | low; return 0; } /** * ice_write_phy_reg_e822 - Write a PHY register * @hw: pointer to the HW struct * @port: PHY port to write to * @offset: PHY register offset to write * @val: The value to write to the register * * Write a PHY register for the given port over the device sideband queue. */ int ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val) { struct ice_sbq_msg_input msg = {0}; int err; ice_fill_phy_msg_e822(&msg, port, offset); msg.opcode = ice_sbq_msg_wr; msg.data = val; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } return 0; } /** * ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY * @hw: pointer to the HW struct * @port: port to write to * @low_addr: offset of the low register * @val: 40b value to write * * Write the provided 40b value to the two associated registers by splitting * it up into two chunks, the lower 8 bits and the upper 32 bits. */ static int ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) { u32 low, high; u16 high_addr; int err; /* Only operate on registers known to be split into a lower 8 bit * register and an upper 32 bit register. */ if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) { ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n", low_addr); return -EINVAL; } low = (u32)(val & P_REG_40B_LOW_M); high = (u32)(val >> P_REG_40B_HIGH_S); err = ice_write_phy_reg_e822(hw, port, low_addr, low); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", low_addr, err); return err; } err = ice_write_phy_reg_e822(hw, port, high_addr, high); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", high_addr, err); return err; } return 0; } /** * ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers * @hw: pointer to the HW struct * @port: PHY port to read from * @low_addr: offset of the lower register to read from * @val: the contents of the 64bit value to write to PHY * * Write the 64bit value to the two associated 32bit PHY registers. The offset * is always specified as the lower register, and the high address is looked * up. This function only operates on registers known to be two parts of * a 64bit value. */ static int ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) { u32 low, high; u16 high_addr; int err; /* Only operate on registers known to be split into two 32bit * registers. */ if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) { ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", low_addr); return -EINVAL; } low = lower_32_bits(val); high = upper_32_bits(val); err = ice_write_phy_reg_e822(hw, port, low_addr, low); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", low_addr, err); return err; } err = ice_write_phy_reg_e822(hw, port, high_addr, high); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", high_addr, err); return err; } return 0; } /** * ice_fill_quad_msg_e822 - Fill message data for quad register access * @msg: the PHY message buffer to fill in * @quad: the quad to access * @offset: the register offset * * Fill a message buffer for accessing a register in a quad shared between * multiple PHYs. */ static void ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset) { u32 addr; msg->dest_dev = rmn_0; if ((quad % ICE_NUM_QUAD_TYPE) == 0) addr = Q_0_BASE + offset; else addr = Q_1_BASE + offset; msg->msg_addr_low = lower_16_bits(addr); msg->msg_addr_high = upper_16_bits(addr); } /** * ice_read_quad_reg_e822 - Read a PHY quad register * @hw: pointer to the HW struct * @quad: quad to read from * @offset: quad register offset to read * @val: on return, the contents read from the quad * * Read a quad register over the device sideband queue. Quad registers are * shared between multiple PHYs. */ int ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val) { struct ice_sbq_msg_input msg = {0}; int err; if (quad >= ICE_MAX_QUAD) return -EINVAL; ice_fill_quad_msg_e822(&msg, quad, offset); msg.opcode = ice_sbq_msg_rd; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } *val = msg.data; return 0; } /** * ice_write_quad_reg_e822 - Write a PHY quad register * @hw: pointer to the HW struct * @quad: quad to write to * @offset: quad register offset to write * @val: The value to write to the register * * Write a quad register over the device sideband queue. Quad registers are * shared between multiple PHYs. */ int ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val) { struct ice_sbq_msg_input msg = {0}; int err; if (quad >= ICE_MAX_QUAD) return -EINVAL; ice_fill_quad_msg_e822(&msg, quad, offset); msg.opcode = ice_sbq_msg_wr; msg.data = val; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } return 0; } /** * ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block * @hw: pointer to the HW struct * @quad: the quad to read from * @idx: the timestamp index to read * @tstamp: on return, the 40bit timestamp value * * Read a 40bit timestamp value out of the two associated registers in the * quad memory block that is shared between the internal PHYs of the E822 * family of devices. */ static int ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp) { u16 lo_addr, hi_addr; u32 lo, hi; int err; lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx); hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx); err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", err); return err; } err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", err); return err; } /* For E822 based internal PHYs, the timestamp is reported with the * lower 8 bits in the low register, and the upper 32 bits in the high * register. */ *tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M); return 0; } /** * ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block * @hw: pointer to the HW struct * @quad: the quad to read from * @idx: the timestamp index to reset * * Clear a timestamp, resetting its valid bit, from the PHY quad block that is * shared between the internal PHYs on the E822 devices. */ static int ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx) { u16 lo_addr, hi_addr; int err; lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx); hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx); err = ice_write_quad_reg_e822(hw, quad, lo_addr, 0); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n", err); return err; } err = ice_write_quad_reg_e822(hw, quad, hi_addr, 0); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n", err); return err; } return 0; } /** * ice_read_cgu_reg_e822 - Read a CGU register * @hw: pointer to the HW struct * @addr: Register address to read * @val: storage for register value read * * Read the contents of a register of the Clock Generation Unit. Only * applicable to E822 devices. */ static int ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val) { struct ice_sbq_msg_input cgu_msg; int err; cgu_msg.opcode = ice_sbq_msg_rd; cgu_msg.dest_dev = cgu; cgu_msg.msg_addr_low = addr; cgu_msg.msg_addr_high = 0x0; err = ice_sbq_rw_reg(hw, &cgu_msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n", addr, err); return err; } *val = cgu_msg.data; return err; } /** * ice_write_cgu_reg_e822 - Write a CGU register * @hw: pointer to the HW struct * @addr: Register address to write * @val: value to write into the register * * Write the specified value to a register of the Clock Generation Unit. Only * applicable to E822 devices. */ static int ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val) { struct ice_sbq_msg_input cgu_msg; int err; cgu_msg.opcode = ice_sbq_msg_wr; cgu_msg.dest_dev = cgu; cgu_msg.msg_addr_low = addr; cgu_msg.msg_addr_high = 0x0; cgu_msg.data = val; err = ice_sbq_rw_reg(hw, &cgu_msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n", addr, err); return err; } return err; } /** * ice_clk_freq_str - Convert time_ref_freq to string * @clk_freq: Clock frequency * * Convert the specified TIME_REF clock frequency to a string. */ static const char *ice_clk_freq_str(u8 clk_freq) { switch ((enum ice_time_ref_freq)clk_freq) { case ICE_TIME_REF_FREQ_25_000: return "25 MHz"; case ICE_TIME_REF_FREQ_122_880: return "122.88 MHz"; case ICE_TIME_REF_FREQ_125_000: return "125 MHz"; case ICE_TIME_REF_FREQ_153_600: return "153.6 MHz"; case ICE_TIME_REF_FREQ_156_250: return "156.25 MHz"; case ICE_TIME_REF_FREQ_245_760: return "245.76 MHz"; default: return "Unknown"; } } /** * ice_clk_src_str - Convert time_ref_src to string * @clk_src: Clock source * * Convert the specified clock source to its string name. */ static const char *ice_clk_src_str(u8 clk_src) { switch ((enum ice_clk_src)clk_src) { case ICE_CLK_SRC_TCX0: return "TCX0"; case ICE_CLK_SRC_TIME_REF: return "TIME_REF"; default: return "Unknown"; } } /** * ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit * @hw: pointer to the HW struct * @clk_freq: Clock frequency to program * @clk_src: Clock source to select (TIME_REF, or TCX0) * * Configure the Clock Generation Unit with the desired clock frequency and * time reference, enabling the PLL which drives the PTP hardware clock. */ static int ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq, enum ice_clk_src clk_src) { union tspll_ro_bwm_lf bwm_lf; union nac_cgu_dword19 dw19; union nac_cgu_dword22 dw22; union nac_cgu_dword24 dw24; union nac_cgu_dword9 dw9; int err; if (clk_freq >= NUM_ICE_TIME_REF_FREQ) { dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n", clk_freq); return -EINVAL; } if (clk_src >= NUM_ICE_CLK_SRC) { dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n", clk_src); return -EINVAL; } if (clk_src == ICE_CLK_SRC_TCX0 && clk_freq != ICE_TIME_REF_FREQ_25_000) { dev_warn(ice_hw_to_dev(hw), "TCX0 only supports 25 MHz frequency\n"); return -EINVAL; } err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val); if (err) return err; err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val); if (err) return err; err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val); if (err) return err; /* Log the current clock configuration */ ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n", dw24.field.ts_pll_enable ? "enabled" : "disabled", ice_clk_src_str(dw24.field.time_ref_sel), ice_clk_freq_str(dw9.field.time_ref_freq_sel), bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked"); /* Disable the PLL before changing the clock source or frequency */ if (dw24.field.ts_pll_enable) { dw24.field.ts_pll_enable = 0; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); if (err) return err; } /* Set the frequency */ dw9.field.time_ref_freq_sel = clk_freq; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val); if (err) return err; /* Configure the TS PLL feedback divisor */ err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val); if (err) return err; dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div; dw19.field.tspll_ndivratio = 1; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val); if (err) return err; /* Configure the TS PLL post divisor */ err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val); if (err) return err; dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div; dw22.field.time1588clk_sel_div2 = 0; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val); if (err) return err; /* Configure the TS PLL pre divisor and clock source */ err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val); if (err) return err; dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div; dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div; dw24.field.time_ref_sel = clk_src; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); if (err) return err; /* Finally, enable the PLL */ dw24.field.ts_pll_enable = 1; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); if (err) return err; /* Wait to verify if the PLL locks */ usleep_range(1000, 5000); err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val); if (err) return err; if (!bwm_lf.field.plllock_true_lock_cri) { dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n"); return -EBUSY; } /* Log the current clock configuration */ ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n", dw24.field.ts_pll_enable ? "enabled" : "disabled", ice_clk_src_str(dw24.field.time_ref_sel), ice_clk_freq_str(dw9.field.time_ref_freq_sel), bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked"); return 0; } /** * ice_init_cgu_e822 - Initialize CGU with settings from firmware * @hw: pointer to the HW structure * * Initialize the Clock Generation Unit of the E822 device. */ static int ice_init_cgu_e822(struct ice_hw *hw) { struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info; union tspll_cntr_bist_settings cntr_bist; int err; err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS, &cntr_bist.val); if (err) return err; /* Disable sticky lock detection so lock err reported is accurate */ cntr_bist.field.i_plllock_sel_0 = 0; cntr_bist.field.i_plllock_sel_1 = 0; err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS, cntr_bist.val); if (err) return err; /* Configure the CGU PLL using the parameters from the function * capabilities. */ err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref, (enum ice_clk_src)ts_info->clk_src); if (err) return err; return 0; } /** * ice_ptp_set_vernier_wl - Set the window length for vernier calibration * @hw: pointer to the HW struct * * Set the window length used for the vernier port calibration process. */ static int ice_ptp_set_vernier_wl(struct ice_hw *hw) { u8 port; for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { int err; err = ice_write_phy_reg_e822(hw, port, P_REG_WL, PTP_VERNIER_WL); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n", port, err); return err; } } return 0; } /** * ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization * @hw: pointer to HW struct * * Perform PHC initialization steps specific to E822 devices. */ static int ice_ptp_init_phc_e822(struct ice_hw *hw) { int err; u32 regval; /* Enable reading switch and PHY registers over the sideband queue */ #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1) #define PF_SB_REM_DEV_CTL_PHY0 BIT(2) regval = rd32(hw, PF_SB_REM_DEV_CTL); regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0); wr32(hw, PF_SB_REM_DEV_CTL, regval); /* Initialize the Clock Generation Unit */ err = ice_init_cgu_e822(hw); if (err) return err; /* Set window length for all the ports */ return ice_ptp_set_vernier_wl(hw); } /** * ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time * @hw: pointer to the HW struct * @time: Time to initialize the PHY port clocks to * * Program the PHY port registers with a new initial time value. The port * clock will be initialized once the driver issues an INIT_TIME sync * command. The time value is the upper 32 bits of the PHY timer, usually in * units of nominal nanoseconds. */ static int ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time) { u64 phy_time; u8 port; int err; /* The time represents the upper 32 bits of the PHY timer, so we need * to shift to account for this when programming. */ phy_time = (u64)time << 32; for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { /* Tx case */ err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L, phy_time); if (err) goto exit_err; /* Rx case */ err = ice_write_64b_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L, phy_time); if (err) goto exit_err; } return 0; exit_err: ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n", port, err); return err; } /** * ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust * @hw: pointer to HW struct * @port: Port number to be programmed * @time: time in cycles to adjust the port Tx and Rx clocks * * Program the port for an atomic adjustment by writing the Tx and Rx timer * registers. The atomic adjustment won't be completed until the driver issues * an ADJ_TIME command. * * Note that time is not in units of nanoseconds. It is in clock time * including the lower sub-nanosecond portion of the port timer. * * Negative adjustments are supported using 2s complement arithmetic. */ int ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time) { u32 l_time, u_time; int err; l_time = lower_32_bits(time); u_time = upper_32_bits(time); /* Tx case */ err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L, l_time); if (err) goto exit_err; err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U, u_time); if (err) goto exit_err; /* Rx case */ err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L, l_time); if (err) goto exit_err; err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U, u_time); if (err) goto exit_err; return 0; exit_err: ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n", port, err); return err; } /** * ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment * @hw: pointer to HW struct * @adj: adjustment in nanoseconds * * Prepare the PHY ports for an atomic time adjustment by programming the PHY * Tx and Rx port registers. The actual adjustment is completed by issuing an * ADJ_TIME or ADJ_TIME_AT_TIME sync command. */ static int ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj) { s64 cycles; u8 port; /* The port clock supports adjustment of the sub-nanosecond portion of * the clock. We shift the provided adjustment in nanoseconds to * calculate the appropriate adjustment to program into the PHY ports. */ if (adj > 0) cycles = (s64)adj << 32; else cycles = -(((s64)-adj) << 32); for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { int err; err = ice_ptp_prep_port_adj_e822(hw, port, cycles); if (err) return err; } return 0; } /** * ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment * @hw: pointer to HW struct * @incval: new increment value to prepare * * Prepare each of the PHY ports for a new increment value by programming the * port's TIMETUS registers. The new increment value will be updated after * issuing an INIT_INCVAL command. */ static int ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval) { int err; u8 port; for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval); if (err) goto exit_err; } return 0; exit_err: ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n", port, err); return err; } /** * ice_ptp_read_port_capture - Read a port's local time capture * @hw: pointer to HW struct * @port: Port number to read * @tx_ts: on return, the Tx port time capture * @rx_ts: on return, the Rx port time capture * * Read the port's Tx and Rx local time capture values. * * Note this has no equivalent for the E810 devices. */ static int ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts) { int err; /* Tx case */ err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n", err); return err; } ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n", (unsigned long long)*tx_ts); /* Rx case */ err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n", err); return err; } ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n", (unsigned long long)*rx_ts); return 0; } /** * ice_ptp_write_port_cmd_e822 - Prepare a single PHY port for a timer command * @hw: pointer to HW struct * @port: Port to which cmd has to be sent * @cmd: Command to be sent to the port * * Prepare the requested port for an upcoming timer sync command. * * Do not use this function directly. If you want to configure exactly one * port, use ice_ptp_one_port_cmd() instead. */ static int ice_ptp_write_port_cmd_e822(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd) { u32 cmd_val, val; u8 tmr_idx; int err; tmr_idx = ice_get_ptp_src_clock_index(hw); cmd_val = tmr_idx << SEL_PHY_SRC; switch (cmd) { case INIT_TIME: cmd_val |= PHY_CMD_INIT_TIME; break; case INIT_INCVAL: cmd_val |= PHY_CMD_INIT_INCVAL; break; case ADJ_TIME: cmd_val |= PHY_CMD_ADJ_TIME; break; case READ_TIME: cmd_val |= PHY_CMD_READ_TIME; break; case ADJ_TIME_AT_TIME: cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME; break; case ICE_PTP_NOP: break; } /* Tx case */ /* Read, modify, write */ err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n", err); return err; } /* Modify necessary bits only and perform write */ val &= ~TS_CMD_MASK; val |= cmd_val; err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n", err); return err; } /* Rx case */ /* Read, modify, write */ err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n", err); return err; } /* Modify necessary bits only and perform write */ val &= ~TS_CMD_MASK; val |= cmd_val; err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n", err); return err; } return 0; } /** * ice_ptp_one_port_cmd - Prepare one port for a timer command * @hw: pointer to the HW struct * @configured_port: the port to configure with configured_cmd * @configured_cmd: timer command to prepare on the configured_port * * Prepare the configured_port for the configured_cmd, and prepare all other * ports for ICE_PTP_NOP. This causes the configured_port to execute the * desired command while all other ports perform no operation. */ static int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port, enum ice_ptp_tmr_cmd configured_cmd) { u8 port; for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { enum ice_ptp_tmr_cmd cmd; int err; if (port == configured_port) cmd = configured_cmd; else cmd = ICE_PTP_NOP; err = ice_ptp_write_port_cmd_e822(hw, port, cmd); if (err) return err; } return 0; } /** * ice_ptp_port_cmd_e822 - Prepare all ports for a timer command * @hw: pointer to the HW struct * @cmd: timer command to prepare * * Prepare all ports connected to this device for an upcoming timer sync * command. */ static int ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) { u8 port; for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { int err; err = ice_ptp_write_port_cmd_e822(hw, port, cmd); if (err) return err; } return 0; } /* E822 Vernier calibration functions * * The following functions are used as part of the vernier calibration of * a port. This calibration increases the precision of the timestamps on the * port. */ /** * ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode * @hw: pointer to HW struct * @port: the port to read from * @link_out: if non-NULL, holds link speed on success * @fec_out: if non-NULL, holds FEC algorithm on success * * Read the serdes data for the PHY port and extract the link speed and FEC * algorithm. */ static int ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port, enum ice_ptp_link_spd *link_out, enum ice_ptp_fec_mode *fec_out) { enum ice_ptp_link_spd link; enum ice_ptp_fec_mode fec; u32 serdes; int err; err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n"); return err; } /* Determine the FEC algorithm */ fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes); serdes &= P_REG_LINK_SPEED_SERDES_M; /* Determine the link speed */ if (fec == ICE_PTP_FEC_MODE_RS_FEC) { switch (serdes) { case ICE_PTP_SERDES_25G: link = ICE_PTP_LNK_SPD_25G_RS; break; case ICE_PTP_SERDES_50G: link = ICE_PTP_LNK_SPD_50G_RS; break; case ICE_PTP_SERDES_100G: link = ICE_PTP_LNK_SPD_100G_RS; break; default: return -EIO; } } else { switch (serdes) { case ICE_PTP_SERDES_1G: link = ICE_PTP_LNK_SPD_1G; break; case ICE_PTP_SERDES_10G: link = ICE_PTP_LNK_SPD_10G; break; case ICE_PTP_SERDES_25G: link = ICE_PTP_LNK_SPD_25G; break; case ICE_PTP_SERDES_40G: link = ICE_PTP_LNK_SPD_40G; break; case ICE_PTP_SERDES_50G: link = ICE_PTP_LNK_SPD_50G; break; default: return -EIO; } } if (link_out) *link_out = link; if (fec_out) *fec_out = fec; return 0; } /** * ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp * @hw: pointer to HW struct * @port: to configure the quad for */ static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port) { enum ice_ptp_link_spd link_spd; int err; u32 val; u8 quad; err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n", err); return; } quad = port / ICE_PORTS_PER_QUAD; err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n", err); return; } if (link_spd >= ICE_PTP_LNK_SPD_40G) val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M; else val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M; err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n", err); return; } } /** * ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822 * @hw: pointer to the HW structure * @port: the port to configure * * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC * hardware clock time units (TUs). That is, determine the number of TUs per * serdes unit interval, and program the UIX registers with this conversion. * * This conversion is used as part of the calibration process when determining * the additional error of a timestamp vs the real time of transmission or * receipt of the packet. * * Hardware uses the number of TUs per 66 UIs, written to the UIX registers * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks. * * To calculate the conversion ratio, we use the following facts: * * a) the clock frequency in Hz (cycles per second) * b) the number of TUs per cycle (the increment value of the clock) * c) 1 second per 1 billion nanoseconds * d) the duration of 66 UIs in nanoseconds * * Given these facts, we can use the following table to work out what ratios * to multiply in order to get the number of TUs per 66 UIs: * * cycles | 1 second | incval (TUs) | nanoseconds * -------+--------------+--------------+------------- * second | 1 billion ns | cycle | 66 UIs * * To perform the multiplication using integers without too much loss of * precision, we can take use the following equation: * * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion) * * We scale up to using 6600 UI instead of 66 in order to avoid fractional * nanosecond UIs (66 UI at 10G/40G is 6.4 ns) * * The increment value has a maximum expected range of about 34 bits, while * the frequency value is about 29 bits. Multiplying these values shouldn't * overflow the 64 bits. However, we must then further multiply them again by * the Serdes unit interval duration. To avoid overflow here, we split the * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and * a divide by 390,625,000. This does lose some precision, but avoids * miscalculation due to arithmetic overflow. */ static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port) { u64 cur_freq, clk_incval, tu_per_sec, uix; int err; cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second divided by 256 */ tu_per_sec = (cur_freq * clk_incval) >> 8; #define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */ #define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */ /* Program the 10Gb/40Gb conversion ratio */ uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000); err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L, uix); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n", err); return err; } /* Program the 25Gb/100Gb conversion ratio */ uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000); err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L, uix); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n", err); return err; } return 0; } /** * ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle * @hw: pointer to the HW struct * @port: port to configure * * Configure the number of TUs for the PAR and PCS clocks used as part of the * timestamp calibration process. This depends on the link speed, as the PHY * uses different markers depending on the speed. * * 1Gb/10Gb/25Gb: * - Tx/Rx PAR/PCS markers * * 25Gb RS: * - Tx/Rx Reed Solomon gearbox PAR/PCS markers * * 40Gb/50Gb: * - Tx/Rx PAR/PCS markers * - Rx Deskew PAR/PCS markers * * 50G RS and 100GB RS: * - Tx/Rx Reed Solomon gearbox PAR/PCS markers * - Rx Deskew PAR/PCS markers * - Tx PAR/PCS markers * * To calculate the conversion, we use the PHC clock frequency (cycles per * second), the increment value (TUs per cycle), and the related PHY clock * frequency to calculate the TUs per unit of the PHY link clock. The * following table shows how the units convert: * * cycles | TUs | second * -------+-------+-------- * second | cycle | cycles * * For each conversion register, look up the appropriate frequency from the * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program * this to the appropriate register, preparing hardware to perform timestamp * calibration to calculate the total Tx or Rx offset to adjust the timestamp * in order to calibrate for the internal PHY delays. * * Note that the increment value ranges up to ~34 bits, and the clock * frequency is ~29 bits, so multiplying them together should fit within the * 64 bit arithmetic. */ static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) { u64 cur_freq, clk_incval, tu_per_sec, phy_tus; enum ice_ptp_link_spd link_spd; enum ice_ptp_fec_mode fec_mode; int err; err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); if (err) return err; cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per cycle of the PHC clock */ tu_per_sec = cur_freq * clk_incval; /* For each PHY conversion register, look up the appropriate link * speed frequency and determine the TUs per that clock's cycle time. * Split this into a high and low value and then program the * appropriate register. If that link speed does not use the * associated register, write zeros to clear it instead. */ /* P_REG_PAR_TX_TUS */ if (e822_vernier[link_spd].tx_par_clk) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].tx_par_clk); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L, phy_tus); if (err) return err; /* P_REG_PAR_RX_TUS */ if (e822_vernier[link_spd].rx_par_clk) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].rx_par_clk); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L, phy_tus); if (err) return err; /* P_REG_PCS_TX_TUS */ if (e822_vernier[link_spd].tx_pcs_clk) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].tx_pcs_clk); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L, phy_tus); if (err) return err; /* P_REG_PCS_RX_TUS */ if (e822_vernier[link_spd].rx_pcs_clk) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].rx_pcs_clk); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L, phy_tus); if (err) return err; /* P_REG_DESK_PAR_TX_TUS */ if (e822_vernier[link_spd].tx_desk_rsgb_par) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].tx_desk_rsgb_par); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L, phy_tus); if (err) return err; /* P_REG_DESK_PAR_RX_TUS */ if (e822_vernier[link_spd].rx_desk_rsgb_par) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].rx_desk_rsgb_par); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L, phy_tus); if (err) return err; /* P_REG_DESK_PCS_TX_TUS */ if (e822_vernier[link_spd].tx_desk_rsgb_pcs) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].tx_desk_rsgb_pcs); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L, phy_tus); if (err) return err; /* P_REG_DESK_PCS_RX_TUS */ if (e822_vernier[link_spd].rx_desk_rsgb_pcs) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].rx_desk_rsgb_pcs); else phy_tus = 0; return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L, phy_tus); } /** * ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port * @hw: pointer to the HW struct * @link_spd: the Link speed to calculate for * * Calculate the fixed offset due to known static latency data. */ static u64 ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) { u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second */ tu_per_sec = cur_freq * clk_incval; /* Calculate number of TUs to add for the fixed Tx latency. Since the * latency measurement is in 1/100th of a nanosecond, we need to * multiply by tu_per_sec and then divide by 1e11. This calculation * overflows 64 bit integer arithmetic, so break it up into two * divisions by 1e4 first then by 1e7. */ fixed_offset = div_u64(tu_per_sec, 10000); fixed_offset *= e822_vernier[link_spd].tx_fixed_delay; fixed_offset = div_u64(fixed_offset, 10000000); return fixed_offset; } /** * ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset * @hw: pointer to the HW struct * @port: the PHY port to configure * * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to * adjust Tx timestamps by. This is calculated by combining some known static * latency along with the Vernier offset computations done by hardware. * * This function must be called only after the offset registers are valid, * i.e. after the Vernier calibration wait has passed, to ensure that the PHY * has measured the offset. * * To avoid overflow, when calculating the offset based on the known static * latency values, we use measurements in 1/100th of a nanosecond, and divide * the TUs per second up front. This avoids overflow while allowing * calculation of the adjustment using integer arithmetic. */ static int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) { enum ice_ptp_link_spd link_spd; enum ice_ptp_fec_mode fec_mode; u64 total_offset, val; int err; err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); if (err) return err; total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd); /* Read the first Vernier offset from the PHY register and add it to * the total offset. */ if (link_spd == ICE_PTP_LNK_SPD_1G || link_spd == ICE_PTP_LNK_SPD_10G || link_spd == ICE_PTP_LNK_SPD_25G || link_spd == ICE_PTP_LNK_SPD_25G_RS || link_spd == ICE_PTP_LNK_SPD_40G || link_spd == ICE_PTP_LNK_SPD_50G) { err = ice_read_64b_phy_reg_e822(hw, port, P_REG_PAR_PCS_TX_OFFSET_L, &val); if (err) return err; total_offset += val; } /* For Tx, we only need to use the second Vernier offset for * multi-lane link speeds with RS-FEC. The lanes will always be * aligned. */ if (link_spd == ICE_PTP_LNK_SPD_50G_RS || link_spd == ICE_PTP_LNK_SPD_100G_RS) { err = ice_read_64b_phy_reg_e822(hw, port, P_REG_PAR_TX_TIME_L, &val); if (err) return err; total_offset += val; } /* Now that the total offset has been calculated, program it to the * PHY and indicate that the Tx offset is ready. After this, * timestamps will be enabled. */ err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L, total_offset); if (err) return err; err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1); if (err) return err; return 0; } /** * ice_phy_cfg_fixed_tx_offset_e822 - Configure Tx offset for bypass mode * @hw: pointer to the HW struct * @port: the PHY port to configure * * Calculate and program the fixed Tx offset, and indicate that the offset is * ready. This can be used when operating in bypass mode. */ static int ice_phy_cfg_fixed_tx_offset_e822(struct ice_hw *hw, u8 port) { enum ice_ptp_link_spd link_spd; enum ice_ptp_fec_mode fec_mode; u64 total_offset; int err; err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); if (err) return err; total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd); /* Program the fixed Tx offset into the P_REG_TOTAL_TX_OFFSET_L * register, then indicate that the Tx offset is ready. After this, * timestamps will be enabled. * * Note that this skips including the more precise offsets generated * by the Vernier calibration. */ err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L, total_offset); if (err) return err; err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1); if (err) return err; return 0; } /** * ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx * @hw: pointer to the HW struct * @port: the PHY port to adjust for * @link_spd: the current link speed of the PHY * @fec_mode: the current FEC mode of the PHY * @pmd_adj: on return, the amount to adjust the Rx total offset by * * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY. * This varies by link speed and FEC mode. The value calculated accounts for * various delays caused when receiving a packet. */ static int ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port, enum ice_ptp_link_spd link_spd, enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj) { u64 cur_freq, clk_incval, tu_per_sec, mult, adj; u8 pmd_align; u32 val; int err; err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n", err); return err; } pmd_align = (u8)val; cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second */ tu_per_sec = cur_freq * clk_incval; /* The PMD alignment adjustment measurement depends on the link speed, * and whether FEC is enabled. For each link speed, the alignment * adjustment is calculated by dividing a value by the length of * a Time Unit in nanoseconds. * * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33) * 10G w/FEC: align * 0.1 * 32/33 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33) * 25G w/FEC: align * 0.4 * 32/33 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33) * 40G w/FEC: align * 0.1 * 32/33 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33) * 50G w/FEC: align * 0.8 * 32/33 * * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33. * * To allow for calculating this value using integer arithmetic, we * instead start with the number of TUs per second, (inverse of the * length of a Time Unit in nanoseconds), multiply by a value based * on the PMD alignment register, and then divide by the right value * calculated based on the table above. To avoid integer overflow this * division is broken up into a step of dividing by 125 first. */ if (link_spd == ICE_PTP_LNK_SPD_1G) { if (pmd_align == 4) mult = 10; else mult = (pmd_align + 6) % 10; } else if (link_spd == ICE_PTP_LNK_SPD_10G || link_spd == ICE_PTP_LNK_SPD_25G || link_spd == ICE_PTP_LNK_SPD_40G || link_spd == ICE_PTP_LNK_SPD_50G) { /* If Clause 74 FEC, always calculate PMD adjust */ if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74) mult = pmd_align; else mult = 0; } else if (link_spd == ICE_PTP_LNK_SPD_25G_RS || link_spd == ICE_PTP_LNK_SPD_50G_RS || link_spd == ICE_PTP_LNK_SPD_100G_RS) { if (pmd_align < 17) mult = pmd_align + 40; else mult = pmd_align; } else { ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n", link_spd); mult = 0; } /* In some cases, there's no need to adjust for the PMD alignment */ if (!mult) { *pmd_adj = 0; return 0; } /* Calculate the adjustment by multiplying TUs per second by the * appropriate multiplier and divisor. To avoid overflow, we first * divide by 125, and then handle remaining divisor based on the link * speed pmd_adj_divisor value. */ adj = div_u64(tu_per_sec, 125); adj *= mult; adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor); /* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx * cycle count is necessary. */ if (link_spd == ICE_PTP_LNK_SPD_25G_RS) { u64 cycle_adj; u8 rx_cycle; err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n", err); return err; } rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M; if (rx_cycle) { mult = (4 - rx_cycle) * 40; cycle_adj = div_u64(tu_per_sec, 125); cycle_adj *= mult; cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor); adj += cycle_adj; } } else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) { u64 cycle_adj; u8 rx_cycle; err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n", err); return err; } rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M; if (rx_cycle) { mult = rx_cycle * 40; cycle_adj = div_u64(tu_per_sec, 125); cycle_adj *= mult; cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor); adj += cycle_adj; } } /* Return the calculated adjustment */ *pmd_adj = adj; return 0; } /** * ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port * @hw: pointer to HW struct * @link_spd: The Link speed to calculate for * * Determine the fixed Rx latency for a given link speed. */ static u64 ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) { u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second */ tu_per_sec = cur_freq * clk_incval; /* Calculate number of TUs to add for the fixed Rx latency. Since the * latency measurement is in 1/100th of a nanosecond, we need to * multiply by tu_per_sec and then divide by 1e11. This calculation * overflows 64 bit integer arithmetic, so break it up into two * divisions by 1e4 first then by 1e7. */ fixed_offset = div_u64(tu_per_sec, 10000); fixed_offset *= e822_vernier[link_spd].rx_fixed_delay; fixed_offset = div_u64(fixed_offset, 10000000); return fixed_offset; } /** * ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset * @hw: pointer to the HW struct * @port: the PHY port to configure * * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to * adjust Rx timestamps by. This combines calculations from the Vernier offset * measurements taken in hardware with some data about known fixed delay as * well as adjusting for multi-lane alignment delay. * * This function must be called only after the offset registers are valid, * i.e. after the Vernier calibration wait has passed, to ensure that the PHY * has measured the offset. * * To avoid overflow, when calculating the offset based on the known static * latency values, we use measurements in 1/100th of a nanosecond, and divide * the TUs per second up front. This avoids overflow while allowing * calculation of the adjustment using integer arithmetic. */ static int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) { enum ice_ptp_link_spd link_spd; enum ice_ptp_fec_mode fec_mode; u64 total_offset, pmd, val; int err; err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); if (err) return err; total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd); /* Read the first Vernier offset from the PHY register and add it to * the total offset. */ err = ice_read_64b_phy_reg_e822(hw, port, P_REG_PAR_PCS_RX_OFFSET_L, &val); if (err) return err; total_offset += val; /* For Rx, all multi-lane link speeds include a second Vernier * calibration, because the lanes might not be aligned. */ if (link_spd == ICE_PTP_LNK_SPD_40G || link_spd == ICE_PTP_LNK_SPD_50G || link_spd == ICE_PTP_LNK_SPD_50G_RS || link_spd == ICE_PTP_LNK_SPD_100G_RS) { err = ice_read_64b_phy_reg_e822(hw, port, P_REG_PAR_RX_TIME_L, &val); if (err) return err; total_offset += val; } /* In addition, Rx must account for the PMD alignment */ err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd); if (err) return err; /* For RS-FEC, this adjustment adds delay, but for other modes, it * subtracts delay. */ if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC) total_offset += pmd; else total_offset -= pmd; /* Now that the total offset has been calculated, program it to the * PHY and indicate that the Rx offset is ready. After this, * timestamps will be enabled. */ err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L, total_offset); if (err) return err; err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1); if (err) return err; return 0; } /** * ice_phy_cfg_fixed_rx_offset_e822 - Configure fixed Rx offset for bypass mode * @hw: pointer to the HW struct * @port: the PHY port to configure * * Calculate and program the fixed Rx offset, and indicate that the offset is * ready. This can be used when operating in bypass mode. */ static int ice_phy_cfg_fixed_rx_offset_e822(struct ice_hw *hw, u8 port) { enum ice_ptp_link_spd link_spd; enum ice_ptp_fec_mode fec_mode; u64 total_offset; int err; err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); if (err) return err; total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd); /* Program the fixed Rx offset into the P_REG_TOTAL_RX_OFFSET_L * register, then indicate that the Rx offset is ready. After this, * timestamps will be enabled. * * Note that this skips including the more precise offsets generated * by Vernier calibration. */ err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L, total_offset); if (err) return err; err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1); if (err) return err; return 0; } /** * ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time * @hw: pointer to the HW struct * @port: the PHY port to read * @phy_time: on return, the 64bit PHY timer value * @phc_time: on return, the lower 64bits of PHC time * * Issue a READ_TIME timer command to simultaneously capture the PHY and PHC * timer values. */ static int ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time, u64 *phc_time) { u64 tx_time, rx_time; u32 zo, lo; u8 tmr_idx; int err; tmr_idx = ice_get_ptp_src_clock_index(hw); /* Prepare the PHC timer for a READ_TIME capture command */ ice_ptp_src_cmd(hw, READ_TIME); /* Prepare the PHY timer for a READ_TIME capture command */ err = ice_ptp_one_port_cmd(hw, port, READ_TIME); if (err) return err; /* Issue the sync to start the READ_TIME capture */ ice_ptp_exec_tmr_cmd(hw); /* Read the captured PHC time from the shadow time registers */ zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx)); lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx)); *phc_time = (u64)lo << 32 | zo; /* Read the captured PHY time from the PHY shadow registers */ err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time); if (err) return err; /* If the PHY Tx and Rx timers don't match, log a warning message. * Note that this should not happen in normal circumstances since the * driver always programs them together. */ if (tx_time != rx_time) dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n", port, (unsigned long long)tx_time, (unsigned long long)rx_time); *phy_time = tx_time; return 0; } /** * ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer * @hw: pointer to the HW struct * @port: the PHY port to synchronize * * Perform an adjustment to ensure that the PHY and PHC timers are in sync. * This is done by issuing a READ_TIME command which triggers a simultaneous * read of the PHY timer and PHC timer. Then we use the difference to * calculate an appropriate 2s complement addition to add to the PHY timer in * order to ensure it reads the same value as the primary PHC timer. */ static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port) { u64 phc_time, phy_time, difference; int err; if (!ice_ptp_lock(hw)) { ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n"); return -EBUSY; } err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time); if (err) goto err_unlock; /* Calculate the amount required to add to the port time in order for * it to match the PHC time. * * Note that the port adjustment is done using 2s complement * arithmetic. This is convenient since it means that we can simply * calculate the difference between the PHC time and the port time, * and it will be interpreted correctly. */ difference = phc_time - phy_time; err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference); if (err) goto err_unlock; err = ice_ptp_one_port_cmd(hw, port, ADJ_TIME); if (err) goto err_unlock; /* Do not perform any action on the main timer */ ice_ptp_src_cmd(hw, ICE_PTP_NOP); /* Issue the sync to activate the time adjustment */ ice_ptp_exec_tmr_cmd(hw); /* Re-capture the timer values to flush the command registers and * verify that the time was properly adjusted. */ err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time); if (err) goto err_unlock; dev_info(ice_hw_to_dev(hw), "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n", port, (unsigned long long)phy_time, (unsigned long long)phc_time); ice_ptp_unlock(hw); return 0; err_unlock: ice_ptp_unlock(hw); return err; } /** * ice_stop_phy_timer_e822 - Stop the PHY clock timer * @hw: pointer to the HW struct * @port: the PHY port to stop * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS * * Stop the clock of a PHY port. This must be done as part of the flow to * re-calibrate Tx and Rx timestamping offsets whenever the clock time is * initialized or when link speed changes. */ int ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset) { int err; u32 val; err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0); if (err) return err; err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0); if (err) return err; err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); if (err) return err; val &= ~P_REG_PS_START_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; val &= ~P_REG_PS_ENA_CLK_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; if (soft_reset) { val |= P_REG_PS_SFT_RESET_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; } ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port); return 0; } /** * ice_start_phy_timer_e822 - Start the PHY clock timer * @hw: pointer to the HW struct * @port: the PHY port to start * @bypass: if true, start the PHY in bypass mode * * Start the clock of a PHY port. This must be done as part of the flow to * re-calibrate Tx and Rx timestamping offsets whenever the clock time is * initialized or when link speed changes. * * Bypass mode enables timestamps immediately without waiting for Vernier * calibration to complete. Hardware will still continue taking Vernier * measurements on Tx or Rx of packets, but they will not be applied to * timestamps. Use ice_phy_exit_bypass_e822 to exit bypass mode once hardware * has completed offset calculation. */ int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port, bool bypass) { u32 lo, hi, val; u64 incval; u8 tmr_idx; int err; tmr_idx = ice_get_ptp_src_clock_index(hw); err = ice_stop_phy_timer_e822(hw, port, false); if (err) return err; ice_phy_cfg_lane_e822(hw, port); err = ice_phy_cfg_uix_e822(hw, port); if (err) return err; err = ice_phy_cfg_parpcs_e822(hw, port); if (err) return err; lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); incval = (u64)hi << 32 | lo; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval); if (err) return err; err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL); if (err) return err; /* Do not perform any action on the main timer */ ice_ptp_src_cmd(hw, ICE_PTP_NOP); ice_ptp_exec_tmr_cmd(hw); err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); if (err) return err; val |= P_REG_PS_SFT_RESET_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; val |= P_REG_PS_START_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; val &= ~P_REG_PS_SFT_RESET_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL); if (err) return err; ice_ptp_exec_tmr_cmd(hw); val |= P_REG_PS_ENA_CLK_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; val |= P_REG_PS_LOAD_OFFSET_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; ice_ptp_exec_tmr_cmd(hw); err = ice_sync_phy_timer_e822(hw, port); if (err) return err; if (bypass) { val |= P_REG_PS_BYPASS_MODE_M; /* Enter BYPASS mode, enabling timestamps immediately. */ err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; /* Program the fixed Tx offset */ err = ice_phy_cfg_fixed_tx_offset_e822(hw, port); if (err) return err; /* Program the fixed Rx offset */ err = ice_phy_cfg_fixed_rx_offset_e822(hw, port); if (err) return err; } ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port); return 0; } /** * ice_phy_exit_bypass_e822 - Exit bypass mode, after vernier calculations * @hw: pointer to the HW struct * @port: the PHY port to configure * * After hardware finishes vernier calculations for the Tx and Rx offset, this * function can be used to exit bypass mode by updating the total Tx and Rx * offsets, and then disabling bypass. This will enable hardware to include * the more precise offset calibrations, increasing precision of the generated * timestamps. * * This cannot be done until hardware has measured the offsets, which requires * waiting until at least one packet has been sent and received by the device. */ int ice_phy_exit_bypass_e822(struct ice_hw *hw, u8 port) { int err; u32 val; err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n", port, err); return err; } if (!(val & P_REG_TX_OV_STATUS_OV_M)) { ice_debug(hw, ICE_DBG_PTP, "Tx offset is not yet valid for port %u\n", port); return -EBUSY; } err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n", port, err); return err; } if (!(val & P_REG_TX_OV_STATUS_OV_M)) { ice_debug(hw, ICE_DBG_PTP, "Rx offset is not yet valid for port %u\n", port); return -EBUSY; } err = ice_phy_cfg_tx_offset_e822(hw, port); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to program total Tx offset for port %u, err %d\n", port, err); return err; } err = ice_phy_cfg_rx_offset_e822(hw, port); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to program total Rx offset for port %u, err %d\n", port, err); return err; } /* Exit bypass mode now that the offset has been updated */ err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read P_REG_PS for port %u, err %d\n", port, err); return err; } if (!(val & P_REG_PS_BYPASS_MODE_M)) ice_debug(hw, ICE_DBG_PTP, "Port %u not in bypass mode\n", port); val &= ~P_REG_PS_BYPASS_MODE_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to disable bypass for port %u, err %d\n", port, err); return err; } dev_info(ice_hw_to_dev(hw), "Exiting bypass mode on PHY port %u\n", port); return 0; } /* E810 functions * * The following functions operate on the E810 series devices which use * a separate external PHY. */ /** * ice_read_phy_reg_e810 - Read register from external PHY on E810 * @hw: pointer to the HW struct * @addr: the address to read from * @val: On return, the value read from the PHY * * Read a register from the external PHY on the E810 device. */ static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val) { struct ice_sbq_msg_input msg = {0}; int err; msg.msg_addr_low = lower_16_bits(addr); msg.msg_addr_high = upper_16_bits(addr); msg.opcode = ice_sbq_msg_rd; msg.dest_dev = rmn_0; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } *val = msg.data; return 0; } /** * ice_write_phy_reg_e810 - Write register on external PHY on E810 * @hw: pointer to the HW struct * @addr: the address to writem to * @val: the value to write to the PHY * * Write a value to a register of the external PHY on the E810 device. */ static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val) { struct ice_sbq_msg_input msg = {0}; int err; msg.msg_addr_low = lower_16_bits(addr); msg.msg_addr_high = upper_16_bits(addr); msg.opcode = ice_sbq_msg_wr; msg.dest_dev = rmn_0; msg.data = val; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } return 0; } /** * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW * @hw: pointer to the HW struct * @idx: the timestamp index to read * @hi: 8 bit timestamp high value * @lo: 32 bit timestamp low value * * Read a 8bit timestamp high value and 32 bit timestamp low value out of the * timestamp block of the external PHY on the E810 device using the low latency * timestamp read. */ static int ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo) { u32 val; u8 i; /* Write TS index to read to the PF register so the FW can read it */ val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS; wr32(hw, PF_SB_ATQBAL, val); /* Read the register repeatedly until the FW provides us the TS */ for (i = TS_LL_READ_RETRIES; i > 0; i--) { val = rd32(hw, PF_SB_ATQBAL); /* When the bit is cleared, the TS is ready in the register */ if (!(FIELD_GET(TS_LL_READ_TS, val))) { /* High 8 bit value of the TS is on the bits 16:23 */ *hi = FIELD_GET(TS_LL_READ_TS_HIGH, val); /* Read the low 32 bit value and set the TS valid bit */ *lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID; return 0; } udelay(10); } /* FW failed to provide the TS in time */ ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n"); return -EINVAL; } /** * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq * @hw: pointer to the HW struct * @lport: the lport to read from * @idx: the timestamp index to read * @hi: 8 bit timestamp high value * @lo: 32 bit timestamp low value * * Read a 8bit timestamp high value and 32 bit timestamp low value out of the * timestamp block of the external PHY on the E810 device using sideband queue. */ static int ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi, u32 *lo) { u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx); u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx); u32 lo_val, hi_val; int err; err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", err); return err; } err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", err); return err; } *lo = lo_val; *hi = (u8)hi_val; return 0; } /** * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY * @hw: pointer to the HW struct * @lport: the lport to read from * @idx: the timestamp index to read * @tstamp: on return, the 40bit timestamp value * * Read a 40bit timestamp value out of the timestamp block of the external PHY * on the E810 device. */ static int ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp) { u32 lo = 0; u8 hi = 0; int err; if (hw->dev_caps.ts_dev_info.ts_ll_read) err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo); else err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo); if (err) return err; /* For E810 devices, the timestamp is reported with the lower 32 bits * in the low register, and the upper 8 bits in the high register. */ *tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M); return 0; } /** * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY * @hw: pointer to the HW struct * @lport: the lport to read from * @idx: the timestamp index to reset * * Clear a timestamp, resetting its valid bit, from the timestamp block of the * external PHY on the E810 device. */ static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx) { u32 lo_addr, hi_addr; int err; lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx); hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx); err = ice_write_phy_reg_e810(hw, lo_addr, 0); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n", err); return err; } err = ice_write_phy_reg_e810(hw, hi_addr, 0); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n", err); return err; } return 0; } /** * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY * @hw: pointer to HW struct * * Enable the timesync PTP functionality for the external PHY connected to * this function. */ int ice_ptp_init_phy_e810(struct ice_hw *hw) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx), GLTSYN_ENA_TSYN_ENA_M); if (err) ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n", err); return err; } /** * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization * @hw: pointer to HW struct * * Perform E810-specific PTP hardware clock initialization steps. */ static int ice_ptp_init_phc_e810(struct ice_hw *hw) { /* Ensure synchronization delay is zero */ wr32(hw, GLTSYN_SYNC_DLAY, 0); /* Initialize the PHY */ return ice_ptp_init_phy_e810(hw); } /** * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time * @hw: Board private structure * @time: Time to initialize the PHY port clock to * * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the * initial clock time. The time will not actually be programmed until the * driver issues an INIT_TIME command. * * The time value is the upper 32 bits of the PHY timer, usually in units of * nominal nanoseconds. */ static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n", err); return err; } err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n", err); return err; } return 0; } /** * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment * @hw: pointer to HW struct * @adj: adjustment value to program * * Prepare the PHY port for an atomic adjustment by programming the PHY * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment * is completed by issuing an ADJ_TIME sync command. * * The adjustment value only contains the portion used for the upper 32bits of * the PHY timer, usually in units of nominal nanoseconds. Negative * adjustments are supported using 2s complement arithmetic. */ static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Adjustments are represented as signed 2's complement values in * nanoseconds. Sub-nanosecond adjustment is not supported. */ err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n", err); return err; } err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n", err); return err; } return 0; } /** * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change * @hw: pointer to HW struct * @incval: The new 40bit increment value to prepare * * Prepare the PHY port for a new increment value by programming the PHY * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is * completed by issuing an INIT_INCVAL command. */ static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval) { u32 high, low; u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; low = lower_32_bits(incval); high = upper_32_bits(incval); err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n", err); return err; } err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n", err); return err; } return 0; } /** * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command * @hw: pointer to HW struct * @cmd: Command to be sent to the port * * Prepare the external PHYs connected to this device for a timer sync * command. */ static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) { u32 cmd_val, val; int err; switch (cmd) { case INIT_TIME: cmd_val = GLTSYN_CMD_INIT_TIME; break; case INIT_INCVAL: cmd_val = GLTSYN_CMD_INIT_INCVAL; break; case ADJ_TIME: cmd_val = GLTSYN_CMD_ADJ_TIME; break; case READ_TIME: cmd_val = GLTSYN_CMD_READ_TIME; break; case ADJ_TIME_AT_TIME: cmd_val = GLTSYN_CMD_ADJ_INIT_TIME; break; case ICE_PTP_NOP: return 0; } /* Read, modify, write */ err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err); return err; } /* Modify necessary bits only and perform write */ val &= ~TS_CMD_MASK_E810; val |= cmd_val; err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err); return err; } return 0; } /* Device agnostic functions * * The following functions implement shared behavior common to both E822 and * E810 devices, possibly calling a device specific implementation where * necessary. */ /** * ice_ptp_lock - Acquire PTP global semaphore register lock * @hw: pointer to the HW struct * * Acquire the global PTP hardware semaphore lock. Returns true if the lock * was acquired, false otherwise. * * The PFTSYN_SEM register sets the busy bit on read, returning the previous * value. If software sees the busy bit cleared, this means that this function * acquired the lock (and the busy bit is now set). If software sees the busy * bit set, it means that another function acquired the lock. * * Software must clear the busy bit with a write to release the lock for other * functions when done. */ bool ice_ptp_lock(struct ice_hw *hw) { u32 hw_lock; int i; #define MAX_TRIES 5 for (i = 0; i < MAX_TRIES; i++) { hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); hw_lock = hw_lock & PFTSYN_SEM_BUSY_M; if (!hw_lock) break; /* Somebody is holding the lock */ usleep_range(10000, 20000); } return !hw_lock; } /** * ice_ptp_unlock - Release PTP global semaphore register lock * @hw: pointer to the HW struct * * Release the global PTP hardware semaphore lock. This is done by writing to * the PFTSYN_SEM register. */ void ice_ptp_unlock(struct ice_hw *hw) { wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0); } /** * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command * @hw: pointer to HW struct * @cmd: the command to issue * * Prepare the source timer and PHY timers and then trigger the requested * command. This causes the shadow registers previously written in preparation * for the command to be synchronously applied to both the source and PHY * timers. */ static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) { int err; /* First, prepare the source timer */ ice_ptp_src_cmd(hw, cmd); /* Next, prepare the ports */ if (ice_is_e810(hw)) err = ice_ptp_port_cmd_e810(hw, cmd); else err = ice_ptp_port_cmd_e822(hw, cmd); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n", cmd, err); return err; } /* Write the sync command register to drive both source and PHY timer * commands synchronously */ ice_ptp_exec_tmr_cmd(hw); return 0; } /** * ice_ptp_init_time - Initialize device time to provided value * @hw: pointer to HW struct * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H) * * Initialize the device to the specified time provided. This requires a three * step process: * * 1) write the new init time to the source timer shadow registers * 2) write the new init time to the PHY timer shadow registers * 3) issue an init_time timer command to synchronously switch both the source * and port timers to the new init time value at the next clock cycle. */ int ice_ptp_init_time(struct ice_hw *hw, u64 time) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Source timers */ wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time)); wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time)); wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0); /* PHY timers */ /* Fill Rx and Tx ports and send msg to PHY */ if (ice_is_e810(hw)) err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF); else err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF); if (err) return err; return ice_ptp_tmr_cmd(hw, INIT_TIME); } /** * ice_ptp_write_incval - Program PHC with new increment value * @hw: pointer to HW struct * @incval: Source timer increment value per clock cycle * * Program the PHC with a new increment value. This requires a three-step * process: * * 1) Write the increment value to the source timer shadow registers * 2) Write the increment value to the PHY timer shadow registers * 3) Issue an INIT_INCVAL timer command to synchronously switch both the * source and port timers to the new increment value at the next clock * cycle. */ int ice_ptp_write_incval(struct ice_hw *hw, u64 incval) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Shadow Adjust */ wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval)); wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval)); if (ice_is_e810(hw)) err = ice_ptp_prep_phy_incval_e810(hw, incval); else err = ice_ptp_prep_phy_incval_e822(hw, incval); if (err) return err; return ice_ptp_tmr_cmd(hw, INIT_INCVAL); } /** * ice_ptp_write_incval_locked - Program new incval while holding semaphore * @hw: pointer to HW struct * @incval: Source timer increment value per clock cycle * * Program a new PHC incval while holding the PTP semaphore. */ int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval) { int err; if (!ice_ptp_lock(hw)) return -EBUSY; err = ice_ptp_write_incval(hw, incval); ice_ptp_unlock(hw); return err; } /** * ice_ptp_adj_clock - Adjust PHC clock time atomically * @hw: pointer to HW struct * @adj: Adjustment in nanoseconds * * Perform an atomic adjustment of the PHC time by the specified number of * nanoseconds. This requires a three-step process: * * 1) Write the adjustment to the source timer shadow registers * 2) Write the adjustment to the PHY timer shadow registers * 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to * both the source and port timers at the next clock cycle. */ int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Write the desired clock adjustment into the GLTSYN_SHADJ register. * For an ADJ_TIME command, this set of registers represents the value * to add to the clock time. It supports subtraction by interpreting * the value as a 2's complement integer. */ wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0); wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj); if (ice_is_e810(hw)) err = ice_ptp_prep_phy_adj_e810(hw, adj); else err = ice_ptp_prep_phy_adj_e822(hw, adj); if (err) return err; return ice_ptp_tmr_cmd(hw, ADJ_TIME); } /** * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block * @hw: pointer to the HW struct * @block: the block to read from * @idx: the timestamp index to read * @tstamp: on return, the 40bit timestamp value * * Read a 40bit timestamp value out of the timestamp block. For E822 devices, * the block is the quad to read from. For E810 devices, the block is the * logical port to read from. */ int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp) { if (ice_is_e810(hw)) return ice_read_phy_tstamp_e810(hw, block, idx, tstamp); else return ice_read_phy_tstamp_e822(hw, block, idx, tstamp); } /** * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block * @hw: pointer to the HW struct * @block: the block to read from * @idx: the timestamp index to reset * * Clear a timestamp, resetting its valid bit, from the timestamp block. For * E822 devices, the block is the quad to clear from. For E810 devices, the * block is the logical port to clear from. */ int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx) { if (ice_is_e810(hw)) return ice_clear_phy_tstamp_e810(hw, block, idx); else return ice_clear_phy_tstamp_e822(hw, block, idx); } /* E810T SMA functions * * The following functions operate specifically on E810T hardware and are used * to access the extended GPIOs available. */ /** * ice_get_pca9575_handle * @hw: pointer to the hw struct * @pca9575_handle: GPIO controller's handle * * Find and return the GPIO controller's handle in the netlist. * When found - the value will be cached in the hw structure and following calls * will return cached value */ static int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle) { struct ice_aqc_get_link_topo *cmd; struct ice_aq_desc desc; int status; u8 idx; /* If handle was read previously return cached value */ if (hw->io_expander_handle) { *pca9575_handle = hw->io_expander_handle; return 0; } /* If handle was not detected read it from the netlist */ cmd = &desc.params.get_link_topo; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); /* Set node type to GPIO controller */ cmd->addr.topo_params.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_TYPE_M & ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL); #define SW_PCA9575_SFP_TOPO_IDX 2 #define SW_PCA9575_QSFP_TOPO_IDX 1 /* Check if the SW IO expander controlling SMA exists in the netlist. */ if (hw->device_id == ICE_DEV_ID_E810C_SFP) idx = SW_PCA9575_SFP_TOPO_IDX; else if (hw->device_id == ICE_DEV_ID_E810C_QSFP) idx = SW_PCA9575_QSFP_TOPO_IDX; else return -EOPNOTSUPP; cmd->addr.topo_params.index = idx; status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); if (status) return -EOPNOTSUPP; /* Verify if we found the right IO expander type */ if (desc.params.get_link_topo.node_part_num != ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575) return -EOPNOTSUPP; /* If present save the handle and return it */ hw->io_expander_handle = le16_to_cpu(desc.params.get_link_topo.addr.handle); *pca9575_handle = hw->io_expander_handle; return 0; } /** * ice_read_sma_ctrl_e810t * @hw: pointer to the hw struct * @data: pointer to data to be read from the GPIO controller * * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the * PCA9575 expander, so only bits 3-7 in data are valid. */ int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data) { int status; u16 handle; u8 i; status = ice_get_pca9575_handle(hw, &handle); if (status) return status; *data = 0; for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) { bool pin; status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, &pin, NULL); if (status) break; *data |= (u8)(!pin) << i; } return status; } /** * ice_write_sma_ctrl_e810t * @hw: pointer to the hw struct * @data: data to be written to the GPIO controller * * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1 * of the PCA9575 expander, so only bits 3-7 in data are valid. */ int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data) { int status; u16 handle; u8 i; status = ice_get_pca9575_handle(hw, &handle); if (status) return status; for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) { bool pin; pin = !(data & (1 << i)); status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, pin, NULL); if (status) break; } return status; } /** * ice_read_pca9575_reg_e810t * @hw: pointer to the hw struct * @offset: GPIO controller register offset * @data: pointer to data to be read from the GPIO controller * * Read the register from the GPIO controller */ int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data) { struct ice_aqc_link_topo_addr link_topo; __le16 addr; u16 handle; int err; memset(&link_topo, 0, sizeof(link_topo)); err = ice_get_pca9575_handle(hw, &handle); if (err) return err; link_topo.handle = cpu_to_le16(handle); link_topo.topo_params.node_type_ctx = FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED); addr = cpu_to_le16((u16)offset); return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL); } /** * ice_is_pca9575_present * @hw: pointer to the hw struct * * Check if the SW IO expander is present in the netlist */ bool ice_is_pca9575_present(struct ice_hw *hw) { u16 handle = 0; int status; if (!ice_is_e810t(hw)) return false; status = ice_get_pca9575_handle(hw, &handle); return !status && handle; } /** * ice_ptp_init_phc - Initialize PTP hardware clock * @hw: pointer to the HW struct * * Perform the steps required to initialize the PTP hardware clock. */ int ice_ptp_init_phc(struct ice_hw *hw) { u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Enable source clocks */ wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M); /* Clear event err indications for auxiliary pins */ (void)rd32(hw, GLTSYN_STAT(src_idx)); if (ice_is_e810(hw)) return ice_ptp_init_phc_e810(hw); else return ice_ptp_init_phc_e822(hw); } |