Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 | // SPDX-License-Identifier: GPL-2.0-only /* * ppc64 code to implement the kexec_file_load syscall * * Copyright (C) 2004 Adam Litke (agl@us.ibm.com) * Copyright (C) 2004 IBM Corp. * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation * Copyright (C) 2005 R Sharada (sharada@in.ibm.com) * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com) * Copyright (C) 2020 IBM Corporation * * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c. * Heavily modified for the kernel by * Hari Bathini, IBM Corporation. */ #include <linux/kexec.h> #include <linux/of_fdt.h> #include <linux/libfdt.h> #include <linux/of_device.h> #include <linux/memblock.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <asm/setup.h> #include <asm/drmem.h> #include <asm/firmware.h> #include <asm/kexec_ranges.h> #include <asm/crashdump-ppc64.h> struct umem_info { u64 *buf; /* data buffer for usable-memory property */ u32 size; /* size allocated for the data buffer */ u32 max_entries; /* maximum no. of entries */ u32 idx; /* index of current entry */ /* usable memory ranges to look up */ unsigned int nr_ranges; const struct crash_mem_range *ranges; }; const struct kexec_file_ops * const kexec_file_loaders[] = { &kexec_elf64_ops, NULL }; /** * get_exclude_memory_ranges - Get exclude memory ranges. This list includes * regions like opal/rtas, tce-table, initrd, * kernel, htab which should be avoided while * setting up kexec load segments. * @mem_ranges: Range list to add the memory ranges to. * * Returns 0 on success, negative errno on error. */ static int get_exclude_memory_ranges(struct crash_mem **mem_ranges) { int ret; ret = add_tce_mem_ranges(mem_ranges); if (ret) goto out; ret = add_initrd_mem_range(mem_ranges); if (ret) goto out; ret = add_htab_mem_range(mem_ranges); if (ret) goto out; ret = add_kernel_mem_range(mem_ranges); if (ret) goto out; ret = add_rtas_mem_range(mem_ranges); if (ret) goto out; ret = add_opal_mem_range(mem_ranges); if (ret) goto out; ret = add_reserved_mem_ranges(mem_ranges); if (ret) goto out; /* exclude memory ranges should be sorted for easy lookup */ sort_memory_ranges(*mem_ranges, true); out: if (ret) pr_err("Failed to setup exclude memory ranges\n"); return ret; } /** * get_usable_memory_ranges - Get usable memory ranges. This list includes * regions like crashkernel, opal/rtas & tce-table, * that kdump kernel could use. * @mem_ranges: Range list to add the memory ranges to. * * Returns 0 on success, negative errno on error. */ static int get_usable_memory_ranges(struct crash_mem **mem_ranges) { int ret; /* * Early boot failure observed on guests when low memory (first memory * block?) is not added to usable memory. So, add [0, crashk_res.end] * instead of [crashk_res.start, crashk_res.end] to workaround it. * Also, crashed kernel's memory must be added to reserve map to * avoid kdump kernel from using it. */ ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1); if (ret) goto out; ret = add_rtas_mem_range(mem_ranges); if (ret) goto out; ret = add_opal_mem_range(mem_ranges); if (ret) goto out; ret = add_tce_mem_ranges(mem_ranges); out: if (ret) pr_err("Failed to setup usable memory ranges\n"); return ret; } /** * get_crash_memory_ranges - Get crash memory ranges. This list includes * first/crashing kernel's memory regions that * would be exported via an elfcore. * @mem_ranges: Range list to add the memory ranges to. * * Returns 0 on success, negative errno on error. */ static int get_crash_memory_ranges(struct crash_mem **mem_ranges) { phys_addr_t base, end; struct crash_mem *tmem; u64 i; int ret; for_each_mem_range(i, &base, &end) { u64 size = end - base; /* Skip backup memory region, which needs a separate entry */ if (base == BACKUP_SRC_START) { if (size > BACKUP_SRC_SIZE) { base = BACKUP_SRC_END + 1; size -= BACKUP_SRC_SIZE; } else continue; } ret = add_mem_range(mem_ranges, base, size); if (ret) goto out; /* Try merging adjacent ranges before reallocation attempt */ if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges) sort_memory_ranges(*mem_ranges, true); } /* Reallocate memory ranges if there is no space to split ranges */ tmem = *mem_ranges; if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) { tmem = realloc_mem_ranges(mem_ranges); if (!tmem) goto out; } /* Exclude crashkernel region */ ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end); if (ret) goto out; /* * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL * regions are exported to save their context at the time of * crash, they should actually be backed up just like the * first 64K bytes of memory. */ ret = add_rtas_mem_range(mem_ranges); if (ret) goto out; ret = add_opal_mem_range(mem_ranges); if (ret) goto out; /* create a separate program header for the backup region */ ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE); if (ret) goto out; sort_memory_ranges(*mem_ranges, false); out: if (ret) pr_err("Failed to setup crash memory ranges\n"); return ret; } /** * get_reserved_memory_ranges - Get reserve memory ranges. This list includes * memory regions that should be added to the * memory reserve map to ensure the region is * protected from any mischief. * @mem_ranges: Range list to add the memory ranges to. * * Returns 0 on success, negative errno on error. */ static int get_reserved_memory_ranges(struct crash_mem **mem_ranges) { int ret; ret = add_rtas_mem_range(mem_ranges); if (ret) goto out; ret = add_tce_mem_ranges(mem_ranges); if (ret) goto out; ret = add_reserved_mem_ranges(mem_ranges); out: if (ret) pr_err("Failed to setup reserved memory ranges\n"); return ret; } /** * __locate_mem_hole_top_down - Looks top down for a large enough memory hole * in the memory regions between buf_min & buf_max * for the buffer. If found, sets kbuf->mem. * @kbuf: Buffer contents and memory parameters. * @buf_min: Minimum address for the buffer. * @buf_max: Maximum address for the buffer. * * Returns 0 on success, negative errno on error. */ static int __locate_mem_hole_top_down(struct kexec_buf *kbuf, u64 buf_min, u64 buf_max) { int ret = -EADDRNOTAVAIL; phys_addr_t start, end; u64 i; for_each_mem_range_rev(i, &start, &end) { /* * memblock uses [start, end) convention while it is * [start, end] here. Fix the off-by-one to have the * same convention. */ end -= 1; if (start > buf_max) continue; /* Memory hole not found */ if (end < buf_min) break; /* Adjust memory region based on the given range */ if (start < buf_min) start = buf_min; if (end > buf_max) end = buf_max; start = ALIGN(start, kbuf->buf_align); if (start < end && (end - start + 1) >= kbuf->memsz) { /* Suitable memory range found. Set kbuf->mem */ kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1, kbuf->buf_align); ret = 0; break; } } return ret; } /** * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a * suitable buffer with top down approach. * @kbuf: Buffer contents and memory parameters. * @buf_min: Minimum address for the buffer. * @buf_max: Maximum address for the buffer. * @emem: Exclude memory ranges. * * Returns 0 on success, negative errno on error. */ static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf, u64 buf_min, u64 buf_max, const struct crash_mem *emem) { int i, ret = 0, err = -EADDRNOTAVAIL; u64 start, end, tmin, tmax; tmax = buf_max; for (i = (emem->nr_ranges - 1); i >= 0; i--) { start = emem->ranges[i].start; end = emem->ranges[i].end; if (start > tmax) continue; if (end < tmax) { tmin = (end < buf_min ? buf_min : end + 1); ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); if (!ret) return 0; } tmax = start - 1; if (tmax < buf_min) { ret = err; break; } ret = 0; } if (!ret) { tmin = buf_min; ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); } return ret; } /** * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole * in the memory regions between buf_min & buf_max * for the buffer. If found, sets kbuf->mem. * @kbuf: Buffer contents and memory parameters. * @buf_min: Minimum address for the buffer. * @buf_max: Maximum address for the buffer. * * Returns 0 on success, negative errno on error. */ static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf, u64 buf_min, u64 buf_max) { int ret = -EADDRNOTAVAIL; phys_addr_t start, end; u64 i; for_each_mem_range(i, &start, &end) { /* * memblock uses [start, end) convention while it is * [start, end] here. Fix the off-by-one to have the * same convention. */ end -= 1; if (end < buf_min) continue; /* Memory hole not found */ if (start > buf_max) break; /* Adjust memory region based on the given range */ if (start < buf_min) start = buf_min; if (end > buf_max) end = buf_max; start = ALIGN(start, kbuf->buf_align); if (start < end && (end - start + 1) >= kbuf->memsz) { /* Suitable memory range found. Set kbuf->mem */ kbuf->mem = start; ret = 0; break; } } return ret; } /** * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a * suitable buffer with bottom up approach. * @kbuf: Buffer contents and memory parameters. * @buf_min: Minimum address for the buffer. * @buf_max: Maximum address for the buffer. * @emem: Exclude memory ranges. * * Returns 0 on success, negative errno on error. */ static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf, u64 buf_min, u64 buf_max, const struct crash_mem *emem) { int i, ret = 0, err = -EADDRNOTAVAIL; u64 start, end, tmin, tmax; tmin = buf_min; for (i = 0; i < emem->nr_ranges; i++) { start = emem->ranges[i].start; end = emem->ranges[i].end; if (end < tmin) continue; if (start > tmin) { tmax = (start > buf_max ? buf_max : start - 1); ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); if (!ret) return 0; } tmin = end + 1; if (tmin > buf_max) { ret = err; break; } ret = 0; } if (!ret) { tmax = buf_max; ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); } return ret; } /** * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries * @um_info: Usable memory buffer and ranges info. * @cnt: No. of entries to accommodate. * * Frees up the old buffer if memory reallocation fails. * * Returns buffer on success, NULL on error. */ static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt) { u32 new_size; u64 *tbuf; if ((um_info->idx + cnt) <= um_info->max_entries) return um_info->buf; new_size = um_info->size + MEM_RANGE_CHUNK_SZ; tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL); if (tbuf) { um_info->buf = tbuf; um_info->size = new_size; um_info->max_entries = (um_info->size / sizeof(u64)); } return tbuf; } /** * add_usable_mem - Add the usable memory ranges within the given memory range * to the buffer * @um_info: Usable memory buffer and ranges info. * @base: Base address of memory range to look for. * @end: End address of memory range to look for. * * Returns 0 on success, negative errno on error. */ static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end) { u64 loc_base, loc_end; bool add; int i; for (i = 0; i < um_info->nr_ranges; i++) { add = false; loc_base = um_info->ranges[i].start; loc_end = um_info->ranges[i].end; if (loc_base >= base && loc_end <= end) add = true; else if (base < loc_end && end > loc_base) { if (loc_base < base) loc_base = base; if (loc_end > end) loc_end = end; add = true; } if (add) { if (!check_realloc_usable_mem(um_info, 2)) return -ENOMEM; um_info->buf[um_info->idx++] = cpu_to_be64(loc_base); um_info->buf[um_info->idx++] = cpu_to_be64(loc_end - loc_base + 1); } } return 0; } /** * kdump_setup_usable_lmb - This is a callback function that gets called by * walk_drmem_lmbs for every LMB to set its * usable memory ranges. * @lmb: LMB info. * @usm: linux,drconf-usable-memory property value. * @data: Pointer to usable memory buffer and ranges info. * * Returns 0 on success, negative errno on error. */ static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm, void *data) { struct umem_info *um_info; int tmp_idx, ret; u64 base, end; /* * kdump load isn't supported on kernels already booted with * linux,drconf-usable-memory property. */ if (*usm) { pr_err("linux,drconf-usable-memory property already exists!"); return -EINVAL; } um_info = data; tmp_idx = um_info->idx; if (!check_realloc_usable_mem(um_info, 1)) return -ENOMEM; um_info->idx++; base = lmb->base_addr; end = base + drmem_lmb_size() - 1; ret = add_usable_mem(um_info, base, end); if (!ret) { /* * Update the no. of ranges added. Two entries (base & size) * for every range added. */ um_info->buf[tmp_idx] = cpu_to_be64((um_info->idx - tmp_idx - 1) / 2); } return ret; } #define NODE_PATH_LEN 256 /** * add_usable_mem_property - Add usable memory property for the given * memory node. * @fdt: Flattened device tree for the kdump kernel. * @dn: Memory node. * @um_info: Usable memory buffer and ranges info. * * Returns 0 on success, negative errno on error. */ static int add_usable_mem_property(void *fdt, struct device_node *dn, struct umem_info *um_info) { int n_mem_addr_cells, n_mem_size_cells, node; char path[NODE_PATH_LEN]; int i, len, ranges, ret; const __be32 *prop; u64 base, end; of_node_get(dn); if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) { pr_err("Buffer (%d) too small for memory node: %pOF\n", NODE_PATH_LEN, dn); return -EOVERFLOW; } pr_debug("Memory node path: %s\n", path); /* Now that we know the path, find its offset in kdump kernel's fdt */ node = fdt_path_offset(fdt, path); if (node < 0) { pr_err("Malformed device tree: error reading %s\n", path); ret = -EINVAL; goto out; } /* Get the address & size cells */ n_mem_addr_cells = of_n_addr_cells(dn); n_mem_size_cells = of_n_size_cells(dn); pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells, n_mem_size_cells); um_info->idx = 0; if (!check_realloc_usable_mem(um_info, 2)) { ret = -ENOMEM; goto out; } prop = of_get_property(dn, "reg", &len); if (!prop || len <= 0) { ret = 0; goto out; } /* * "reg" property represents sequence of (addr,size) tuples * each representing a memory range. */ ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); for (i = 0; i < ranges; i++) { base = of_read_number(prop, n_mem_addr_cells); prop += n_mem_addr_cells; end = base + of_read_number(prop, n_mem_size_cells) - 1; prop += n_mem_size_cells; ret = add_usable_mem(um_info, base, end); if (ret) goto out; } /* * No kdump kernel usable memory found in this memory node. * Write (0,0) tuple in linux,usable-memory property for * this region to be ignored. */ if (um_info->idx == 0) { um_info->buf[0] = 0; um_info->buf[1] = 0; um_info->idx = 2; } ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf, (um_info->idx * sizeof(u64))); out: of_node_put(dn); return ret; } /** * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory * and linux,drconf-usable-memory DT properties as * appropriate to restrict its memory usage. * @fdt: Flattened device tree for the kdump kernel. * @usable_mem: Usable memory ranges for kdump kernel. * * Returns 0 on success, negative errno on error. */ static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem) { struct umem_info um_info; struct device_node *dn; int node, ret = 0; if (!usable_mem) { pr_err("Usable memory ranges for kdump kernel not found\n"); return -ENOENT; } node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); if (node == -FDT_ERR_NOTFOUND) pr_debug("No dynamic reconfiguration memory found\n"); else if (node < 0) { pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n"); return -EINVAL; } um_info.buf = NULL; um_info.size = 0; um_info.max_entries = 0; um_info.idx = 0; /* Memory ranges to look up */ um_info.ranges = &(usable_mem->ranges[0]); um_info.nr_ranges = usable_mem->nr_ranges; dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); if (dn) { ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb); of_node_put(dn); if (ret) { pr_err("Could not setup linux,drconf-usable-memory property for kdump\n"); goto out; } ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory", um_info.buf, (um_info.idx * sizeof(u64))); if (ret) { pr_err("Failed to update fdt with linux,drconf-usable-memory property"); goto out; } } /* * Walk through each memory node and set linux,usable-memory property * for the corresponding node in kdump kernel's fdt. */ for_each_node_by_type(dn, "memory") { ret = add_usable_mem_property(fdt, dn, &um_info); if (ret) { pr_err("Failed to set linux,usable-memory property for %s node", dn->full_name); of_node_put(dn); goto out; } } out: kfree(um_info.buf); return ret; } /** * load_backup_segment - Locate a memory hole to place the backup region. * @image: Kexec image. * @kbuf: Buffer contents and memory parameters. * * Returns 0 on success, negative errno on error. */ static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf) { void *buf; int ret; /* * Setup a source buffer for backup segment. * * A source buffer has no meaning for backup region as data will * be copied from backup source, after crash, in the purgatory. * But as load segment code doesn't recognize such segments, * setup a dummy source buffer to keep it happy for now. */ buf = vzalloc(BACKUP_SRC_SIZE); if (!buf) return -ENOMEM; kbuf->buffer = buf; kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE; kbuf->top_down = false; ret = kexec_add_buffer(kbuf); if (ret) { vfree(buf); return ret; } image->arch.backup_buf = buf; image->arch.backup_start = kbuf->mem; return 0; } /** * update_backup_region_phdr - Update backup region's offset for the core to * export the region appropriately. * @image: Kexec image. * @ehdr: ELF core header. * * Assumes an exclusive program header is setup for the backup region * in the ELF headers * * Returns nothing. */ static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr) { Elf64_Phdr *phdr; unsigned int i; phdr = (Elf64_Phdr *)(ehdr + 1); for (i = 0; i < ehdr->e_phnum; i++) { if (phdr->p_paddr == BACKUP_SRC_START) { phdr->p_offset = image->arch.backup_start; pr_debug("Backup region offset updated to 0x%lx\n", image->arch.backup_start); return; } } } /** * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr * segment needed to load kdump kernel. * @image: Kexec image. * @kbuf: Buffer contents and memory parameters. * * Returns 0 on success, negative errno on error. */ static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf) { struct crash_mem *cmem = NULL; unsigned long headers_sz; void *headers = NULL; int ret; ret = get_crash_memory_ranges(&cmem); if (ret) goto out; /* Setup elfcorehdr segment */ ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz); if (ret) { pr_err("Failed to prepare elf headers for the core\n"); goto out; } /* Fix the offset for backup region in the ELF header */ update_backup_region_phdr(image, headers); kbuf->buffer = headers; kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; kbuf->bufsz = kbuf->memsz = headers_sz; kbuf->top_down = false; ret = kexec_add_buffer(kbuf); if (ret) { vfree(headers); goto out; } image->elf_load_addr = kbuf->mem; image->elf_headers_sz = headers_sz; image->elf_headers = headers; out: kfree(cmem); return ret; } /** * load_crashdump_segments_ppc64 - Initialize the additional segements needed * to load kdump kernel. * @image: Kexec image. * @kbuf: Buffer contents and memory parameters. * * Returns 0 on success, negative errno on error. */ int load_crashdump_segments_ppc64(struct kimage *image, struct kexec_buf *kbuf) { int ret; /* Load backup segment - first 64K bytes of the crashing kernel */ ret = load_backup_segment(image, kbuf); if (ret) { pr_err("Failed to load backup segment\n"); return ret; } pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem); /* Load elfcorehdr segment - to export crashing kernel's vmcore */ ret = load_elfcorehdr_segment(image, kbuf); if (ret) { pr_err("Failed to load elfcorehdr segment\n"); return ret; } pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n", image->elf_load_addr, kbuf->bufsz, kbuf->memsz); return 0; } /** * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global * variables and call setup_purgatory() to initialize * common global variable. * @image: kexec image. * @slave_code: Slave code for the purgatory. * @fdt: Flattened device tree for the next kernel. * @kernel_load_addr: Address where the kernel is loaded. * @fdt_load_addr: Address where the flattened device tree is loaded. * * Returns 0 on success, negative errno on error. */ int setup_purgatory_ppc64(struct kimage *image, const void *slave_code, const void *fdt, unsigned long kernel_load_addr, unsigned long fdt_load_addr) { struct device_node *dn = NULL; int ret; ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr, fdt_load_addr); if (ret) goto out; if (image->type == KEXEC_TYPE_CRASH) { u32 my_run_at_load = 1; /* * Tell relocatable kernel to run at load address * via the word meant for that at 0x5c. */ ret = kexec_purgatory_get_set_symbol(image, "run_at_load", &my_run_at_load, sizeof(my_run_at_load), false); if (ret) goto out; } /* Tell purgatory where to look for backup region */ ret = kexec_purgatory_get_set_symbol(image, "backup_start", &image->arch.backup_start, sizeof(image->arch.backup_start), false); if (ret) goto out; /* Setup OPAL base & entry values */ dn = of_find_node_by_path("/ibm,opal"); if (dn) { u64 val; of_property_read_u64(dn, "opal-base-address", &val); ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val, sizeof(val), false); if (ret) goto out; of_property_read_u64(dn, "opal-entry-address", &val); ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val, sizeof(val), false); } out: if (ret) pr_err("Failed to setup purgatory symbols"); of_node_put(dn); return ret; } /** * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to * setup FDT for kexec/kdump kernel. * @image: kexec image being loaded. * * Returns the estimated extra size needed for kexec/kdump kernel FDT. */ unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image) { u64 usm_entries; if (image->type != KEXEC_TYPE_CRASH) return 0; /* * For kdump kernel, account for linux,usable-memory and * linux,drconf-usable-memory properties. Get an approximate on the * number of usable memory entries and use for FDT size estimation. */ usm_entries = ((memblock_end_of_DRAM() / drmem_lmb_size()) + (2 * (resource_size(&crashk_res) / drmem_lmb_size()))); return (unsigned int)(usm_entries * sizeof(u64)); } /** * add_node_props - Reads node properties from device node structure and add * them to fdt. * @fdt: Flattened device tree of the kernel * @node_offset: offset of the node to add a property at * @dn: device node pointer * * Returns 0 on success, negative errno on error. */ static int add_node_props(void *fdt, int node_offset, const struct device_node *dn) { int ret = 0; struct property *pp; if (!dn) return -EINVAL; for_each_property_of_node(dn, pp) { ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length); if (ret < 0) { pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret)); return ret; } } return ret; } /** * update_cpus_node - Update cpus node of flattened device tree using of_root * device node. * @fdt: Flattened device tree of the kernel. * * Returns 0 on success, negative errno on error. */ static int update_cpus_node(void *fdt) { struct device_node *cpus_node, *dn; int cpus_offset, cpus_subnode_offset, ret = 0; cpus_offset = fdt_path_offset(fdt, "/cpus"); if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) { pr_err("Malformed device tree: error reading /cpus node: %s\n", fdt_strerror(cpus_offset)); return cpus_offset; } if (cpus_offset > 0) { ret = fdt_del_node(fdt, cpus_offset); if (ret < 0) { pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret)); return -EINVAL; } } /* Add cpus node to fdt */ cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus"); if (cpus_offset < 0) { pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset)); return -EINVAL; } /* Add cpus node properties */ cpus_node = of_find_node_by_path("/cpus"); ret = add_node_props(fdt, cpus_offset, cpus_node); of_node_put(cpus_node); if (ret < 0) return ret; /* Loop through all subnodes of cpus and add them to fdt */ for_each_node_by_type(dn, "cpu") { cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name); if (cpus_subnode_offset < 0) { pr_err("Unable to add %s subnode: %s\n", dn->full_name, fdt_strerror(cpus_subnode_offset)); ret = cpus_subnode_offset; goto out; } ret = add_node_props(fdt, cpus_subnode_offset, dn); if (ret < 0) goto out; } out: of_node_put(dn); return ret; } static int copy_property(void *fdt, int node_offset, const struct device_node *dn, const char *propname) { const void *prop, *fdtprop; int len = 0, fdtlen = 0; prop = of_get_property(dn, propname, &len); fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen); if (fdtprop && !prop) return fdt_delprop(fdt, node_offset, propname); else if (prop) return fdt_setprop(fdt, node_offset, propname, prop, len); else return -FDT_ERR_NOTFOUND; } static int update_pci_dma_nodes(void *fdt, const char *dmapropname) { struct device_node *dn; int pci_offset, root_offset, ret = 0; if (!firmware_has_feature(FW_FEATURE_LPAR)) return 0; root_offset = fdt_path_offset(fdt, "/"); for_each_node_with_property(dn, dmapropname) { pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn)); if (pci_offset < 0) continue; ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window"); if (ret < 0) break; ret = copy_property(fdt, pci_offset, dn, dmapropname); if (ret < 0) break; } return ret; } /** * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel * being loaded. * @image: kexec image being loaded. * @fdt: Flattened device tree for the next kernel. * @initrd_load_addr: Address where the next initrd will be loaded. * @initrd_len: Size of the next initrd, or 0 if there will be none. * @cmdline: Command line for the next kernel, or NULL if there will * be none. * * Returns 0 on success, negative errno on error. */ int setup_new_fdt_ppc64(const struct kimage *image, void *fdt, unsigned long initrd_load_addr, unsigned long initrd_len, const char *cmdline) { struct crash_mem *umem = NULL, *rmem = NULL; int i, nr_ranges, ret; /* * Restrict memory usage for kdump kernel by setting up * usable memory ranges and memory reserve map. */ if (image->type == KEXEC_TYPE_CRASH) { ret = get_usable_memory_ranges(&umem); if (ret) goto out; ret = update_usable_mem_fdt(fdt, umem); if (ret) { pr_err("Error setting up usable-memory property for kdump kernel\n"); goto out; } /* * Ensure we don't touch crashed kernel's memory except the * first 64K of RAM, which will be backed up. */ ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1, crashk_res.start - BACKUP_SRC_SIZE); if (ret) { pr_err("Error reserving crash memory: %s\n", fdt_strerror(ret)); goto out; } /* Ensure backup region is not used by kdump/capture kernel */ ret = fdt_add_mem_rsv(fdt, image->arch.backup_start, BACKUP_SRC_SIZE); if (ret) { pr_err("Error reserving memory for backup: %s\n", fdt_strerror(ret)); goto out; } } /* Update cpus nodes information to account hotplug CPUs. */ ret = update_cpus_node(fdt); if (ret < 0) goto out; #define DIRECT64_PROPNAME "linux,direct64-ddr-window-info" #define DMA64_PROPNAME "linux,dma64-ddr-window-info" ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME); if (ret < 0) goto out; ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME); if (ret < 0) goto out; #undef DMA64_PROPNAME #undef DIRECT64_PROPNAME /* Update memory reserve map */ ret = get_reserved_memory_ranges(&rmem); if (ret) goto out; nr_ranges = rmem ? rmem->nr_ranges : 0; for (i = 0; i < nr_ranges; i++) { u64 base, size; base = rmem->ranges[i].start; size = rmem->ranges[i].end - base + 1; ret = fdt_add_mem_rsv(fdt, base, size); if (ret) { pr_err("Error updating memory reserve map: %s\n", fdt_strerror(ret)); goto out; } } out: kfree(rmem); kfree(umem); return ret; } /** * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal, * tce-table, reserved-ranges & such (exclude * memory ranges) as they can't be used for kexec * segment buffer. Sets kbuf->mem when a suitable * memory hole is found. * @kbuf: Buffer contents and memory parameters. * * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align. * * Returns 0 on success, negative errno on error. */ int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf) { struct crash_mem **emem; u64 buf_min, buf_max; int ret; /* Look up the exclude ranges list while locating the memory hole */ emem = &(kbuf->image->arch.exclude_ranges); if (!(*emem) || ((*emem)->nr_ranges == 0)) { pr_warn("No exclude range list. Using the default locate mem hole method\n"); return kexec_locate_mem_hole(kbuf); } buf_min = kbuf->buf_min; buf_max = kbuf->buf_max; /* Segments for kdump kernel should be within crashkernel region */ if (kbuf->image->type == KEXEC_TYPE_CRASH) { buf_min = (buf_min < crashk_res.start ? crashk_res.start : buf_min); buf_max = (buf_max > crashk_res.end ? crashk_res.end : buf_max); } if (buf_min > buf_max) { pr_err("Invalid buffer min and/or max values\n"); return -EINVAL; } if (kbuf->top_down) ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max, *emem); else ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max, *emem); /* Add the buffer allocated to the exclude list for the next lookup */ if (!ret) { add_mem_range(emem, kbuf->mem, kbuf->memsz); sort_memory_ranges(*emem, true); } else { pr_err("Failed to locate memory buffer of size %lu\n", kbuf->memsz); } return ret; } /** * arch_kexec_kernel_image_probe - Does additional handling needed to setup * kexec segments. * @image: kexec image being loaded. * @buf: Buffer pointing to elf data. * @buf_len: Length of the buffer. * * Returns 0 on success, negative errno on error. */ int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, unsigned long buf_len) { int ret; /* Get exclude memory ranges needed for setting up kexec segments */ ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges)); if (ret) { pr_err("Failed to setup exclude memory ranges for buffer lookup\n"); return ret; } return kexec_image_probe_default(image, buf, buf_len); } /** * arch_kimage_file_post_load_cleanup - Frees up all the allocations done * while loading the image. * @image: kexec image being loaded. * * Returns 0 on success, negative errno on error. */ int arch_kimage_file_post_load_cleanup(struct kimage *image) { kfree(image->arch.exclude_ranges); image->arch.exclude_ranges = NULL; vfree(image->arch.backup_buf); image->arch.backup_buf = NULL; vfree(image->elf_headers); image->elf_headers = NULL; image->elf_headers_sz = 0; kvfree(image->arch.fdt); image->arch.fdt = NULL; return kexec_image_post_load_cleanup_default(image); } |