Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015 Linaro Ltd. * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org> */ #include <linux/clk.h> #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/cpumask.h> #include <linux/minmax.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <linux/regulator/consumer.h> struct mtk_cpufreq_platform_data { int min_volt_shift; int max_volt_shift; int proc_max_volt; int sram_min_volt; int sram_max_volt; bool ccifreq_supported; }; /* * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two * voltage inputs need to be controlled under a hardware limitation: * 100mV < Vsram - Vproc < 200mV * * When scaling the clock frequency of a CPU clock domain, the clock source * needs to be switched to another stable PLL clock temporarily until * the original PLL becomes stable at target frequency. */ struct mtk_cpu_dvfs_info { struct cpumask cpus; struct device *cpu_dev; struct device *cci_dev; struct regulator *proc_reg; struct regulator *sram_reg; struct clk *cpu_clk; struct clk *inter_clk; struct list_head list_head; int intermediate_voltage; bool need_voltage_tracking; int vproc_on_boot; int pre_vproc; /* Avoid race condition for regulators between notify and policy */ struct mutex reg_lock; struct notifier_block opp_nb; unsigned int opp_cpu; unsigned long current_freq; const struct mtk_cpufreq_platform_data *soc_data; int vtrack_max; bool ccifreq_bound; }; static struct platform_device *cpufreq_pdev; static LIST_HEAD(dvfs_info_list); static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu) { struct mtk_cpu_dvfs_info *info; list_for_each_entry(info, &dvfs_info_list, list_head) { if (cpumask_test_cpu(cpu, &info->cpus)) return info; } return NULL; } static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info, int new_vproc) { const struct mtk_cpufreq_platform_data *soc_data = info->soc_data; struct regulator *proc_reg = info->proc_reg; struct regulator *sram_reg = info->sram_reg; int pre_vproc, pre_vsram, new_vsram, vsram, vproc, ret; int retry = info->vtrack_max; pre_vproc = regulator_get_voltage(proc_reg); if (pre_vproc < 0) { dev_err(info->cpu_dev, "invalid Vproc value: %d\n", pre_vproc); return pre_vproc; } pre_vsram = regulator_get_voltage(sram_reg); if (pre_vsram < 0) { dev_err(info->cpu_dev, "invalid Vsram value: %d\n", pre_vsram); return pre_vsram; } new_vsram = clamp(new_vproc + soc_data->min_volt_shift, soc_data->sram_min_volt, soc_data->sram_max_volt); do { if (pre_vproc <= new_vproc) { vsram = clamp(pre_vproc + soc_data->max_volt_shift, soc_data->sram_min_volt, new_vsram); ret = regulator_set_voltage(sram_reg, vsram, soc_data->sram_max_volt); if (ret) return ret; if (vsram == soc_data->sram_max_volt || new_vsram == soc_data->sram_min_volt) vproc = new_vproc; else vproc = vsram - soc_data->min_volt_shift; ret = regulator_set_voltage(proc_reg, vproc, soc_data->proc_max_volt); if (ret) { regulator_set_voltage(sram_reg, pre_vsram, soc_data->sram_max_volt); return ret; } } else if (pre_vproc > new_vproc) { vproc = max(new_vproc, pre_vsram - soc_data->max_volt_shift); ret = regulator_set_voltage(proc_reg, vproc, soc_data->proc_max_volt); if (ret) return ret; if (vproc == new_vproc) vsram = new_vsram; else vsram = max(new_vsram, vproc + soc_data->min_volt_shift); ret = regulator_set_voltage(sram_reg, vsram, soc_data->sram_max_volt); if (ret) { regulator_set_voltage(proc_reg, pre_vproc, soc_data->proc_max_volt); return ret; } } pre_vproc = vproc; pre_vsram = vsram; if (--retry < 0) { dev_err(info->cpu_dev, "over loop count, failed to set voltage\n"); return -EINVAL; } } while (vproc != new_vproc || vsram != new_vsram); return 0; } static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc) { const struct mtk_cpufreq_platform_data *soc_data = info->soc_data; int ret; if (info->need_voltage_tracking) ret = mtk_cpufreq_voltage_tracking(info, vproc); else ret = regulator_set_voltage(info->proc_reg, vproc, soc_data->proc_max_volt); if (!ret) info->pre_vproc = vproc; return ret; } static bool is_ccifreq_ready(struct mtk_cpu_dvfs_info *info) { struct device_link *sup_link; if (info->ccifreq_bound) return true; sup_link = device_link_add(info->cpu_dev, info->cci_dev, DL_FLAG_AUTOREMOVE_CONSUMER); if (!sup_link) { dev_err(info->cpu_dev, "cpu%d: sup_link is NULL\n", info->opp_cpu); return false; } if (sup_link->supplier->links.status != DL_DEV_DRIVER_BOUND) return false; info->ccifreq_bound = true; return true; } static int mtk_cpufreq_set_target(struct cpufreq_policy *policy, unsigned int index) { struct cpufreq_frequency_table *freq_table = policy->freq_table; struct clk *cpu_clk = policy->clk; struct clk *armpll = clk_get_parent(cpu_clk); struct mtk_cpu_dvfs_info *info = policy->driver_data; struct device *cpu_dev = info->cpu_dev; struct dev_pm_opp *opp; long freq_hz, pre_freq_hz; int vproc, pre_vproc, inter_vproc, target_vproc, ret; inter_vproc = info->intermediate_voltage; pre_freq_hz = clk_get_rate(cpu_clk); mutex_lock(&info->reg_lock); if (unlikely(info->pre_vproc <= 0)) pre_vproc = regulator_get_voltage(info->proc_reg); else pre_vproc = info->pre_vproc; if (pre_vproc < 0) { dev_err(cpu_dev, "invalid Vproc value: %d\n", pre_vproc); ret = pre_vproc; goto out; } freq_hz = freq_table[index].frequency * 1000; opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); if (IS_ERR(opp)) { dev_err(cpu_dev, "cpu%d: failed to find OPP for %ld\n", policy->cpu, freq_hz); ret = PTR_ERR(opp); goto out; } vproc = dev_pm_opp_get_voltage(opp); dev_pm_opp_put(opp); /* * If MediaTek cci is supported but is not ready, we will use the value * of max(target cpu voltage, booting voltage) to prevent high freqeuncy * low voltage crash. */ if (info->soc_data->ccifreq_supported && !is_ccifreq_ready(info)) vproc = max(vproc, info->vproc_on_boot); /* * If the new voltage or the intermediate voltage is higher than the * current voltage, scale up voltage first. */ target_vproc = max(inter_vproc, vproc); if (pre_vproc <= target_vproc) { ret = mtk_cpufreq_set_voltage(info, target_vproc); if (ret) { dev_err(cpu_dev, "cpu%d: failed to scale up voltage!\n", policy->cpu); mtk_cpufreq_set_voltage(info, pre_vproc); goto out; } } /* Reparent the CPU clock to intermediate clock. */ ret = clk_set_parent(cpu_clk, info->inter_clk); if (ret) { dev_err(cpu_dev, "cpu%d: failed to re-parent cpu clock!\n", policy->cpu); mtk_cpufreq_set_voltage(info, pre_vproc); goto out; } /* Set the original PLL to target rate. */ ret = clk_set_rate(armpll, freq_hz); if (ret) { dev_err(cpu_dev, "cpu%d: failed to scale cpu clock rate!\n", policy->cpu); clk_set_parent(cpu_clk, armpll); mtk_cpufreq_set_voltage(info, pre_vproc); goto out; } /* Set parent of CPU clock back to the original PLL. */ ret = clk_set_parent(cpu_clk, armpll); if (ret) { dev_err(cpu_dev, "cpu%d: failed to re-parent cpu clock!\n", policy->cpu); mtk_cpufreq_set_voltage(info, inter_vproc); goto out; } /* * If the new voltage is lower than the intermediate voltage or the * original voltage, scale down to the new voltage. */ if (vproc < inter_vproc || vproc < pre_vproc) { ret = mtk_cpufreq_set_voltage(info, vproc); if (ret) { dev_err(cpu_dev, "cpu%d: failed to scale down voltage!\n", policy->cpu); clk_set_parent(cpu_clk, info->inter_clk); clk_set_rate(armpll, pre_freq_hz); clk_set_parent(cpu_clk, armpll); goto out; } } info->current_freq = freq_hz; out: mutex_unlock(&info->reg_lock); return ret; } #define DYNAMIC_POWER "dynamic-power-coefficient" static int mtk_cpufreq_opp_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct dev_pm_opp *opp = data; struct dev_pm_opp *new_opp; struct mtk_cpu_dvfs_info *info; unsigned long freq, volt; struct cpufreq_policy *policy; int ret = 0; info = container_of(nb, struct mtk_cpu_dvfs_info, opp_nb); if (event == OPP_EVENT_ADJUST_VOLTAGE) { freq = dev_pm_opp_get_freq(opp); mutex_lock(&info->reg_lock); if (info->current_freq == freq) { volt = dev_pm_opp_get_voltage(opp); ret = mtk_cpufreq_set_voltage(info, volt); if (ret) dev_err(info->cpu_dev, "failed to scale voltage: %d\n", ret); } mutex_unlock(&info->reg_lock); } else if (event == OPP_EVENT_DISABLE) { freq = dev_pm_opp_get_freq(opp); /* case of current opp item is disabled */ if (info->current_freq == freq) { freq = 1; new_opp = dev_pm_opp_find_freq_ceil(info->cpu_dev, &freq); if (IS_ERR(new_opp)) { dev_err(info->cpu_dev, "all opp items are disabled\n"); ret = PTR_ERR(new_opp); return notifier_from_errno(ret); } dev_pm_opp_put(new_opp); policy = cpufreq_cpu_get(info->opp_cpu); if (policy) { cpufreq_driver_target(policy, freq / 1000, CPUFREQ_RELATION_L); cpufreq_cpu_put(policy); } } } return notifier_from_errno(ret); } static struct device *of_get_cci(struct device *cpu_dev) { struct device_node *np; struct platform_device *pdev; np = of_parse_phandle(cpu_dev->of_node, "mediatek,cci", 0); if (!np) return ERR_PTR(-ENODEV); pdev = of_find_device_by_node(np); of_node_put(np); if (!pdev) return ERR_PTR(-ENODEV); return &pdev->dev; } static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu) { struct device *cpu_dev; struct dev_pm_opp *opp; unsigned long rate; int ret; cpu_dev = get_cpu_device(cpu); if (!cpu_dev) { dev_err(cpu_dev, "failed to get cpu%d device\n", cpu); return -ENODEV; } info->cpu_dev = cpu_dev; info->ccifreq_bound = false; if (info->soc_data->ccifreq_supported) { info->cci_dev = of_get_cci(info->cpu_dev); if (IS_ERR(info->cci_dev)) { ret = PTR_ERR(info->cci_dev); dev_err(cpu_dev, "cpu%d: failed to get cci device\n", cpu); return -ENODEV; } } info->cpu_clk = clk_get(cpu_dev, "cpu"); if (IS_ERR(info->cpu_clk)) { ret = PTR_ERR(info->cpu_clk); return dev_err_probe(cpu_dev, ret, "cpu%d: failed to get cpu clk\n", cpu); } info->inter_clk = clk_get(cpu_dev, "intermediate"); if (IS_ERR(info->inter_clk)) { ret = PTR_ERR(info->inter_clk); dev_err_probe(cpu_dev, ret, "cpu%d: failed to get intermediate clk\n", cpu); goto out_free_mux_clock; } info->proc_reg = regulator_get_optional(cpu_dev, "proc"); if (IS_ERR(info->proc_reg)) { ret = PTR_ERR(info->proc_reg); dev_err_probe(cpu_dev, ret, "cpu%d: failed to get proc regulator\n", cpu); goto out_free_inter_clock; } ret = regulator_enable(info->proc_reg); if (ret) { dev_warn(cpu_dev, "cpu%d: failed to enable vproc\n", cpu); goto out_free_proc_reg; } /* Both presence and absence of sram regulator are valid cases. */ info->sram_reg = regulator_get_optional(cpu_dev, "sram"); if (IS_ERR(info->sram_reg)) { ret = PTR_ERR(info->sram_reg); if (ret == -EPROBE_DEFER) goto out_disable_proc_reg; info->sram_reg = NULL; } else { ret = regulator_enable(info->sram_reg); if (ret) { dev_warn(cpu_dev, "cpu%d: failed to enable vsram\n", cpu); goto out_free_sram_reg; } } /* Get OPP-sharing information from "operating-points-v2" bindings */ ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus); if (ret) { dev_err(cpu_dev, "cpu%d: failed to get OPP-sharing information\n", cpu); goto out_disable_sram_reg; } ret = dev_pm_opp_of_cpumask_add_table(&info->cpus); if (ret) { dev_warn(cpu_dev, "cpu%d: no OPP table\n", cpu); goto out_disable_sram_reg; } ret = clk_prepare_enable(info->cpu_clk); if (ret) goto out_free_opp_table; ret = clk_prepare_enable(info->inter_clk); if (ret) goto out_disable_mux_clock; if (info->soc_data->ccifreq_supported) { info->vproc_on_boot = regulator_get_voltage(info->proc_reg); if (info->vproc_on_boot < 0) { ret = info->vproc_on_boot; dev_err(info->cpu_dev, "invalid Vproc value: %d\n", info->vproc_on_boot); goto out_disable_inter_clock; } } /* Search a safe voltage for intermediate frequency. */ rate = clk_get_rate(info->inter_clk); opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate); if (IS_ERR(opp)) { dev_err(cpu_dev, "cpu%d: failed to get intermediate opp\n", cpu); ret = PTR_ERR(opp); goto out_disable_inter_clock; } info->intermediate_voltage = dev_pm_opp_get_voltage(opp); dev_pm_opp_put(opp); mutex_init(&info->reg_lock); info->current_freq = clk_get_rate(info->cpu_clk); info->opp_cpu = cpu; info->opp_nb.notifier_call = mtk_cpufreq_opp_notifier; ret = dev_pm_opp_register_notifier(cpu_dev, &info->opp_nb); if (ret) { dev_err(cpu_dev, "cpu%d: failed to register opp notifier\n", cpu); goto out_disable_inter_clock; } /* * If SRAM regulator is present, software "voltage tracking" is needed * for this CPU power domain. */ info->need_voltage_tracking = (info->sram_reg != NULL); /* * We assume min voltage is 0 and tracking target voltage using * min_volt_shift for each iteration. * The vtrack_max is 3 times of expeted iteration count. */ info->vtrack_max = 3 * DIV_ROUND_UP(max(info->soc_data->sram_max_volt, info->soc_data->proc_max_volt), info->soc_data->min_volt_shift); return 0; out_disable_inter_clock: clk_disable_unprepare(info->inter_clk); out_disable_mux_clock: clk_disable_unprepare(info->cpu_clk); out_free_opp_table: dev_pm_opp_of_cpumask_remove_table(&info->cpus); out_disable_sram_reg: if (info->sram_reg) regulator_disable(info->sram_reg); out_free_sram_reg: if (info->sram_reg) regulator_put(info->sram_reg); out_disable_proc_reg: regulator_disable(info->proc_reg); out_free_proc_reg: regulator_put(info->proc_reg); out_free_inter_clock: clk_put(info->inter_clk); out_free_mux_clock: clk_put(info->cpu_clk); return ret; } static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info) { regulator_disable(info->proc_reg); regulator_put(info->proc_reg); if (info->sram_reg) { regulator_disable(info->sram_reg); regulator_put(info->sram_reg); } clk_disable_unprepare(info->cpu_clk); clk_put(info->cpu_clk); clk_disable_unprepare(info->inter_clk); clk_put(info->inter_clk); dev_pm_opp_of_cpumask_remove_table(&info->cpus); dev_pm_opp_unregister_notifier(info->cpu_dev, &info->opp_nb); } static int mtk_cpufreq_init(struct cpufreq_policy *policy) { struct mtk_cpu_dvfs_info *info; struct cpufreq_frequency_table *freq_table; int ret; info = mtk_cpu_dvfs_info_lookup(policy->cpu); if (!info) { pr_err("dvfs info for cpu%d is not initialized.\n", policy->cpu); return -EINVAL; } ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table); if (ret) { dev_err(info->cpu_dev, "failed to init cpufreq table for cpu%d: %d\n", policy->cpu, ret); return ret; } cpumask_copy(policy->cpus, &info->cpus); policy->freq_table = freq_table; policy->driver_data = info; policy->clk = info->cpu_clk; return 0; } static int mtk_cpufreq_exit(struct cpufreq_policy *policy) { struct mtk_cpu_dvfs_info *info = policy->driver_data; dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table); return 0; } static struct cpufreq_driver mtk_cpufreq_driver = { .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK | CPUFREQ_HAVE_GOVERNOR_PER_POLICY | CPUFREQ_IS_COOLING_DEV, .verify = cpufreq_generic_frequency_table_verify, .target_index = mtk_cpufreq_set_target, .get = cpufreq_generic_get, .init = mtk_cpufreq_init, .exit = mtk_cpufreq_exit, .register_em = cpufreq_register_em_with_opp, .name = "mtk-cpufreq", .attr = cpufreq_generic_attr, }; static int mtk_cpufreq_probe(struct platform_device *pdev) { const struct mtk_cpufreq_platform_data *data; struct mtk_cpu_dvfs_info *info, *tmp; int cpu, ret; data = dev_get_platdata(&pdev->dev); if (!data) { dev_err(&pdev->dev, "failed to get mtk cpufreq platform data\n"); return -ENODEV; } for_each_possible_cpu(cpu) { info = mtk_cpu_dvfs_info_lookup(cpu); if (info) continue; info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) { ret = -ENOMEM; goto release_dvfs_info_list; } info->soc_data = data; ret = mtk_cpu_dvfs_info_init(info, cpu); if (ret) { dev_err(&pdev->dev, "failed to initialize dvfs info for cpu%d\n", cpu); goto release_dvfs_info_list; } list_add(&info->list_head, &dvfs_info_list); } ret = cpufreq_register_driver(&mtk_cpufreq_driver); if (ret) { dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n"); goto release_dvfs_info_list; } return 0; release_dvfs_info_list: list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) { mtk_cpu_dvfs_info_release(info); list_del(&info->list_head); } return ret; } static struct platform_driver mtk_cpufreq_platdrv = { .driver = { .name = "mtk-cpufreq", }, .probe = mtk_cpufreq_probe, }; static const struct mtk_cpufreq_platform_data mt2701_platform_data = { .min_volt_shift = 100000, .max_volt_shift = 200000, .proc_max_volt = 1150000, .sram_min_volt = 0, .sram_max_volt = 1150000, .ccifreq_supported = false, }; static const struct mtk_cpufreq_platform_data mt7622_platform_data = { .min_volt_shift = 100000, .max_volt_shift = 200000, .proc_max_volt = 1350000, .sram_min_volt = 0, .sram_max_volt = 1350000, .ccifreq_supported = false, }; static const struct mtk_cpufreq_platform_data mt7623_platform_data = { .min_volt_shift = 100000, .max_volt_shift = 200000, .proc_max_volt = 1300000, .ccifreq_supported = false, }; static const struct mtk_cpufreq_platform_data mt8183_platform_data = { .min_volt_shift = 100000, .max_volt_shift = 200000, .proc_max_volt = 1150000, .sram_min_volt = 0, .sram_max_volt = 1150000, .ccifreq_supported = true, }; static const struct mtk_cpufreq_platform_data mt8186_platform_data = { .min_volt_shift = 100000, .max_volt_shift = 250000, .proc_max_volt = 1118750, .sram_min_volt = 850000, .sram_max_volt = 1118750, .ccifreq_supported = true, }; static const struct mtk_cpufreq_platform_data mt8516_platform_data = { .min_volt_shift = 100000, .max_volt_shift = 200000, .proc_max_volt = 1310000, .sram_min_volt = 0, .sram_max_volt = 1310000, .ccifreq_supported = false, }; /* List of machines supported by this driver */ static const struct of_device_id mtk_cpufreq_machines[] __initconst = { { .compatible = "mediatek,mt2701", .data = &mt2701_platform_data }, { .compatible = "mediatek,mt2712", .data = &mt2701_platform_data }, { .compatible = "mediatek,mt7622", .data = &mt7622_platform_data }, { .compatible = "mediatek,mt7623", .data = &mt7623_platform_data }, { .compatible = "mediatek,mt8167", .data = &mt8516_platform_data }, { .compatible = "mediatek,mt817x", .data = &mt2701_platform_data }, { .compatible = "mediatek,mt8173", .data = &mt2701_platform_data }, { .compatible = "mediatek,mt8176", .data = &mt2701_platform_data }, { .compatible = "mediatek,mt8183", .data = &mt8183_platform_data }, { .compatible = "mediatek,mt8186", .data = &mt8186_platform_data }, { .compatible = "mediatek,mt8365", .data = &mt2701_platform_data }, { .compatible = "mediatek,mt8516", .data = &mt8516_platform_data }, { } }; MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines); static int __init mtk_cpufreq_driver_init(void) { struct device_node *np; const struct of_device_id *match; const struct mtk_cpufreq_platform_data *data; int err; np = of_find_node_by_path("/"); if (!np) return -ENODEV; match = of_match_node(mtk_cpufreq_machines, np); of_node_put(np); if (!match) { pr_debug("Machine is not compatible with mtk-cpufreq\n"); return -ENODEV; } data = match->data; err = platform_driver_register(&mtk_cpufreq_platdrv); if (err) return err; /* * Since there's no place to hold device registration code and no * device tree based way to match cpufreq driver yet, both the driver * and the device registration codes are put here to handle defer * probing. */ cpufreq_pdev = platform_device_register_data(NULL, "mtk-cpufreq", -1, data, sizeof(*data)); if (IS_ERR(cpufreq_pdev)) { pr_err("failed to register mtk-cpufreq platform device\n"); platform_driver_unregister(&mtk_cpufreq_platdrv); return PTR_ERR(cpufreq_pdev); } return 0; } module_init(mtk_cpufreq_driver_init) static void __exit mtk_cpufreq_driver_exit(void) { platform_device_unregister(cpufreq_pdev); platform_driver_unregister(&mtk_cpufreq_platdrv); } module_exit(mtk_cpufreq_driver_exit) MODULE_DESCRIPTION("MediaTek CPUFreq driver"); MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>"); MODULE_LICENSE("GPL v2"); |