Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | // SPDX-License-Identifier: GPL-2.0 /* * This is for all the tests relating directly to heap memory, including * page allocation and slab allocations. */ #include "lkdtm.h" #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/sched.h> static struct kmem_cache *double_free_cache; static struct kmem_cache *a_cache; static struct kmem_cache *b_cache; /* * Using volatile here means the compiler cannot ever make assumptions * about this value. This means compile-time length checks involving * this variable cannot be performed; only run-time checks. */ static volatile int __offset = 1; /* * If there aren't guard pages, it's likely that a consecutive allocation will * let us overflow into the second allocation without overwriting something real. * * This should always be caught because there is an unconditional unmapped * page after vmap allocations. */ static void lkdtm_VMALLOC_LINEAR_OVERFLOW(void) { char *one, *two; one = vzalloc(PAGE_SIZE); two = vzalloc(PAGE_SIZE); pr_info("Attempting vmalloc linear overflow ...\n"); memset(one, 0xAA, PAGE_SIZE + __offset); vfree(two); vfree(one); } /* * This tries to stay within the next largest power-of-2 kmalloc cache * to avoid actually overwriting anything important if it's not detected * correctly. * * This should get caught by either memory tagging, KASan, or by using * CONFIG_SLUB_DEBUG=y and slub_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y). */ static void lkdtm_SLAB_LINEAR_OVERFLOW(void) { size_t len = 1020; u32 *data = kmalloc(len, GFP_KERNEL); if (!data) return; pr_info("Attempting slab linear overflow ...\n"); OPTIMIZER_HIDE_VAR(data); data[1024 / sizeof(u32)] = 0x12345678; kfree(data); } static void lkdtm_WRITE_AFTER_FREE(void) { int *base, *again; size_t len = 1024; /* * The slub allocator uses the first word to store the free * pointer in some configurations. Use the middle of the * allocation to avoid running into the freelist */ size_t offset = (len / sizeof(*base)) / 2; base = kmalloc(len, GFP_KERNEL); if (!base) return; pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]); pr_info("Attempting bad write to freed memory at %p\n", &base[offset]); kfree(base); base[offset] = 0x0abcdef0; /* Attempt to notice the overwrite. */ again = kmalloc(len, GFP_KERNEL); kfree(again); if (again != base) pr_info("Hmm, didn't get the same memory range.\n"); } static void lkdtm_READ_AFTER_FREE(void) { int *base, *val, saw; size_t len = 1024; /* * The slub allocator will use the either the first word or * the middle of the allocation to store the free pointer, * depending on configurations. Store in the second word to * avoid running into the freelist. */ size_t offset = sizeof(*base); base = kmalloc(len, GFP_KERNEL); if (!base) { pr_info("Unable to allocate base memory.\n"); return; } val = kmalloc(len, GFP_KERNEL); if (!val) { pr_info("Unable to allocate val memory.\n"); kfree(base); return; } *val = 0x12345678; base[offset] = *val; pr_info("Value in memory before free: %x\n", base[offset]); kfree(base); pr_info("Attempting bad read from freed memory\n"); saw = base[offset]; if (saw != *val) { /* Good! Poisoning happened, so declare a win. */ pr_info("Memory correctly poisoned (%x)\n", saw); } else { pr_err("FAIL: Memory was not poisoned!\n"); pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free"); } kfree(val); } static void lkdtm_WRITE_BUDDY_AFTER_FREE(void) { unsigned long p = __get_free_page(GFP_KERNEL); if (!p) { pr_info("Unable to allocate free page\n"); return; } pr_info("Writing to the buddy page before free\n"); memset((void *)p, 0x3, PAGE_SIZE); free_page(p); schedule(); pr_info("Attempting bad write to the buddy page after free\n"); memset((void *)p, 0x78, PAGE_SIZE); /* Attempt to notice the overwrite. */ p = __get_free_page(GFP_KERNEL); free_page(p); schedule(); } static void lkdtm_READ_BUDDY_AFTER_FREE(void) { unsigned long p = __get_free_page(GFP_KERNEL); int saw, *val; int *base; if (!p) { pr_info("Unable to allocate free page\n"); return; } val = kmalloc(1024, GFP_KERNEL); if (!val) { pr_info("Unable to allocate val memory.\n"); free_page(p); return; } base = (int *)p; *val = 0x12345678; base[0] = *val; pr_info("Value in memory before free: %x\n", base[0]); free_page(p); pr_info("Attempting to read from freed memory\n"); saw = base[0]; if (saw != *val) { /* Good! Poisoning happened, so declare a win. */ pr_info("Memory correctly poisoned (%x)\n", saw); } else { pr_err("FAIL: Buddy page was not poisoned!\n"); pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free"); } kfree(val); } static void lkdtm_SLAB_INIT_ON_ALLOC(void) { u8 *first; u8 *val; first = kmalloc(512, GFP_KERNEL); if (!first) { pr_info("Unable to allocate 512 bytes the first time.\n"); return; } memset(first, 0xAB, 512); kfree(first); val = kmalloc(512, GFP_KERNEL); if (!val) { pr_info("Unable to allocate 512 bytes the second time.\n"); return; } if (val != first) { pr_warn("Reallocation missed clobbered memory.\n"); } if (memchr(val, 0xAB, 512) == NULL) { pr_info("Memory appears initialized (%x, no earlier values)\n", *val); } else { pr_err("FAIL: Slab was not initialized\n"); pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc"); } kfree(val); } static void lkdtm_BUDDY_INIT_ON_ALLOC(void) { u8 *first; u8 *val; first = (u8 *)__get_free_page(GFP_KERNEL); if (!first) { pr_info("Unable to allocate first free page\n"); return; } memset(first, 0xAB, PAGE_SIZE); free_page((unsigned long)first); val = (u8 *)__get_free_page(GFP_KERNEL); if (!val) { pr_info("Unable to allocate second free page\n"); return; } if (val != first) { pr_warn("Reallocation missed clobbered memory.\n"); } if (memchr(val, 0xAB, PAGE_SIZE) == NULL) { pr_info("Memory appears initialized (%x, no earlier values)\n", *val); } else { pr_err("FAIL: Slab was not initialized\n"); pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc"); } free_page((unsigned long)val); } static void lkdtm_SLAB_FREE_DOUBLE(void) { int *val; val = kmem_cache_alloc(double_free_cache, GFP_KERNEL); if (!val) { pr_info("Unable to allocate double_free_cache memory.\n"); return; } /* Just make sure we got real memory. */ *val = 0x12345678; pr_info("Attempting double slab free ...\n"); kmem_cache_free(double_free_cache, val); kmem_cache_free(double_free_cache, val); } static void lkdtm_SLAB_FREE_CROSS(void) { int *val; val = kmem_cache_alloc(a_cache, GFP_KERNEL); if (!val) { pr_info("Unable to allocate a_cache memory.\n"); return; } /* Just make sure we got real memory. */ *val = 0x12345679; pr_info("Attempting cross-cache slab free ...\n"); kmem_cache_free(b_cache, val); } static void lkdtm_SLAB_FREE_PAGE(void) { unsigned long p = __get_free_page(GFP_KERNEL); pr_info("Attempting non-Slab slab free ...\n"); kmem_cache_free(NULL, (void *)p); free_page(p); } /* * We have constructors to keep the caches distinctly separated without * needing to boot with "slab_nomerge". */ static void ctor_double_free(void *region) { } static void ctor_a(void *region) { } static void ctor_b(void *region) { } void __init lkdtm_heap_init(void) { double_free_cache = kmem_cache_create("lkdtm-heap-double_free", 64, 0, 0, ctor_double_free); a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a); b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b); } void __exit lkdtm_heap_exit(void) { kmem_cache_destroy(double_free_cache); kmem_cache_destroy(a_cache); kmem_cache_destroy(b_cache); } static struct crashtype crashtypes[] = { CRASHTYPE(SLAB_LINEAR_OVERFLOW), CRASHTYPE(VMALLOC_LINEAR_OVERFLOW), CRASHTYPE(WRITE_AFTER_FREE), CRASHTYPE(READ_AFTER_FREE), CRASHTYPE(WRITE_BUDDY_AFTER_FREE), CRASHTYPE(READ_BUDDY_AFTER_FREE), CRASHTYPE(SLAB_INIT_ON_ALLOC), CRASHTYPE(BUDDY_INIT_ON_ALLOC), CRASHTYPE(SLAB_FREE_DOUBLE), CRASHTYPE(SLAB_FREE_CROSS), CRASHTYPE(SLAB_FREE_PAGE), }; struct crashtype_category heap_crashtypes = { .crashtypes = crashtypes, .len = ARRAY_SIZE(crashtypes), }; |