Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2022 MediaTek Inc.
 */

#include <linux/clk.h>
#include <linux/devfreq.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/regulator/consumer.h>

struct mtk_ccifreq_platform_data {
	int min_volt_shift;
	int max_volt_shift;
	int proc_max_volt;
	int sram_min_volt;
	int sram_max_volt;
};

struct mtk_ccifreq_drv {
	struct device *dev;
	struct devfreq *devfreq;
	struct regulator *proc_reg;
	struct regulator *sram_reg;
	struct clk *cci_clk;
	struct clk *inter_clk;
	int inter_voltage;
	unsigned long pre_freq;
	/* Avoid race condition for regulators between notify and policy */
	struct mutex reg_lock;
	struct notifier_block opp_nb;
	const struct mtk_ccifreq_platform_data *soc_data;
	int vtrack_max;
};

static int mtk_ccifreq_set_voltage(struct mtk_ccifreq_drv *drv, int new_voltage)
{
	const struct mtk_ccifreq_platform_data *soc_data = drv->soc_data;
	struct device *dev = drv->dev;
	int pre_voltage, pre_vsram, new_vsram, vsram, voltage, ret;
	int retry_max = drv->vtrack_max;

	if (!drv->sram_reg) {
		ret = regulator_set_voltage(drv->proc_reg, new_voltage,
					    drv->soc_data->proc_max_volt);
		return ret;
	}

	pre_voltage = regulator_get_voltage(drv->proc_reg);
	if (pre_voltage < 0) {
		dev_err(dev, "invalid vproc value: %d\n", pre_voltage);
		return pre_voltage;
	}

	pre_vsram = regulator_get_voltage(drv->sram_reg);
	if (pre_vsram < 0) {
		dev_err(dev, "invalid vsram value: %d\n", pre_vsram);
		return pre_vsram;
	}

	new_vsram = clamp(new_voltage + soc_data->min_volt_shift,
			  soc_data->sram_min_volt, soc_data->sram_max_volt);

	do {
		if (pre_voltage <= new_voltage) {
			vsram = clamp(pre_voltage + soc_data->max_volt_shift,
				      soc_data->sram_min_volt, new_vsram);
			ret = regulator_set_voltage(drv->sram_reg, vsram,
						    soc_data->sram_max_volt);
			if (ret)
				return ret;

			if (vsram == soc_data->sram_max_volt ||
			    new_vsram == soc_data->sram_min_volt)
				voltage = new_voltage;
			else
				voltage = vsram - soc_data->min_volt_shift;

			ret = regulator_set_voltage(drv->proc_reg, voltage,
						    soc_data->proc_max_volt);
			if (ret) {
				regulator_set_voltage(drv->sram_reg, pre_vsram,
						      soc_data->sram_max_volt);
				return ret;
			}
		} else if (pre_voltage > new_voltage) {
			voltage = max(new_voltage,
				      pre_vsram - soc_data->max_volt_shift);
			ret = regulator_set_voltage(drv->proc_reg, voltage,
						    soc_data->proc_max_volt);
			if (ret)
				return ret;

			if (voltage == new_voltage)
				vsram = new_vsram;
			else
				vsram = max(new_vsram,
					    voltage + soc_data->min_volt_shift);

			ret = regulator_set_voltage(drv->sram_reg, vsram,
						    soc_data->sram_max_volt);
			if (ret) {
				regulator_set_voltage(drv->proc_reg, pre_voltage,
						      soc_data->proc_max_volt);
				return ret;
			}
		}

		pre_voltage = voltage;
		pre_vsram = vsram;

		if (--retry_max < 0) {
			dev_err(dev,
				"over loop count, failed to set voltage\n");
			return -EINVAL;
		}
	} while (voltage != new_voltage || vsram != new_vsram);

	return 0;
}

static int mtk_ccifreq_target(struct device *dev, unsigned long *freq,
			      u32 flags)
{
	struct mtk_ccifreq_drv *drv = dev_get_drvdata(dev);
	struct clk *cci_pll = clk_get_parent(drv->cci_clk);
	struct dev_pm_opp *opp;
	unsigned long opp_rate;
	int voltage, pre_voltage, inter_voltage, target_voltage, ret;

	if (!drv)
		return -EINVAL;

	if (drv->pre_freq == *freq)
		return 0;

	inter_voltage = drv->inter_voltage;

	opp_rate = *freq;
	opp = devfreq_recommended_opp(dev, &opp_rate, 1);
	if (IS_ERR(opp)) {
		dev_err(dev, "failed to find opp for freq: %ld\n", opp_rate);
		return PTR_ERR(opp);
	}

	mutex_lock(&drv->reg_lock);

	voltage = dev_pm_opp_get_voltage(opp);
	dev_pm_opp_put(opp);

	pre_voltage = regulator_get_voltage(drv->proc_reg);
	if (pre_voltage < 0) {
		dev_err(dev, "invalid vproc value: %d\n", pre_voltage);
		ret = pre_voltage;
		goto out_unlock;
	}

	/* scale up: set voltage first then freq. */
	target_voltage = max(inter_voltage, voltage);
	if (pre_voltage <= target_voltage) {
		ret = mtk_ccifreq_set_voltage(drv, target_voltage);
		if (ret) {
			dev_err(dev, "failed to scale up voltage\n");
			goto out_restore_voltage;
		}
	}

	/* switch the cci clock to intermediate clock source. */
	ret = clk_set_parent(drv->cci_clk, drv->inter_clk);
	if (ret) {
		dev_err(dev, "failed to re-parent cci clock\n");
		goto out_restore_voltage;
	}

	/* set the original clock to target rate. */
	ret = clk_set_rate(cci_pll, *freq);
	if (ret) {
		dev_err(dev, "failed to set cci pll rate: %d\n", ret);
		clk_set_parent(drv->cci_clk, cci_pll);
		goto out_restore_voltage;
	}

	/* switch the cci clock back to the original clock source. */
	ret = clk_set_parent(drv->cci_clk, cci_pll);
	if (ret) {
		dev_err(dev, "failed to re-parent cci clock\n");
		mtk_ccifreq_set_voltage(drv, inter_voltage);
		goto out_unlock;
	}

	/*
	 * If the new voltage is lower than the intermediate voltage or the
	 * original voltage, scale down to the new voltage.
	 */
	if (voltage < inter_voltage || voltage < pre_voltage) {
		ret = mtk_ccifreq_set_voltage(drv, voltage);
		if (ret) {
			dev_err(dev, "failed to scale down voltage\n");
			goto out_unlock;
		}
	}

	drv->pre_freq = *freq;
	mutex_unlock(&drv->reg_lock);

	return 0;

out_restore_voltage:
	mtk_ccifreq_set_voltage(drv, pre_voltage);

out_unlock:
	mutex_unlock(&drv->reg_lock);
	return ret;
}

static int mtk_ccifreq_opp_notifier(struct notifier_block *nb,
				    unsigned long event, void *data)
{
	struct dev_pm_opp *opp = data;
	struct mtk_ccifreq_drv *drv;
	unsigned long freq, volt;

	drv = container_of(nb, struct mtk_ccifreq_drv, opp_nb);

	if (event == OPP_EVENT_ADJUST_VOLTAGE) {
		freq = dev_pm_opp_get_freq(opp);

		mutex_lock(&drv->reg_lock);
		/* current opp item is changed */
		if (freq == drv->pre_freq) {
			volt = dev_pm_opp_get_voltage(opp);
			mtk_ccifreq_set_voltage(drv, volt);
		}
		mutex_unlock(&drv->reg_lock);
	}

	return 0;
}

static struct devfreq_dev_profile mtk_ccifreq_profile = {
	.target = mtk_ccifreq_target,
};

static int mtk_ccifreq_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct mtk_ccifreq_drv *drv;
	struct devfreq_passive_data *passive_data;
	struct dev_pm_opp *opp;
	unsigned long rate, opp_volt;
	int ret;

	drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
	if (!drv)
		return -ENOMEM;

	drv->dev = dev;
	drv->soc_data = (const struct mtk_ccifreq_platform_data *)
				of_device_get_match_data(&pdev->dev);
	mutex_init(&drv->reg_lock);
	platform_set_drvdata(pdev, drv);

	drv->cci_clk = devm_clk_get(dev, "cci");
	if (IS_ERR(drv->cci_clk)) {
		ret = PTR_ERR(drv->cci_clk);
		return dev_err_probe(dev, ret, "failed to get cci clk\n");
	}

	drv->inter_clk = devm_clk_get(dev, "intermediate");
	if (IS_ERR(drv->inter_clk)) {
		ret = PTR_ERR(drv->inter_clk);
		return dev_err_probe(dev, ret,
				     "failed to get intermediate clk\n");
	}

	drv->proc_reg = devm_regulator_get_optional(dev, "proc");
	if (IS_ERR(drv->proc_reg)) {
		ret = PTR_ERR(drv->proc_reg);
		return dev_err_probe(dev, ret,
				     "failed to get proc regulator\n");
	}

	ret = regulator_enable(drv->proc_reg);
	if (ret) {
		dev_err(dev, "failed to enable proc regulator\n");
		return ret;
	}

	drv->sram_reg = devm_regulator_get_optional(dev, "sram");
	if (IS_ERR(drv->sram_reg)) {
		ret = PTR_ERR(drv->sram_reg);
		if (ret == -EPROBE_DEFER)
			goto out_free_resources;

		drv->sram_reg = NULL;
	} else {
		ret = regulator_enable(drv->sram_reg);
		if (ret) {
			dev_err(dev, "failed to enable sram regulator\n");
			goto out_free_resources;
		}
	}

	/*
	 * We assume min voltage is 0 and tracking target voltage using
	 * min_volt_shift for each iteration.
	 * The retry_max is 3 times of expected iteration count.
	 */
	drv->vtrack_max = 3 * DIV_ROUND_UP(max(drv->soc_data->sram_max_volt,
					       drv->soc_data->proc_max_volt),
					   drv->soc_data->min_volt_shift);

	ret = clk_prepare_enable(drv->cci_clk);
	if (ret)
		goto out_free_resources;

	ret = dev_pm_opp_of_add_table(dev);
	if (ret) {
		dev_err(dev, "failed to add opp table: %d\n", ret);
		goto out_disable_cci_clk;
	}

	rate = clk_get_rate(drv->inter_clk);
	opp = dev_pm_opp_find_freq_ceil(dev, &rate);
	if (IS_ERR(opp)) {
		ret = PTR_ERR(opp);
		dev_err(dev, "failed to get intermediate opp: %d\n", ret);
		goto out_remove_opp_table;
	}
	drv->inter_voltage = dev_pm_opp_get_voltage(opp);
	dev_pm_opp_put(opp);

	rate = U32_MAX;
	opp = dev_pm_opp_find_freq_floor(drv->dev, &rate);
	if (IS_ERR(opp)) {
		dev_err(dev, "failed to get opp\n");
		ret = PTR_ERR(opp);
		goto out_remove_opp_table;
	}

	opp_volt = dev_pm_opp_get_voltage(opp);
	dev_pm_opp_put(opp);
	ret = mtk_ccifreq_set_voltage(drv, opp_volt);
	if (ret) {
		dev_err(dev, "failed to scale to highest voltage %lu in proc_reg\n",
			opp_volt);
		goto out_remove_opp_table;
	}

	passive_data = devm_kzalloc(dev, sizeof(*passive_data), GFP_KERNEL);
	if (!passive_data) {
		ret = -ENOMEM;
		goto out_remove_opp_table;
	}

	passive_data->parent_type = CPUFREQ_PARENT_DEV;
	drv->devfreq = devm_devfreq_add_device(dev, &mtk_ccifreq_profile,
					       DEVFREQ_GOV_PASSIVE,
					       passive_data);
	if (IS_ERR(drv->devfreq)) {
		ret = -EPROBE_DEFER;
		dev_err(dev, "failed to add devfreq device: %ld\n",
			PTR_ERR(drv->devfreq));
		goto out_remove_opp_table;
	}

	drv->opp_nb.notifier_call = mtk_ccifreq_opp_notifier;
	ret = dev_pm_opp_register_notifier(dev, &drv->opp_nb);
	if (ret) {
		dev_err(dev, "failed to register opp notifier: %d\n", ret);
		goto out_remove_opp_table;
	}
	return 0;

out_remove_opp_table:
	dev_pm_opp_of_remove_table(dev);

out_disable_cci_clk:
	clk_disable_unprepare(drv->cci_clk);

out_free_resources:
	if (regulator_is_enabled(drv->proc_reg))
		regulator_disable(drv->proc_reg);
	if (drv->sram_reg && regulator_is_enabled(drv->sram_reg))
		regulator_disable(drv->sram_reg);

	return ret;
}

static int mtk_ccifreq_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct mtk_ccifreq_drv *drv;

	drv = platform_get_drvdata(pdev);

	dev_pm_opp_unregister_notifier(dev, &drv->opp_nb);
	dev_pm_opp_of_remove_table(dev);
	clk_disable_unprepare(drv->cci_clk);
	regulator_disable(drv->proc_reg);
	if (drv->sram_reg)
		regulator_disable(drv->sram_reg);

	return 0;
}

static const struct mtk_ccifreq_platform_data mt8183_platform_data = {
	.min_volt_shift = 100000,
	.max_volt_shift = 200000,
	.proc_max_volt = 1150000,
};

static const struct mtk_ccifreq_platform_data mt8186_platform_data = {
	.min_volt_shift = 100000,
	.max_volt_shift = 250000,
	.proc_max_volt = 1118750,
	.sram_min_volt = 850000,
	.sram_max_volt = 1118750,
};

static const struct of_device_id mtk_ccifreq_machines[] = {
	{ .compatible = "mediatek,mt8183-cci", .data = &mt8183_platform_data },
	{ .compatible = "mediatek,mt8186-cci", .data = &mt8186_platform_data },
	{ },
};
MODULE_DEVICE_TABLE(of, mtk_ccifreq_machines);

static struct platform_driver mtk_ccifreq_platdrv = {
	.probe	= mtk_ccifreq_probe,
	.remove	= mtk_ccifreq_remove,
	.driver = {
		.name = "mtk-ccifreq",
		.of_match_table = mtk_ccifreq_machines,
	},
};
module_platform_driver(mtk_ccifreq_platdrv);

MODULE_DESCRIPTION("MediaTek CCI devfreq driver");
MODULE_AUTHOR("Jia-Wei Chang <jia-wei.chang@mediatek.com>");
MODULE_LICENSE("GPL v2");