Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
// SPDX-License-Identifier: GPL-2.0
/*
 * This file contains core generic KASAN code.
 *
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
 *
 * Some code borrowed from https://github.com/xairy/kasan-prototype by
 *        Andrey Konovalov <andreyknvl@gmail.com>
 */

#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/kfence.h>
#include <linux/kmemleak.h>
#include <linux/linkage.h>
#include <linux/memblock.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/bug.h>

#include "kasan.h"
#include "../slab.h"

/*
 * All functions below always inlined so compiler could
 * perform better optimizations in each of __asan_loadX/__assn_storeX
 * depending on memory access size X.
 */

static __always_inline bool memory_is_poisoned_1(unsigned long addr)
{
	s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);

	if (unlikely(shadow_value)) {
		s8 last_accessible_byte = addr & KASAN_GRANULE_MASK;
		return unlikely(last_accessible_byte >= shadow_value);
	}

	return false;
}

static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
						unsigned long size)
{
	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);

	/*
	 * Access crosses 8(shadow size)-byte boundary. Such access maps
	 * into 2 shadow bytes, so we need to check them both.
	 */
	if (unlikely(((addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);

	return memory_is_poisoned_1(addr + size - 1);
}

static __always_inline bool memory_is_poisoned_16(unsigned long addr)
{
	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);

	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
	if (unlikely(!IS_ALIGNED(addr, KASAN_GRANULE_SIZE)))
		return *shadow_addr || memory_is_poisoned_1(addr + 15);

	return *shadow_addr;
}

static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
					size_t size)
{
	while (size) {
		if (unlikely(*start))
			return (unsigned long)start;
		start++;
		size--;
	}

	return 0;
}

static __always_inline unsigned long memory_is_nonzero(const void *start,
						const void *end)
{
	unsigned int words;
	unsigned long ret;
	unsigned int prefix = (unsigned long)start % 8;

	if (end - start <= 16)
		return bytes_is_nonzero(start, end - start);

	if (prefix) {
		prefix = 8 - prefix;
		ret = bytes_is_nonzero(start, prefix);
		if (unlikely(ret))
			return ret;
		start += prefix;
	}

	words = (end - start) / 8;
	while (words) {
		if (unlikely(*(u64 *)start))
			return bytes_is_nonzero(start, 8);
		start += 8;
		words--;
	}

	return bytes_is_nonzero(start, (end - start) % 8);
}

static __always_inline bool memory_is_poisoned_n(unsigned long addr,
						size_t size)
{
	unsigned long ret;

	ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
			kasan_mem_to_shadow((void *)addr + size - 1) + 1);

	if (unlikely(ret)) {
		unsigned long last_byte = addr + size - 1;
		s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);

		if (unlikely(ret != (unsigned long)last_shadow ||
			((long)(last_byte & KASAN_GRANULE_MASK) >= *last_shadow)))
			return true;
	}
	return false;
}

static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
{
	if (__builtin_constant_p(size)) {
		switch (size) {
		case 1:
			return memory_is_poisoned_1(addr);
		case 2:
		case 4:
		case 8:
			return memory_is_poisoned_2_4_8(addr, size);
		case 16:
			return memory_is_poisoned_16(addr);
		default:
			BUILD_BUG();
		}
	}

	return memory_is_poisoned_n(addr, size);
}

static __always_inline bool check_region_inline(unsigned long addr,
						size_t size, bool write,
						unsigned long ret_ip)
{
	if (!kasan_arch_is_ready())
		return true;

	if (unlikely(size == 0))
		return true;

	if (unlikely(addr + size < addr))
		return !kasan_report(addr, size, write, ret_ip);

	if (unlikely((void *)addr <
		kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
		return !kasan_report(addr, size, write, ret_ip);
	}

	if (likely(!memory_is_poisoned(addr, size)))
		return true;

	return !kasan_report(addr, size, write, ret_ip);
}

bool kasan_check_range(unsigned long addr, size_t size, bool write,
					unsigned long ret_ip)
{
	return check_region_inline(addr, size, write, ret_ip);
}

bool kasan_byte_accessible(const void *addr)
{
	s8 shadow_byte;

	if (!kasan_arch_is_ready())
		return true;

	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));

	return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
}

void kasan_cache_shrink(struct kmem_cache *cache)
{
	kasan_quarantine_remove_cache(cache);
}

void kasan_cache_shutdown(struct kmem_cache *cache)
{
	if (!__kmem_cache_empty(cache))
		kasan_quarantine_remove_cache(cache);
}

static void register_global(struct kasan_global *global)
{
	size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);

	kasan_unpoison(global->beg, global->size, false);

	kasan_poison(global->beg + aligned_size,
		     global->size_with_redzone - aligned_size,
		     KASAN_GLOBAL_REDZONE, false);
}

void __asan_register_globals(struct kasan_global *globals, size_t size)
{
	int i;

	for (i = 0; i < size; i++)
		register_global(&globals[i]);
}
EXPORT_SYMBOL(__asan_register_globals);

void __asan_unregister_globals(struct kasan_global *globals, size_t size)
{
}
EXPORT_SYMBOL(__asan_unregister_globals);

#define DEFINE_ASAN_LOAD_STORE(size)					\
	void __asan_load##size(unsigned long addr)			\
	{								\
		check_region_inline(addr, size, false, _RET_IP_);	\
	}								\
	EXPORT_SYMBOL(__asan_load##size);				\
	__alias(__asan_load##size)					\
	void __asan_load##size##_noabort(unsigned long);		\
	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
	void __asan_store##size(unsigned long addr)			\
	{								\
		check_region_inline(addr, size, true, _RET_IP_);	\
	}								\
	EXPORT_SYMBOL(__asan_store##size);				\
	__alias(__asan_store##size)					\
	void __asan_store##size##_noabort(unsigned long);		\
	EXPORT_SYMBOL(__asan_store##size##_noabort)

DEFINE_ASAN_LOAD_STORE(1);
DEFINE_ASAN_LOAD_STORE(2);
DEFINE_ASAN_LOAD_STORE(4);
DEFINE_ASAN_LOAD_STORE(8);
DEFINE_ASAN_LOAD_STORE(16);

void __asan_loadN(unsigned long addr, size_t size)
{
	kasan_check_range(addr, size, false, _RET_IP_);
}
EXPORT_SYMBOL(__asan_loadN);

__alias(__asan_loadN)
void __asan_loadN_noabort(unsigned long, size_t);
EXPORT_SYMBOL(__asan_loadN_noabort);

void __asan_storeN(unsigned long addr, size_t size)
{
	kasan_check_range(addr, size, true, _RET_IP_);
}
EXPORT_SYMBOL(__asan_storeN);

__alias(__asan_storeN)
void __asan_storeN_noabort(unsigned long, size_t);
EXPORT_SYMBOL(__asan_storeN_noabort);

/* to shut up compiler complaints */
void __asan_handle_no_return(void) {}
EXPORT_SYMBOL(__asan_handle_no_return);

/* Emitted by compiler to poison alloca()ed objects. */
void __asan_alloca_poison(unsigned long addr, size_t size)
{
	size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
			rounded_up_size;
	size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);

	const void *left_redzone = (const void *)(addr -
			KASAN_ALLOCA_REDZONE_SIZE);
	const void *right_redzone = (const void *)(addr + rounded_up_size);

	WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));

	kasan_unpoison((const void *)(addr + rounded_down_size),
			size - rounded_down_size, false);
	kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
		     KASAN_ALLOCA_LEFT, false);
	kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
		     KASAN_ALLOCA_RIGHT, false);
}
EXPORT_SYMBOL(__asan_alloca_poison);

/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
{
	if (unlikely(!stack_top || stack_top > stack_bottom))
		return;

	kasan_unpoison(stack_top, stack_bottom - stack_top, false);
}
EXPORT_SYMBOL(__asan_allocas_unpoison);

/* Emitted by the compiler to [un]poison local variables. */
#define DEFINE_ASAN_SET_SHADOW(byte) \
	void __asan_set_shadow_##byte(const void *addr, size_t size)	\
	{								\
		__memset((void *)addr, 0x##byte, size);			\
	}								\
	EXPORT_SYMBOL(__asan_set_shadow_##byte)

DEFINE_ASAN_SET_SHADOW(00);
DEFINE_ASAN_SET_SHADOW(f1);
DEFINE_ASAN_SET_SHADOW(f2);
DEFINE_ASAN_SET_SHADOW(f3);
DEFINE_ASAN_SET_SHADOW(f5);
DEFINE_ASAN_SET_SHADOW(f8);

/* Only allow cache merging when no per-object metadata is present. */
slab_flags_t kasan_never_merge(void)
{
	if (!kasan_requires_meta())
		return 0;
	return SLAB_KASAN;
}

/*
 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
 * For larger allocations larger redzones are used.
 */
static inline unsigned int optimal_redzone(unsigned int object_size)
{
	return
		object_size <= 64        - 16   ? 16 :
		object_size <= 128       - 32   ? 32 :
		object_size <= 512       - 64   ? 64 :
		object_size <= 4096      - 128  ? 128 :
		object_size <= (1 << 14) - 256  ? 256 :
		object_size <= (1 << 15) - 512  ? 512 :
		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
}

void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
			  slab_flags_t *flags)
{
	unsigned int ok_size;
	unsigned int optimal_size;

	if (!kasan_requires_meta())
		return;

	/*
	 * SLAB_KASAN is used to mark caches that are sanitized by KASAN
	 * and that thus have per-object metadata.
	 * Currently this flag is used in two places:
	 * 1. In slab_ksize() to account for per-object metadata when
	 *    calculating the size of the accessible memory within the object.
	 * 2. In slab_common.c via kasan_never_merge() to prevent merging of
	 *    caches with per-object metadata.
	 */
	*flags |= SLAB_KASAN;

	ok_size = *size;

	/* Add alloc meta into redzone. */
	cache->kasan_info.alloc_meta_offset = *size;
	*size += sizeof(struct kasan_alloc_meta);

	/*
	 * If alloc meta doesn't fit, don't add it.
	 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
	 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
	 * larger sizes.
	 */
	if (*size > KMALLOC_MAX_SIZE) {
		cache->kasan_info.alloc_meta_offset = 0;
		*size = ok_size;
		/* Continue, since free meta might still fit. */
	}

	/*
	 * Add free meta into redzone when it's not possible to store
	 * it in the object. This is the case when:
	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
	 *    be touched after it was freed, or
	 * 2. Object has a constructor, which means it's expected to
	 *    retain its content until the next allocation, or
	 * 3. Object is too small.
	 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
	 */
	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
	    cache->object_size < sizeof(struct kasan_free_meta)) {
		ok_size = *size;

		cache->kasan_info.free_meta_offset = *size;
		*size += sizeof(struct kasan_free_meta);

		/* If free meta doesn't fit, don't add it. */
		if (*size > KMALLOC_MAX_SIZE) {
			cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
			*size = ok_size;
		}
	}

	/* Calculate size with optimal redzone. */
	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
	/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
	if (optimal_size > KMALLOC_MAX_SIZE)
		optimal_size = KMALLOC_MAX_SIZE;
	/* Use optimal size if the size with added metas is not large enough. */
	if (*size < optimal_size)
		*size = optimal_size;
}

struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
					      const void *object)
{
	if (!cache->kasan_info.alloc_meta_offset)
		return NULL;
	return (void *)object + cache->kasan_info.alloc_meta_offset;
}

struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
					    const void *object)
{
	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
		return NULL;
	return (void *)object + cache->kasan_info.free_meta_offset;
}

void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
{
	struct kasan_alloc_meta *alloc_meta;

	alloc_meta = kasan_get_alloc_meta(cache, object);
	if (alloc_meta)
		__memset(alloc_meta, 0, sizeof(*alloc_meta));
}

size_t kasan_metadata_size(struct kmem_cache *cache)
{
	if (!kasan_requires_meta())
		return 0;
	return (cache->kasan_info.alloc_meta_offset ?
		sizeof(struct kasan_alloc_meta) : 0) +
		((cache->kasan_info.free_meta_offset &&
		  cache->kasan_info.free_meta_offset != KASAN_NO_FREE_META) ?
		 sizeof(struct kasan_free_meta) : 0);
}

static void __kasan_record_aux_stack(void *addr, bool can_alloc)
{
	struct slab *slab = kasan_addr_to_slab(addr);
	struct kmem_cache *cache;
	struct kasan_alloc_meta *alloc_meta;
	void *object;

	if (is_kfence_address(addr) || !slab)
		return;

	cache = slab->slab_cache;
	object = nearest_obj(cache, slab, addr);
	alloc_meta = kasan_get_alloc_meta(cache, object);
	if (!alloc_meta)
		return;

	alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
	alloc_meta->aux_stack[0] = kasan_save_stack(GFP_NOWAIT, can_alloc);
}

void kasan_record_aux_stack(void *addr)
{
	return __kasan_record_aux_stack(addr, true);
}

void kasan_record_aux_stack_noalloc(void *addr)
{
	return __kasan_record_aux_stack(addr, false);
}

void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
{
	struct kasan_alloc_meta *alloc_meta;

	alloc_meta = kasan_get_alloc_meta(cache, object);
	if (alloc_meta)
		kasan_set_track(&alloc_meta->alloc_track, flags);
}

void kasan_save_free_info(struct kmem_cache *cache, void *object)
{
	struct kasan_free_meta *free_meta;

	free_meta = kasan_get_free_meta(cache, object);
	if (!free_meta)
		return;

	kasan_set_track(&free_meta->free_track, GFP_NOWAIT);
	/* The object was freed and has free track set. */
	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREETRACK;
}