Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 | // SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2018-2021 Intel Corporation #include <linux/auxiliary_bus.h> #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/devm-helpers.h> #include <linux/hwmon.h> #include <linux/jiffies.h> #include <linux/module.h> #include <linux/peci.h> #include <linux/peci-cpu.h> #include <linux/units.h> #include <linux/workqueue.h> #include "common.h" #define DIMM_MASK_CHECK_DELAY_JIFFIES msecs_to_jiffies(5000) /* Max number of channel ranks and DIMM index per channel */ #define CHAN_RANK_MAX_ON_HSX 8 #define DIMM_IDX_MAX_ON_HSX 3 #define CHAN_RANK_MAX_ON_BDX 4 #define DIMM_IDX_MAX_ON_BDX 3 #define CHAN_RANK_MAX_ON_BDXD 2 #define DIMM_IDX_MAX_ON_BDXD 2 #define CHAN_RANK_MAX_ON_SKX 6 #define DIMM_IDX_MAX_ON_SKX 2 #define CHAN_RANK_MAX_ON_ICX 8 #define DIMM_IDX_MAX_ON_ICX 2 #define CHAN_RANK_MAX_ON_ICXD 4 #define DIMM_IDX_MAX_ON_ICXD 2 #define CHAN_RANK_MAX CHAN_RANK_MAX_ON_HSX #define DIMM_IDX_MAX DIMM_IDX_MAX_ON_HSX #define DIMM_NUMS_MAX (CHAN_RANK_MAX * DIMM_IDX_MAX) #define CPU_SEG_MASK GENMASK(23, 16) #define GET_CPU_SEG(x) (((x) & CPU_SEG_MASK) >> 16) #define CPU_BUS_MASK GENMASK(7, 0) #define GET_CPU_BUS(x) ((x) & CPU_BUS_MASK) #define DIMM_TEMP_MAX GENMASK(15, 8) #define DIMM_TEMP_CRIT GENMASK(23, 16) #define GET_TEMP_MAX(x) (((x) & DIMM_TEMP_MAX) >> 8) #define GET_TEMP_CRIT(x) (((x) & DIMM_TEMP_CRIT) >> 16) #define NO_DIMM_RETRY_COUNT_MAX 5 struct peci_dimmtemp; struct dimm_info { int chan_rank_max; int dimm_idx_max; u8 min_peci_revision; int (*read_thresholds)(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data); }; struct peci_dimm_thresholds { long temp_max; long temp_crit; struct peci_sensor_state state; }; enum peci_dimm_threshold_type { temp_max_type, temp_crit_type, }; struct peci_dimmtemp { struct peci_device *peci_dev; struct device *dev; const char *name; const struct dimm_info *gen_info; struct delayed_work detect_work; struct { struct peci_sensor_data temp; struct peci_dimm_thresholds thresholds; } dimm[DIMM_NUMS_MAX]; char **dimmtemp_label; DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX); u8 no_dimm_retry_count; }; static u8 __dimm_temp(u32 reg, int dimm_order) { return (reg >> (dimm_order * 8)) & 0xff; } static int get_dimm_temp(struct peci_dimmtemp *priv, int dimm_no, long *val) { int dimm_order = dimm_no % priv->gen_info->dimm_idx_max; int chan_rank = dimm_no / priv->gen_info->dimm_idx_max; int ret = 0; u32 data; mutex_lock(&priv->dimm[dimm_no].temp.state.lock); if (!peci_sensor_need_update(&priv->dimm[dimm_no].temp.state)) goto skip_update; ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &data); if (ret) goto unlock; priv->dimm[dimm_no].temp.value = __dimm_temp(data, dimm_order) * MILLIDEGREE_PER_DEGREE; peci_sensor_mark_updated(&priv->dimm[dimm_no].temp.state); skip_update: *val = priv->dimm[dimm_no].temp.value; unlock: mutex_unlock(&priv->dimm[dimm_no].temp.state.lock); return ret; } static int update_thresholds(struct peci_dimmtemp *priv, int dimm_no) { int dimm_order = dimm_no % priv->gen_info->dimm_idx_max; int chan_rank = dimm_no / priv->gen_info->dimm_idx_max; u32 data; int ret; if (!peci_sensor_need_update(&priv->dimm[dimm_no].thresholds.state)) return 0; ret = priv->gen_info->read_thresholds(priv, dimm_order, chan_rank, &data); if (ret == -ENODATA) /* Use default or previous value */ return 0; if (ret) return ret; priv->dimm[dimm_no].thresholds.temp_max = GET_TEMP_MAX(data) * MILLIDEGREE_PER_DEGREE; priv->dimm[dimm_no].thresholds.temp_crit = GET_TEMP_CRIT(data) * MILLIDEGREE_PER_DEGREE; peci_sensor_mark_updated(&priv->dimm[dimm_no].thresholds.state); return 0; } static int get_dimm_thresholds(struct peci_dimmtemp *priv, enum peci_dimm_threshold_type type, int dimm_no, long *val) { int ret; mutex_lock(&priv->dimm[dimm_no].thresholds.state.lock); ret = update_thresholds(priv, dimm_no); if (ret) goto unlock; switch (type) { case temp_max_type: *val = priv->dimm[dimm_no].thresholds.temp_max; break; case temp_crit_type: *val = priv->dimm[dimm_no].thresholds.temp_crit; break; default: ret = -EOPNOTSUPP; break; } unlock: mutex_unlock(&priv->dimm[dimm_no].thresholds.state.lock); return ret; } static int dimmtemp_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { struct peci_dimmtemp *priv = dev_get_drvdata(dev); if (attr != hwmon_temp_label) return -EOPNOTSUPP; *str = (const char *)priv->dimmtemp_label[channel]; return 0; } static int dimmtemp_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct peci_dimmtemp *priv = dev_get_drvdata(dev); switch (attr) { case hwmon_temp_input: return get_dimm_temp(priv, channel, val); case hwmon_temp_max: return get_dimm_thresholds(priv, temp_max_type, channel, val); case hwmon_temp_crit: return get_dimm_thresholds(priv, temp_crit_type, channel, val); default: break; } return -EOPNOTSUPP; } static umode_t dimmtemp_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct peci_dimmtemp *priv = data; if (test_bit(channel, priv->dimm_mask)) return 0444; return 0; } static const struct hwmon_ops peci_dimmtemp_ops = { .is_visible = dimmtemp_is_visible, .read_string = dimmtemp_read_string, .read = dimmtemp_read, }; static int check_populated_dimms(struct peci_dimmtemp *priv) { int chan_rank_max = priv->gen_info->chan_rank_max; int dimm_idx_max = priv->gen_info->dimm_idx_max; u32 chan_rank_empty = 0; u32 dimm_mask = 0; int chan_rank, dimm_idx, ret; u32 pcs; BUILD_BUG_ON(BITS_PER_TYPE(chan_rank_empty) < CHAN_RANK_MAX); BUILD_BUG_ON(BITS_PER_TYPE(dimm_mask) < DIMM_NUMS_MAX); if (chan_rank_max * dimm_idx_max > DIMM_NUMS_MAX) { WARN_ONCE(1, "Unsupported number of DIMMs - chan_rank_max: %d, dimm_idx_max: %d", chan_rank_max, dimm_idx_max); return -EINVAL; } for (chan_rank = 0; chan_rank < chan_rank_max; chan_rank++) { ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &pcs); if (ret) { /* * Overall, we expect either success or -EINVAL in * order to determine whether DIMM is populated or not. * For anything else we fall back to deferring the * detection to be performed at a later point in time. */ if (ret == -EINVAL) { chan_rank_empty |= BIT(chan_rank); continue; } return -EAGAIN; } for (dimm_idx = 0; dimm_idx < dimm_idx_max; dimm_idx++) if (__dimm_temp(pcs, dimm_idx)) dimm_mask |= BIT(chan_rank * dimm_idx_max + dimm_idx); } /* * If we got all -EINVALs, it means that the CPU doesn't have any * DIMMs. Unfortunately, it may also happen at the very start of * host platform boot. Retrying a couple of times lets us make sure * that the state is persistent. */ if (chan_rank_empty == GENMASK(chan_rank_max - 1, 0)) { if (priv->no_dimm_retry_count < NO_DIMM_RETRY_COUNT_MAX) { priv->no_dimm_retry_count++; return -EAGAIN; } return -ENODEV; } /* * It's possible that memory training is not done yet. In this case we * defer the detection to be performed at a later point in time. */ if (!dimm_mask) { priv->no_dimm_retry_count = 0; return -EAGAIN; } dev_dbg(priv->dev, "Scanned populated DIMMs: %#x\n", dimm_mask); bitmap_from_arr32(priv->dimm_mask, &dimm_mask, DIMM_NUMS_MAX); return 0; } static int create_dimm_temp_label(struct peci_dimmtemp *priv, int chan) { int rank = chan / priv->gen_info->dimm_idx_max; int idx = chan % priv->gen_info->dimm_idx_max; priv->dimmtemp_label[chan] = devm_kasprintf(priv->dev, GFP_KERNEL, "DIMM %c%d", 'A' + rank, idx + 1); if (!priv->dimmtemp_label[chan]) return -ENOMEM; return 0; } static const struct hwmon_channel_info *peci_dimmtemp_temp_info[] = { HWMON_CHANNEL_INFO(temp, [0 ... DIMM_NUMS_MAX - 1] = HWMON_T_LABEL | HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT), NULL }; static const struct hwmon_chip_info peci_dimmtemp_chip_info = { .ops = &peci_dimmtemp_ops, .info = peci_dimmtemp_temp_info, }; static int create_dimm_temp_info(struct peci_dimmtemp *priv) { int ret, i, channels; struct device *dev; /* * We expect to either find populated DIMMs and carry on with creating * sensors, or find out that there are no DIMMs populated. * All other states mean that the platform never reached the state that * allows to check DIMM state - causing us to retry later on. */ ret = check_populated_dimms(priv); if (ret == -ENODEV) { dev_dbg(priv->dev, "No DIMMs found\n"); return 0; } else if (ret) { schedule_delayed_work(&priv->detect_work, DIMM_MASK_CHECK_DELAY_JIFFIES); dev_dbg(priv->dev, "Deferred populating DIMM temp info\n"); return ret; } channels = priv->gen_info->chan_rank_max * priv->gen_info->dimm_idx_max; priv->dimmtemp_label = devm_kzalloc(priv->dev, channels * sizeof(char *), GFP_KERNEL); if (!priv->dimmtemp_label) return -ENOMEM; for_each_set_bit(i, priv->dimm_mask, DIMM_NUMS_MAX) { ret = create_dimm_temp_label(priv, i); if (ret) return ret; mutex_init(&priv->dimm[i].thresholds.state.lock); mutex_init(&priv->dimm[i].temp.state.lock); } dev = devm_hwmon_device_register_with_info(priv->dev, priv->name, priv, &peci_dimmtemp_chip_info, NULL); if (IS_ERR(dev)) { dev_err(priv->dev, "Failed to register hwmon device\n"); return PTR_ERR(dev); } dev_dbg(priv->dev, "%s: sensor '%s'\n", dev_name(dev), priv->name); return 0; } static void create_dimm_temp_info_delayed(struct work_struct *work) { struct peci_dimmtemp *priv = container_of(to_delayed_work(work), struct peci_dimmtemp, detect_work); int ret; ret = create_dimm_temp_info(priv); if (ret && ret != -EAGAIN) dev_err(priv->dev, "Failed to populate DIMM temp info\n"); } static int peci_dimmtemp_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id) { struct device *dev = &adev->dev; struct peci_device *peci_dev = to_peci_device(dev->parent); struct peci_dimmtemp *priv; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = devm_kasprintf(dev, GFP_KERNEL, "peci_dimmtemp.cpu%d", peci_dev->info.socket_id); if (!priv->name) return -ENOMEM; priv->dev = dev; priv->peci_dev = peci_dev; priv->gen_info = (const struct dimm_info *)id->driver_data; /* * This is just a sanity check. Since we're using commands that are * guaranteed to be supported on a given platform, we should never see * revision lower than expected. */ if (peci_dev->info.peci_revision < priv->gen_info->min_peci_revision) dev_warn(priv->dev, "Unexpected PECI revision %#x, some features may be unavailable\n", peci_dev->info.peci_revision); ret = devm_delayed_work_autocancel(priv->dev, &priv->detect_work, create_dimm_temp_info_delayed); if (ret) return ret; ret = create_dimm_temp_info(priv); if (ret && ret != -EAGAIN) { dev_err(dev, "Failed to populate DIMM temp info\n"); return ret; } return 0; } static int read_thresholds_hsx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) { u8 dev, func; u16 reg; int ret; /* * Device 20, Function 0: IMC 0 channel 0 -> rank 0 * Device 20, Function 1: IMC 0 channel 1 -> rank 1 * Device 21, Function 0: IMC 0 channel 2 -> rank 2 * Device 21, Function 1: IMC 0 channel 3 -> rank 3 * Device 23, Function 0: IMC 1 channel 0 -> rank 4 * Device 23, Function 1: IMC 1 channel 1 -> rank 5 * Device 24, Function 0: IMC 1 channel 2 -> rank 6 * Device 24, Function 1: IMC 1 channel 3 -> rank 7 */ dev = 20 + chan_rank / 2 + chan_rank / 4; func = chan_rank % 2; reg = 0x120 + dimm_order * 4; ret = peci_pci_local_read(priv->peci_dev, 1, dev, func, reg, data); if (ret) return ret; return 0; } static int read_thresholds_bdxd(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) { u8 dev, func; u16 reg; int ret; /* * Device 10, Function 2: IMC 0 channel 0 -> rank 0 * Device 10, Function 6: IMC 0 channel 1 -> rank 1 * Device 12, Function 2: IMC 1 channel 0 -> rank 2 * Device 12, Function 6: IMC 1 channel 1 -> rank 3 */ dev = 10 + chan_rank / 2 * 2; func = (chan_rank % 2) ? 6 : 2; reg = 0x120 + dimm_order * 4; ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data); if (ret) return ret; return 0; } static int read_thresholds_skx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) { u8 dev, func; u16 reg; int ret; /* * Device 10, Function 2: IMC 0 channel 0 -> rank 0 * Device 10, Function 6: IMC 0 channel 1 -> rank 1 * Device 11, Function 2: IMC 0 channel 2 -> rank 2 * Device 12, Function 2: IMC 1 channel 0 -> rank 3 * Device 12, Function 6: IMC 1 channel 1 -> rank 4 * Device 13, Function 2: IMC 1 channel 2 -> rank 5 */ dev = 10 + chan_rank / 3 * 2 + (chan_rank % 3 == 2 ? 1 : 0); func = chan_rank % 3 == 1 ? 6 : 2; reg = 0x120 + dimm_order * 4; ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data); if (ret) return ret; return 0; } static int read_thresholds_icx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) { u32 reg_val; u64 offset; int ret; u8 dev; ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd4, ®_val); if (ret || !(reg_val & BIT(31))) return -ENODATA; /* Use default or previous value */ ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd0, ®_val); if (ret) return -ENODATA; /* Use default or previous value */ /* * Device 26, Offset 224e0: IMC 0 channel 0 -> rank 0 * Device 26, Offset 264e0: IMC 0 channel 1 -> rank 1 * Device 27, Offset 224e0: IMC 1 channel 0 -> rank 2 * Device 27, Offset 264e0: IMC 1 channel 1 -> rank 3 * Device 28, Offset 224e0: IMC 2 channel 0 -> rank 4 * Device 28, Offset 264e0: IMC 2 channel 1 -> rank 5 * Device 29, Offset 224e0: IMC 3 channel 0 -> rank 6 * Device 29, Offset 264e0: IMC 3 channel 1 -> rank 7 */ dev = 26 + chan_rank / 2; offset = 0x224e0 + dimm_order * 4 + (chan_rank % 2) * 0x4000; ret = peci_mmio_read(priv->peci_dev, 0, GET_CPU_SEG(reg_val), GET_CPU_BUS(reg_val), dev, 0, offset, data); if (ret) return ret; return 0; } static const struct dimm_info dimm_hsx = { .chan_rank_max = CHAN_RANK_MAX_ON_HSX, .dimm_idx_max = DIMM_IDX_MAX_ON_HSX, .min_peci_revision = 0x33, .read_thresholds = &read_thresholds_hsx, }; static const struct dimm_info dimm_bdx = { .chan_rank_max = CHAN_RANK_MAX_ON_BDX, .dimm_idx_max = DIMM_IDX_MAX_ON_BDX, .min_peci_revision = 0x33, .read_thresholds = &read_thresholds_hsx, }; static const struct dimm_info dimm_bdxd = { .chan_rank_max = CHAN_RANK_MAX_ON_BDXD, .dimm_idx_max = DIMM_IDX_MAX_ON_BDXD, .min_peci_revision = 0x33, .read_thresholds = &read_thresholds_bdxd, }; static const struct dimm_info dimm_skx = { .chan_rank_max = CHAN_RANK_MAX_ON_SKX, .dimm_idx_max = DIMM_IDX_MAX_ON_SKX, .min_peci_revision = 0x33, .read_thresholds = &read_thresholds_skx, }; static const struct dimm_info dimm_icx = { .chan_rank_max = CHAN_RANK_MAX_ON_ICX, .dimm_idx_max = DIMM_IDX_MAX_ON_ICX, .min_peci_revision = 0x40, .read_thresholds = &read_thresholds_icx, }; static const struct dimm_info dimm_icxd = { .chan_rank_max = CHAN_RANK_MAX_ON_ICXD, .dimm_idx_max = DIMM_IDX_MAX_ON_ICXD, .min_peci_revision = 0x40, .read_thresholds = &read_thresholds_icx, }; static const struct auxiliary_device_id peci_dimmtemp_ids[] = { { .name = "peci_cpu.dimmtemp.hsx", .driver_data = (kernel_ulong_t)&dimm_hsx, }, { .name = "peci_cpu.dimmtemp.bdx", .driver_data = (kernel_ulong_t)&dimm_bdx, }, { .name = "peci_cpu.dimmtemp.bdxd", .driver_data = (kernel_ulong_t)&dimm_bdxd, }, { .name = "peci_cpu.dimmtemp.skx", .driver_data = (kernel_ulong_t)&dimm_skx, }, { .name = "peci_cpu.dimmtemp.icx", .driver_data = (kernel_ulong_t)&dimm_icx, }, { .name = "peci_cpu.dimmtemp.icxd", .driver_data = (kernel_ulong_t)&dimm_icxd, }, { } }; MODULE_DEVICE_TABLE(auxiliary, peci_dimmtemp_ids); static struct auxiliary_driver peci_dimmtemp_driver = { .probe = peci_dimmtemp_probe, .id_table = peci_dimmtemp_ids, }; module_auxiliary_driver(peci_dimmtemp_driver); MODULE_AUTHOR("Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>"); MODULE_AUTHOR("Iwona Winiarska <iwona.winiarska@intel.com>"); MODULE_DESCRIPTION("PECI dimmtemp driver"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(PECI_CPU); |