Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
// SPDX-License-Identifier: GPL-2.0-only
// Copyright (c) 2018-2021 Intel Corporation

#include <linux/auxiliary_bus.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/devm-helpers.h>
#include <linux/hwmon.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/peci.h>
#include <linux/peci-cpu.h>
#include <linux/units.h>
#include <linux/workqueue.h>

#include "common.h"

#define DIMM_MASK_CHECK_DELAY_JIFFIES	msecs_to_jiffies(5000)

/* Max number of channel ranks and DIMM index per channel */
#define CHAN_RANK_MAX_ON_HSX	8
#define DIMM_IDX_MAX_ON_HSX	3
#define CHAN_RANK_MAX_ON_BDX	4
#define DIMM_IDX_MAX_ON_BDX	3
#define CHAN_RANK_MAX_ON_BDXD	2
#define DIMM_IDX_MAX_ON_BDXD	2
#define CHAN_RANK_MAX_ON_SKX	6
#define DIMM_IDX_MAX_ON_SKX	2
#define CHAN_RANK_MAX_ON_ICX	8
#define DIMM_IDX_MAX_ON_ICX	2
#define CHAN_RANK_MAX_ON_ICXD	4
#define DIMM_IDX_MAX_ON_ICXD	2

#define CHAN_RANK_MAX		CHAN_RANK_MAX_ON_HSX
#define DIMM_IDX_MAX		DIMM_IDX_MAX_ON_HSX
#define DIMM_NUMS_MAX		(CHAN_RANK_MAX * DIMM_IDX_MAX)

#define CPU_SEG_MASK		GENMASK(23, 16)
#define GET_CPU_SEG(x)		(((x) & CPU_SEG_MASK) >> 16)
#define CPU_BUS_MASK		GENMASK(7, 0)
#define GET_CPU_BUS(x)		((x) & CPU_BUS_MASK)

#define DIMM_TEMP_MAX		GENMASK(15, 8)
#define DIMM_TEMP_CRIT		GENMASK(23, 16)
#define GET_TEMP_MAX(x)		(((x) & DIMM_TEMP_MAX) >> 8)
#define GET_TEMP_CRIT(x)	(((x) & DIMM_TEMP_CRIT) >> 16)

#define NO_DIMM_RETRY_COUNT_MAX	5

struct peci_dimmtemp;

struct dimm_info {
	int chan_rank_max;
	int dimm_idx_max;
	u8 min_peci_revision;
	int (*read_thresholds)(struct peci_dimmtemp *priv, int dimm_order,
			       int chan_rank, u32 *data);
};

struct peci_dimm_thresholds {
	long temp_max;
	long temp_crit;
	struct peci_sensor_state state;
};

enum peci_dimm_threshold_type {
	temp_max_type,
	temp_crit_type,
};

struct peci_dimmtemp {
	struct peci_device *peci_dev;
	struct device *dev;
	const char *name;
	const struct dimm_info *gen_info;
	struct delayed_work detect_work;
	struct {
		struct peci_sensor_data temp;
		struct peci_dimm_thresholds thresholds;
	} dimm[DIMM_NUMS_MAX];
	char **dimmtemp_label;
	DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX);
	u8 no_dimm_retry_count;
};

static u8 __dimm_temp(u32 reg, int dimm_order)
{
	return (reg >> (dimm_order * 8)) & 0xff;
}

static int get_dimm_temp(struct peci_dimmtemp *priv, int dimm_no, long *val)
{
	int dimm_order = dimm_no % priv->gen_info->dimm_idx_max;
	int chan_rank = dimm_no / priv->gen_info->dimm_idx_max;
	int ret = 0;
	u32 data;

	mutex_lock(&priv->dimm[dimm_no].temp.state.lock);
	if (!peci_sensor_need_update(&priv->dimm[dimm_no].temp.state))
		goto skip_update;

	ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &data);
	if (ret)
		goto unlock;

	priv->dimm[dimm_no].temp.value = __dimm_temp(data, dimm_order) * MILLIDEGREE_PER_DEGREE;

	peci_sensor_mark_updated(&priv->dimm[dimm_no].temp.state);

skip_update:
	*val = priv->dimm[dimm_no].temp.value;
unlock:
	mutex_unlock(&priv->dimm[dimm_no].temp.state.lock);
	return ret;
}

static int update_thresholds(struct peci_dimmtemp *priv, int dimm_no)
{
	int dimm_order = dimm_no % priv->gen_info->dimm_idx_max;
	int chan_rank = dimm_no / priv->gen_info->dimm_idx_max;
	u32 data;
	int ret;

	if (!peci_sensor_need_update(&priv->dimm[dimm_no].thresholds.state))
		return 0;

	ret = priv->gen_info->read_thresholds(priv, dimm_order, chan_rank, &data);
	if (ret == -ENODATA) /* Use default or previous value */
		return 0;
	if (ret)
		return ret;

	priv->dimm[dimm_no].thresholds.temp_max = GET_TEMP_MAX(data) * MILLIDEGREE_PER_DEGREE;
	priv->dimm[dimm_no].thresholds.temp_crit = GET_TEMP_CRIT(data) * MILLIDEGREE_PER_DEGREE;

	peci_sensor_mark_updated(&priv->dimm[dimm_no].thresholds.state);

	return 0;
}

static int get_dimm_thresholds(struct peci_dimmtemp *priv, enum peci_dimm_threshold_type type,
			       int dimm_no, long *val)
{
	int ret;

	mutex_lock(&priv->dimm[dimm_no].thresholds.state.lock);
	ret = update_thresholds(priv, dimm_no);
	if (ret)
		goto unlock;

	switch (type) {
	case temp_max_type:
		*val = priv->dimm[dimm_no].thresholds.temp_max;
		break;
	case temp_crit_type:
		*val = priv->dimm[dimm_no].thresholds.temp_crit;
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}
unlock:
	mutex_unlock(&priv->dimm[dimm_no].thresholds.state.lock);

	return ret;
}

static int dimmtemp_read_string(struct device *dev,
				enum hwmon_sensor_types type,
				u32 attr, int channel, const char **str)
{
	struct peci_dimmtemp *priv = dev_get_drvdata(dev);

	if (attr != hwmon_temp_label)
		return -EOPNOTSUPP;

	*str = (const char *)priv->dimmtemp_label[channel];

	return 0;
}

static int dimmtemp_read(struct device *dev, enum hwmon_sensor_types type,
			 u32 attr, int channel, long *val)
{
	struct peci_dimmtemp *priv = dev_get_drvdata(dev);

	switch (attr) {
	case hwmon_temp_input:
		return get_dimm_temp(priv, channel, val);
	case hwmon_temp_max:
		return get_dimm_thresholds(priv, temp_max_type, channel, val);
	case hwmon_temp_crit:
		return get_dimm_thresholds(priv, temp_crit_type, channel, val);
	default:
		break;
	}

	return -EOPNOTSUPP;
}

static umode_t dimmtemp_is_visible(const void *data, enum hwmon_sensor_types type,
				   u32 attr, int channel)
{
	const struct peci_dimmtemp *priv = data;

	if (test_bit(channel, priv->dimm_mask))
		return 0444;

	return 0;
}

static const struct hwmon_ops peci_dimmtemp_ops = {
	.is_visible = dimmtemp_is_visible,
	.read_string = dimmtemp_read_string,
	.read = dimmtemp_read,
};

static int check_populated_dimms(struct peci_dimmtemp *priv)
{
	int chan_rank_max = priv->gen_info->chan_rank_max;
	int dimm_idx_max = priv->gen_info->dimm_idx_max;
	u32 chan_rank_empty = 0;
	u32 dimm_mask = 0;
	int chan_rank, dimm_idx, ret;
	u32 pcs;

	BUILD_BUG_ON(BITS_PER_TYPE(chan_rank_empty) < CHAN_RANK_MAX);
	BUILD_BUG_ON(BITS_PER_TYPE(dimm_mask) < DIMM_NUMS_MAX);
	if (chan_rank_max * dimm_idx_max > DIMM_NUMS_MAX) {
		WARN_ONCE(1, "Unsupported number of DIMMs - chan_rank_max: %d, dimm_idx_max: %d",
			  chan_rank_max, dimm_idx_max);
		return -EINVAL;
	}

	for (chan_rank = 0; chan_rank < chan_rank_max; chan_rank++) {
		ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &pcs);
		if (ret) {
			/*
			 * Overall, we expect either success or -EINVAL in
			 * order to determine whether DIMM is populated or not.
			 * For anything else we fall back to deferring the
			 * detection to be performed at a later point in time.
			 */
			if (ret == -EINVAL) {
				chan_rank_empty |= BIT(chan_rank);
				continue;
			}

			return -EAGAIN;
		}

		for (dimm_idx = 0; dimm_idx < dimm_idx_max; dimm_idx++)
			if (__dimm_temp(pcs, dimm_idx))
				dimm_mask |= BIT(chan_rank * dimm_idx_max + dimm_idx);
	}

	/*
	 * If we got all -EINVALs, it means that the CPU doesn't have any
	 * DIMMs. Unfortunately, it may also happen at the very start of
	 * host platform boot. Retrying a couple of times lets us make sure
	 * that the state is persistent.
	 */
	if (chan_rank_empty == GENMASK(chan_rank_max - 1, 0)) {
		if (priv->no_dimm_retry_count < NO_DIMM_RETRY_COUNT_MAX) {
			priv->no_dimm_retry_count++;

			return -EAGAIN;
		}

		return -ENODEV;
	}

	/*
	 * It's possible that memory training is not done yet. In this case we
	 * defer the detection to be performed at a later point in time.
	 */
	if (!dimm_mask) {
		priv->no_dimm_retry_count = 0;
		return -EAGAIN;
	}

	dev_dbg(priv->dev, "Scanned populated DIMMs: %#x\n", dimm_mask);

	bitmap_from_arr32(priv->dimm_mask, &dimm_mask, DIMM_NUMS_MAX);

	return 0;
}

static int create_dimm_temp_label(struct peci_dimmtemp *priv, int chan)
{
	int rank = chan / priv->gen_info->dimm_idx_max;
	int idx = chan % priv->gen_info->dimm_idx_max;

	priv->dimmtemp_label[chan] = devm_kasprintf(priv->dev, GFP_KERNEL,
						    "DIMM %c%d", 'A' + rank,
						    idx + 1);
	if (!priv->dimmtemp_label[chan])
		return -ENOMEM;

	return 0;
}

static const struct hwmon_channel_info *peci_dimmtemp_temp_info[] = {
	HWMON_CHANNEL_INFO(temp,
			   [0 ... DIMM_NUMS_MAX - 1] = HWMON_T_LABEL |
				HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT),
	NULL
};

static const struct hwmon_chip_info peci_dimmtemp_chip_info = {
	.ops = &peci_dimmtemp_ops,
	.info = peci_dimmtemp_temp_info,
};

static int create_dimm_temp_info(struct peci_dimmtemp *priv)
{
	int ret, i, channels;
	struct device *dev;

	/*
	 * We expect to either find populated DIMMs and carry on with creating
	 * sensors, or find out that there are no DIMMs populated.
	 * All other states mean that the platform never reached the state that
	 * allows to check DIMM state - causing us to retry later on.
	 */
	ret = check_populated_dimms(priv);
	if (ret == -ENODEV) {
		dev_dbg(priv->dev, "No DIMMs found\n");
		return 0;
	} else if (ret) {
		schedule_delayed_work(&priv->detect_work, DIMM_MASK_CHECK_DELAY_JIFFIES);
		dev_dbg(priv->dev, "Deferred populating DIMM temp info\n");
		return ret;
	}

	channels = priv->gen_info->chan_rank_max * priv->gen_info->dimm_idx_max;

	priv->dimmtemp_label = devm_kzalloc(priv->dev, channels * sizeof(char *), GFP_KERNEL);
	if (!priv->dimmtemp_label)
		return -ENOMEM;

	for_each_set_bit(i, priv->dimm_mask, DIMM_NUMS_MAX) {
		ret = create_dimm_temp_label(priv, i);
		if (ret)
			return ret;
		mutex_init(&priv->dimm[i].thresholds.state.lock);
		mutex_init(&priv->dimm[i].temp.state.lock);
	}

	dev = devm_hwmon_device_register_with_info(priv->dev, priv->name, priv,
						   &peci_dimmtemp_chip_info, NULL);
	if (IS_ERR(dev)) {
		dev_err(priv->dev, "Failed to register hwmon device\n");
		return PTR_ERR(dev);
	}

	dev_dbg(priv->dev, "%s: sensor '%s'\n", dev_name(dev), priv->name);

	return 0;
}

static void create_dimm_temp_info_delayed(struct work_struct *work)
{
	struct peci_dimmtemp *priv = container_of(to_delayed_work(work),
						  struct peci_dimmtemp,
						  detect_work);
	int ret;

	ret = create_dimm_temp_info(priv);
	if (ret && ret != -EAGAIN)
		dev_err(priv->dev, "Failed to populate DIMM temp info\n");
}

static int peci_dimmtemp_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id)
{
	struct device *dev = &adev->dev;
	struct peci_device *peci_dev = to_peci_device(dev->parent);
	struct peci_dimmtemp *priv;
	int ret;

	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->name = devm_kasprintf(dev, GFP_KERNEL, "peci_dimmtemp.cpu%d",
				    peci_dev->info.socket_id);
	if (!priv->name)
		return -ENOMEM;

	priv->dev = dev;
	priv->peci_dev = peci_dev;
	priv->gen_info = (const struct dimm_info *)id->driver_data;

	/*
	 * This is just a sanity check. Since we're using commands that are
	 * guaranteed to be supported on a given platform, we should never see
	 * revision lower than expected.
	 */
	if (peci_dev->info.peci_revision < priv->gen_info->min_peci_revision)
		dev_warn(priv->dev,
			 "Unexpected PECI revision %#x, some features may be unavailable\n",
			 peci_dev->info.peci_revision);

	ret = devm_delayed_work_autocancel(priv->dev, &priv->detect_work,
					   create_dimm_temp_info_delayed);
	if (ret)
		return ret;

	ret = create_dimm_temp_info(priv);
	if (ret && ret != -EAGAIN) {
		dev_err(dev, "Failed to populate DIMM temp info\n");
		return ret;
	}

	return 0;
}

static int
read_thresholds_hsx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
{
	u8 dev, func;
	u16 reg;
	int ret;

	/*
	 * Device 20, Function 0: IMC 0 channel 0 -> rank 0
	 * Device 20, Function 1: IMC 0 channel 1 -> rank 1
	 * Device 21, Function 0: IMC 0 channel 2 -> rank 2
	 * Device 21, Function 1: IMC 0 channel 3 -> rank 3
	 * Device 23, Function 0: IMC 1 channel 0 -> rank 4
	 * Device 23, Function 1: IMC 1 channel 1 -> rank 5
	 * Device 24, Function 0: IMC 1 channel 2 -> rank 6
	 * Device 24, Function 1: IMC 1 channel 3 -> rank 7
	 */
	dev = 20 + chan_rank / 2 + chan_rank / 4;
	func = chan_rank % 2;
	reg = 0x120 + dimm_order * 4;

	ret = peci_pci_local_read(priv->peci_dev, 1, dev, func, reg, data);
	if (ret)
		return ret;

	return 0;
}

static int
read_thresholds_bdxd(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
{
	u8 dev, func;
	u16 reg;
	int ret;

	/*
	 * Device 10, Function 2: IMC 0 channel 0 -> rank 0
	 * Device 10, Function 6: IMC 0 channel 1 -> rank 1
	 * Device 12, Function 2: IMC 1 channel 0 -> rank 2
	 * Device 12, Function 6: IMC 1 channel 1 -> rank 3
	 */
	dev = 10 + chan_rank / 2 * 2;
	func = (chan_rank % 2) ? 6 : 2;
	reg = 0x120 + dimm_order * 4;

	ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data);
	if (ret)
		return ret;

	return 0;
}

static int
read_thresholds_skx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
{
	u8 dev, func;
	u16 reg;
	int ret;

	/*
	 * Device 10, Function 2: IMC 0 channel 0 -> rank 0
	 * Device 10, Function 6: IMC 0 channel 1 -> rank 1
	 * Device 11, Function 2: IMC 0 channel 2 -> rank 2
	 * Device 12, Function 2: IMC 1 channel 0 -> rank 3
	 * Device 12, Function 6: IMC 1 channel 1 -> rank 4
	 * Device 13, Function 2: IMC 1 channel 2 -> rank 5
	 */
	dev = 10 + chan_rank / 3 * 2 + (chan_rank % 3 == 2 ? 1 : 0);
	func = chan_rank % 3 == 1 ? 6 : 2;
	reg = 0x120 + dimm_order * 4;

	ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data);
	if (ret)
		return ret;

	return 0;
}

static int
read_thresholds_icx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
{
	u32 reg_val;
	u64 offset;
	int ret;
	u8 dev;

	ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd4, &reg_val);
	if (ret || !(reg_val & BIT(31)))
		return -ENODATA; /* Use default or previous value */

	ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd0, &reg_val);
	if (ret)
		return -ENODATA; /* Use default or previous value */

	/*
	 * Device 26, Offset 224e0: IMC 0 channel 0 -> rank 0
	 * Device 26, Offset 264e0: IMC 0 channel 1 -> rank 1
	 * Device 27, Offset 224e0: IMC 1 channel 0 -> rank 2
	 * Device 27, Offset 264e0: IMC 1 channel 1 -> rank 3
	 * Device 28, Offset 224e0: IMC 2 channel 0 -> rank 4
	 * Device 28, Offset 264e0: IMC 2 channel 1 -> rank 5
	 * Device 29, Offset 224e0: IMC 3 channel 0 -> rank 6
	 * Device 29, Offset 264e0: IMC 3 channel 1 -> rank 7
	 */
	dev = 26 + chan_rank / 2;
	offset = 0x224e0 + dimm_order * 4 + (chan_rank % 2) * 0x4000;

	ret = peci_mmio_read(priv->peci_dev, 0, GET_CPU_SEG(reg_val), GET_CPU_BUS(reg_val),
			     dev, 0, offset, data);
	if (ret)
		return ret;

	return 0;
}

static const struct dimm_info dimm_hsx = {
	.chan_rank_max	= CHAN_RANK_MAX_ON_HSX,
	.dimm_idx_max	= DIMM_IDX_MAX_ON_HSX,
	.min_peci_revision = 0x33,
	.read_thresholds = &read_thresholds_hsx,
};

static const struct dimm_info dimm_bdx = {
	.chan_rank_max	= CHAN_RANK_MAX_ON_BDX,
	.dimm_idx_max	= DIMM_IDX_MAX_ON_BDX,
	.min_peci_revision = 0x33,
	.read_thresholds = &read_thresholds_hsx,
};

static const struct dimm_info dimm_bdxd = {
	.chan_rank_max	= CHAN_RANK_MAX_ON_BDXD,
	.dimm_idx_max	= DIMM_IDX_MAX_ON_BDXD,
	.min_peci_revision = 0x33,
	.read_thresholds = &read_thresholds_bdxd,
};

static const struct dimm_info dimm_skx = {
	.chan_rank_max	= CHAN_RANK_MAX_ON_SKX,
	.dimm_idx_max	= DIMM_IDX_MAX_ON_SKX,
	.min_peci_revision = 0x33,
	.read_thresholds = &read_thresholds_skx,
};

static const struct dimm_info dimm_icx = {
	.chan_rank_max	= CHAN_RANK_MAX_ON_ICX,
	.dimm_idx_max	= DIMM_IDX_MAX_ON_ICX,
	.min_peci_revision = 0x40,
	.read_thresholds = &read_thresholds_icx,
};

static const struct dimm_info dimm_icxd = {
	.chan_rank_max	= CHAN_RANK_MAX_ON_ICXD,
	.dimm_idx_max	= DIMM_IDX_MAX_ON_ICXD,
	.min_peci_revision = 0x40,
	.read_thresholds = &read_thresholds_icx,
};

static const struct auxiliary_device_id peci_dimmtemp_ids[] = {
	{
		.name = "peci_cpu.dimmtemp.hsx",
		.driver_data = (kernel_ulong_t)&dimm_hsx,
	},
	{
		.name = "peci_cpu.dimmtemp.bdx",
		.driver_data = (kernel_ulong_t)&dimm_bdx,
	},
	{
		.name = "peci_cpu.dimmtemp.bdxd",
		.driver_data = (kernel_ulong_t)&dimm_bdxd,
	},
	{
		.name = "peci_cpu.dimmtemp.skx",
		.driver_data = (kernel_ulong_t)&dimm_skx,
	},
	{
		.name = "peci_cpu.dimmtemp.icx",
		.driver_data = (kernel_ulong_t)&dimm_icx,
	},
	{
		.name = "peci_cpu.dimmtemp.icxd",
		.driver_data = (kernel_ulong_t)&dimm_icxd,
	},
	{ }
};
MODULE_DEVICE_TABLE(auxiliary, peci_dimmtemp_ids);

static struct auxiliary_driver peci_dimmtemp_driver = {
	.probe		= peci_dimmtemp_probe,
	.id_table	= peci_dimmtemp_ids,
};

module_auxiliary_driver(peci_dimmtemp_driver);

MODULE_AUTHOR("Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>");
MODULE_AUTHOR("Iwona Winiarska <iwona.winiarska@intel.com>");
MODULE_DESCRIPTION("PECI dimmtemp driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(PECI_CPU);