Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 | // SPDX-License-Identifier: GPL-2.0-or-later /* * transition.c - Kernel Live Patching transition functions * * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/cpu.h> #include <linux/stacktrace.h> #include "core.h" #include "patch.h" #include "transition.h" #define MAX_STACK_ENTRIES 100 #define STACK_ERR_BUF_SIZE 128 #define SIGNALS_TIMEOUT 15 struct klp_patch *klp_transition_patch; static int klp_target_state = KLP_UNDEFINED; static unsigned int klp_signals_cnt; /* * This work can be performed periodically to finish patching or unpatching any * "straggler" tasks which failed to transition in the first attempt. */ static void klp_transition_work_fn(struct work_struct *work) { mutex_lock(&klp_mutex); if (klp_transition_patch) klp_try_complete_transition(); mutex_unlock(&klp_mutex); } static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn); /* * This function is just a stub to implement a hard force * of synchronize_rcu(). This requires synchronizing * tasks even in userspace and idle. */ static void klp_sync(struct work_struct *work) { } /* * We allow to patch also functions where RCU is not watching, * e.g. before user_exit(). We can not rely on the RCU infrastructure * to do the synchronization. Instead hard force the sched synchronization. * * This approach allows to use RCU functions for manipulating func_stack * safely. */ static void klp_synchronize_transition(void) { schedule_on_each_cpu(klp_sync); } /* * The transition to the target patch state is complete. Clean up the data * structures. */ static void klp_complete_transition(void) { struct klp_object *obj; struct klp_func *func; struct task_struct *g, *task; unsigned int cpu; pr_debug("'%s': completing %s transition\n", klp_transition_patch->mod->name, klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) { klp_unpatch_replaced_patches(klp_transition_patch); klp_discard_nops(klp_transition_patch); } if (klp_target_state == KLP_UNPATCHED) { /* * All tasks have transitioned to KLP_UNPATCHED so we can now * remove the new functions from the func_stack. */ klp_unpatch_objects(klp_transition_patch); /* * Make sure klp_ftrace_handler() can no longer see functions * from this patch on the ops->func_stack. Otherwise, after * func->transition gets cleared, the handler may choose a * removed function. */ klp_synchronize_transition(); } klp_for_each_object(klp_transition_patch, obj) klp_for_each_func(obj, func) func->transition = false; /* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */ if (klp_target_state == KLP_PATCHED) klp_synchronize_transition(); read_lock(&tasklist_lock); for_each_process_thread(g, task) { WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); task->patch_state = KLP_UNDEFINED; } read_unlock(&tasklist_lock); for_each_possible_cpu(cpu) { task = idle_task(cpu); WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); task->patch_state = KLP_UNDEFINED; } klp_for_each_object(klp_transition_patch, obj) { if (!klp_is_object_loaded(obj)) continue; if (klp_target_state == KLP_PATCHED) klp_post_patch_callback(obj); else if (klp_target_state == KLP_UNPATCHED) klp_post_unpatch_callback(obj); } pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name, klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); klp_target_state = KLP_UNDEFINED; klp_transition_patch = NULL; } /* * This is called in the error path, to cancel a transition before it has * started, i.e. klp_init_transition() has been called but * klp_start_transition() hasn't. If the transition *has* been started, * klp_reverse_transition() should be used instead. */ void klp_cancel_transition(void) { if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED)) return; pr_debug("'%s': canceling patching transition, going to unpatch\n", klp_transition_patch->mod->name); klp_target_state = KLP_UNPATCHED; klp_complete_transition(); } /* * Switch the patched state of the task to the set of functions in the target * patch state. * * NOTE: If task is not 'current', the caller must ensure the task is inactive. * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value. */ void klp_update_patch_state(struct task_struct *task) { /* * A variant of synchronize_rcu() is used to allow patching functions * where RCU is not watching, see klp_synchronize_transition(). */ preempt_disable_notrace(); /* * This test_and_clear_tsk_thread_flag() call also serves as a read * barrier (smp_rmb) for two cases: * * 1) Enforce the order of the TIF_PATCH_PENDING read and the * klp_target_state read. The corresponding write barrier is in * klp_init_transition(). * * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read * of func->transition, if klp_ftrace_handler() is called later on * the same CPU. See __klp_disable_patch(). */ if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING)) task->patch_state = READ_ONCE(klp_target_state); preempt_enable_notrace(); } /* * Determine whether the given stack trace includes any references to a * to-be-patched or to-be-unpatched function. */ static int klp_check_stack_func(struct klp_func *func, unsigned long *entries, unsigned int nr_entries) { unsigned long func_addr, func_size, address; struct klp_ops *ops; int i; for (i = 0; i < nr_entries; i++) { address = entries[i]; if (klp_target_state == KLP_UNPATCHED) { /* * Check for the to-be-unpatched function * (the func itself). */ func_addr = (unsigned long)func->new_func; func_size = func->new_size; } else { /* * Check for the to-be-patched function * (the previous func). */ ops = klp_find_ops(func->old_func); if (list_is_singular(&ops->func_stack)) { /* original function */ func_addr = (unsigned long)func->old_func; func_size = func->old_size; } else { /* previously patched function */ struct klp_func *prev; prev = list_next_entry(func, stack_node); func_addr = (unsigned long)prev->new_func; func_size = prev->new_size; } } if (address >= func_addr && address < func_addr + func_size) return -EAGAIN; } return 0; } /* * Determine whether it's safe to transition the task to the target patch state * by looking for any to-be-patched or to-be-unpatched functions on its stack. */ static int klp_check_stack(struct task_struct *task, const char **oldname) { static unsigned long entries[MAX_STACK_ENTRIES]; struct klp_object *obj; struct klp_func *func; int ret, nr_entries; ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries)); if (ret < 0) return -EINVAL; nr_entries = ret; klp_for_each_object(klp_transition_patch, obj) { if (!obj->patched) continue; klp_for_each_func(obj, func) { ret = klp_check_stack_func(func, entries, nr_entries); if (ret) { *oldname = func->old_name; return -EADDRINUSE; } } } return 0; } static int klp_check_and_switch_task(struct task_struct *task, void *arg) { int ret; if (task_curr(task) && task != current) return -EBUSY; ret = klp_check_stack(task, arg); if (ret) return ret; clear_tsk_thread_flag(task, TIF_PATCH_PENDING); task->patch_state = klp_target_state; return 0; } /* * Try to safely switch a task to the target patch state. If it's currently * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or * if the stack is unreliable, return false. */ static bool klp_try_switch_task(struct task_struct *task) { const char *old_name; int ret; /* check if this task has already switched over */ if (task->patch_state == klp_target_state) return true; /* * For arches which don't have reliable stack traces, we have to rely * on other methods (e.g., switching tasks at kernel exit). */ if (!klp_have_reliable_stack()) return false; /* * Now try to check the stack for any to-be-patched or to-be-unpatched * functions. If all goes well, switch the task to the target patch * state. */ ret = task_call_func(task, klp_check_and_switch_task, &old_name); switch (ret) { case 0: /* success */ break; case -EBUSY: /* klp_check_and_switch_task() */ pr_debug("%s: %s:%d is running\n", __func__, task->comm, task->pid); break; case -EINVAL: /* klp_check_and_switch_task() */ pr_debug("%s: %s:%d has an unreliable stack\n", __func__, task->comm, task->pid); break; case -EADDRINUSE: /* klp_check_and_switch_task() */ pr_debug("%s: %s:%d is sleeping on function %s\n", __func__, task->comm, task->pid, old_name); break; default: pr_debug("%s: Unknown error code (%d) when trying to switch %s:%d\n", __func__, ret, task->comm, task->pid); break; } return !ret; } /* * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set. * Kthreads with TIF_PATCH_PENDING set are woken up. */ static void klp_send_signals(void) { struct task_struct *g, *task; if (klp_signals_cnt == SIGNALS_TIMEOUT) pr_notice("signaling remaining tasks\n"); read_lock(&tasklist_lock); for_each_process_thread(g, task) { if (!klp_patch_pending(task)) continue; /* * There is a small race here. We could see TIF_PATCH_PENDING * set and decide to wake up a kthread or send a fake signal. * Meanwhile the task could migrate itself and the action * would be meaningless. It is not serious though. */ if (task->flags & PF_KTHREAD) { /* * Wake up a kthread which sleeps interruptedly and * still has not been migrated. */ wake_up_state(task, TASK_INTERRUPTIBLE); } else { /* * Send fake signal to all non-kthread tasks which are * still not migrated. */ set_notify_signal(task); } } read_unlock(&tasklist_lock); } /* * Try to switch all remaining tasks to the target patch state by walking the * stacks of sleeping tasks and looking for any to-be-patched or * to-be-unpatched functions. If such functions are found, the task can't be * switched yet. * * If any tasks are still stuck in the initial patch state, schedule a retry. */ void klp_try_complete_transition(void) { unsigned int cpu; struct task_struct *g, *task; struct klp_patch *patch; bool complete = true; WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); /* * Try to switch the tasks to the target patch state by walking their * stacks and looking for any to-be-patched or to-be-unpatched * functions. If such functions are found on a stack, or if the stack * is deemed unreliable, the task can't be switched yet. * * Usually this will transition most (or all) of the tasks on a system * unless the patch includes changes to a very common function. */ read_lock(&tasklist_lock); for_each_process_thread(g, task) if (!klp_try_switch_task(task)) complete = false; read_unlock(&tasklist_lock); /* * Ditto for the idle "swapper" tasks. */ cpus_read_lock(); for_each_possible_cpu(cpu) { task = idle_task(cpu); if (cpu_online(cpu)) { if (!klp_try_switch_task(task)) { complete = false; /* Make idle task go through the main loop. */ wake_up_if_idle(cpu); } } else if (task->patch_state != klp_target_state) { /* offline idle tasks can be switched immediately */ clear_tsk_thread_flag(task, TIF_PATCH_PENDING); task->patch_state = klp_target_state; } } cpus_read_unlock(); if (!complete) { if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT)) klp_send_signals(); klp_signals_cnt++; /* * Some tasks weren't able to be switched over. Try again * later and/or wait for other methods like kernel exit * switching. */ schedule_delayed_work(&klp_transition_work, round_jiffies_relative(HZ)); return; } /* we're done, now cleanup the data structures */ patch = klp_transition_patch; klp_complete_transition(); /* * It would make more sense to free the unused patches in * klp_complete_transition() but it is called also * from klp_cancel_transition(). */ if (!patch->enabled) klp_free_patch_async(patch); else if (patch->replace) klp_free_replaced_patches_async(patch); } /* * Start the transition to the specified target patch state so tasks can begin * switching to it. */ void klp_start_transition(void) { struct task_struct *g, *task; unsigned int cpu; WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); pr_notice("'%s': starting %s transition\n", klp_transition_patch->mod->name, klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); /* * Mark all normal tasks as needing a patch state update. They'll * switch either in klp_try_complete_transition() or as they exit the * kernel. */ read_lock(&tasklist_lock); for_each_process_thread(g, task) if (task->patch_state != klp_target_state) set_tsk_thread_flag(task, TIF_PATCH_PENDING); read_unlock(&tasklist_lock); /* * Mark all idle tasks as needing a patch state update. They'll switch * either in klp_try_complete_transition() or at the idle loop switch * point. */ for_each_possible_cpu(cpu) { task = idle_task(cpu); if (task->patch_state != klp_target_state) set_tsk_thread_flag(task, TIF_PATCH_PENDING); } klp_signals_cnt = 0; } /* * Initialize the global target patch state and all tasks to the initial patch * state, and initialize all function transition states to true in preparation * for patching or unpatching. */ void klp_init_transition(struct klp_patch *patch, int state) { struct task_struct *g, *task; unsigned int cpu; struct klp_object *obj; struct klp_func *func; int initial_state = !state; WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED); klp_transition_patch = patch; /* * Set the global target patch state which tasks will switch to. This * has no effect until the TIF_PATCH_PENDING flags get set later. */ klp_target_state = state; pr_debug("'%s': initializing %s transition\n", patch->mod->name, klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); /* * Initialize all tasks to the initial patch state to prepare them for * switching to the target state. */ read_lock(&tasklist_lock); for_each_process_thread(g, task) { WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); task->patch_state = initial_state; } read_unlock(&tasklist_lock); /* * Ditto for the idle "swapper" tasks. */ for_each_possible_cpu(cpu) { task = idle_task(cpu); WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); task->patch_state = initial_state; } /* * Enforce the order of the task->patch_state initializations and the * func->transition updates to ensure that klp_ftrace_handler() doesn't * see a func in transition with a task->patch_state of KLP_UNDEFINED. * * Also enforce the order of the klp_target_state write and future * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't * set a task->patch_state to KLP_UNDEFINED. */ smp_wmb(); /* * Set the func transition states so klp_ftrace_handler() will know to * switch to the transition logic. * * When patching, the funcs aren't yet in the func_stack and will be * made visible to the ftrace handler shortly by the calls to * klp_patch_object(). * * When unpatching, the funcs are already in the func_stack and so are * already visible to the ftrace handler. */ klp_for_each_object(patch, obj) klp_for_each_func(obj, func) func->transition = true; } /* * This function can be called in the middle of an existing transition to * reverse the direction of the target patch state. This can be done to * effectively cancel an existing enable or disable operation if there are any * tasks which are stuck in the initial patch state. */ void klp_reverse_transition(void) { unsigned int cpu; struct task_struct *g, *task; pr_debug("'%s': reversing transition from %s\n", klp_transition_patch->mod->name, klp_target_state == KLP_PATCHED ? "patching to unpatching" : "unpatching to patching"); klp_transition_patch->enabled = !klp_transition_patch->enabled; klp_target_state = !klp_target_state; /* * Clear all TIF_PATCH_PENDING flags to prevent races caused by * klp_update_patch_state() running in parallel with * klp_start_transition(). */ read_lock(&tasklist_lock); for_each_process_thread(g, task) clear_tsk_thread_flag(task, TIF_PATCH_PENDING); read_unlock(&tasklist_lock); for_each_possible_cpu(cpu) clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING); /* Let any remaining calls to klp_update_patch_state() complete */ klp_synchronize_transition(); klp_start_transition(); } /* Called from copy_process() during fork */ void klp_copy_process(struct task_struct *child) { /* * The parent process may have gone through a KLP transition since * the thread flag was copied in setup_thread_stack earlier. Bring * the task flag up to date with the parent here. * * The operation is serialized against all klp_*_transition() * operations by the tasklist_lock. The only exception is * klp_update_patch_state(current), but we cannot race with * that because we are current. */ if (test_tsk_thread_flag(current, TIF_PATCH_PENDING)) set_tsk_thread_flag(child, TIF_PATCH_PENDING); else clear_tsk_thread_flag(child, TIF_PATCH_PENDING); child->patch_state = current->patch_state; } /* * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an * existing transition to finish. * * NOTE: klp_update_patch_state(task) requires the task to be inactive or * 'current'. This is not the case here and the consistency model could be * broken. Administrator, who is the only one to execute the * klp_force_transitions(), has to be aware of this. */ void klp_force_transition(void) { struct klp_patch *patch; struct task_struct *g, *task; unsigned int cpu; pr_warn("forcing remaining tasks to the patched state\n"); read_lock(&tasklist_lock); for_each_process_thread(g, task) klp_update_patch_state(task); read_unlock(&tasklist_lock); for_each_possible_cpu(cpu) klp_update_patch_state(idle_task(cpu)); /* Set forced flag for patches being removed. */ if (klp_target_state == KLP_UNPATCHED) klp_transition_patch->forced = true; else if (klp_transition_patch->replace) { klp_for_each_patch(patch) { if (patch != klp_transition_patch) patch->forced = true; } } } |