Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 | /* * arch/xtensa/kernel/vectors.S * * This file contains all exception vectors (user, kernel, and double), * as well as the window vectors (overflow and underflow), and the debug * vector. These are the primary vectors executed by the processor if an * exception occurs. * * This file is subject to the terms and conditions of the GNU General * Public License. See the file "COPYING" in the main directory of * this archive for more details. * * Copyright (C) 2005 - 2008 Tensilica, Inc. * * Chris Zankel <chris@zankel.net> * */ /* * We use a two-level table approach. The user and kernel exception vectors * use a first-level dispatch table to dispatch the exception to a registered * fast handler or the default handler, if no fast handler was registered. * The default handler sets up a C-stack and dispatches the exception to a * registerd C handler in the second-level dispatch table. * * Fast handler entry condition: * * a0: trashed, original value saved on stack (PT_AREG0) * a1: a1 * a2: new stack pointer, original value in depc * a3: dispatch table * depc: a2, original value saved on stack (PT_DEPC) * excsave_1: a3 * * The value for PT_DEPC saved to stack also functions as a boolean to * indicate that the exception is either a double or a regular exception: * * PT_DEPC >= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception * < VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception * * Note: Neither the kernel nor the user exception handler generate literals. * */ #include <linux/linkage.h> #include <linux/pgtable.h> #include <asm/asmmacro.h> #include <asm/ptrace.h> #include <asm/current.h> #include <asm/asm-offsets.h> #include <asm/processor.h> #include <asm/page.h> #include <asm/thread_info.h> #include <asm/vectors.h> #define WINDOW_VECTORS_SIZE 0x180 /* * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0) * * We get here when an exception occurred while we were in userland. * We switch to the kernel stack and jump to the first level handler * associated to the exception cause. * * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already * decremented by PT_USER_SIZE. */ .section .UserExceptionVector.text, "ax" ENTRY(_UserExceptionVector) xsr a3, excsave1 # save a3 and get dispatch table wsr a2, depc # save a2 l32i a2, a3, EXC_TABLE_KSTK # load kernel stack to a2 s32i a0, a2, PT_AREG0 # save a0 to ESF rsr a0, exccause # retrieve exception cause s32i a0, a2, PT_DEPC # mark it as a regular exception addx4 a0, a0, a3 # find entry in table l32i a0, a0, EXC_TABLE_FAST_USER # load handler xsr a3, excsave1 # restore a3 and dispatch table jx a0 ENDPROC(_UserExceptionVector) /* * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0) * * We get this exception when we were already in kernel space. * We decrement the current stack pointer (kernel) by PT_KERNEL_SIZE and * jump to the first-level handler associated with the exception cause. * * Note: we need to preserve space for the spill region. */ .section .KernelExceptionVector.text, "ax" ENTRY(_KernelExceptionVector) xsr a3, excsave1 # save a3, and get dispatch table wsr a2, depc # save a2 addi a2, a1, -16 - PT_KERNEL_SIZE # adjust stack pointer s32i a0, a2, PT_AREG0 # save a0 to ESF rsr a0, exccause # retrieve exception cause s32i a0, a2, PT_DEPC # mark it as a regular exception addx4 a0, a0, a3 # find entry in table l32i a0, a0, EXC_TABLE_FAST_KERNEL # load handler address xsr a3, excsave1 # restore a3 and dispatch table jx a0 ENDPROC(_KernelExceptionVector) /* * Double exception vector (Exceptions with PS.EXCM == 1) * We get this exception when another exception occurs while were are * already in an exception, such as window overflow/underflow exception, * or 'expected' exceptions, for example memory exception when we were trying * to read data from an invalid address in user space. * * Note that this vector is never invoked for level-1 interrupts, because such * interrupts are disabled (masked) when PS.EXCM is set. * * We decode the exception and take the appropriate action. However, the * double exception vector is much more careful, because a lot more error * cases go through the double exception vector than through the user and * kernel exception vectors. * * Occasionally, the kernel expects a double exception to occur. This usually * happens when accessing user-space memory with the user's permissions * (l32e/s32e instructions). The kernel state, though, is not always suitable * for immediate transfer of control to handle_double, where "normal" exception * processing occurs. Also in kernel mode, TLB misses can occur if accessing * vmalloc memory, possibly requiring repair in a double exception handler. * * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as * a boolean variable and a pointer to a fixup routine. If the variable * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of * zero indicates to use the default kernel/user exception handler. * There is only one exception, when the value is identical to the exc_table * label, the kernel is in trouble. This mechanism is used to protect critical * sections, mainly when the handler writes to the stack to assert the stack * pointer is valid. Once the fixup/default handler leaves that area, the * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero. * * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the * nonzero address of a fixup routine before it could cause a double exception * and reset it before it returns. * * Some other things to take care of when a fast exception handler doesn't * specify a particular fixup handler but wants to use the default handlers: * * - The original stack pointer (in a1) must not be modified. The fast * exception handler should only use a2 as the stack pointer. * * - If the fast handler manipulates the stack pointer (in a2), it has to * register a valid fixup handler and cannot use the default handlers. * * - The handler can use any other generic register from a3 to a15, but it * must save the content of these registers to stack (PT_AREG3...PT_AREGx) * * - These registers must be saved before a double exception can occur. * * - If we ever implement handling signals while in double exceptions, the * number of registers a fast handler has saved (excluding a0 and a1) must * be written to PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. ) * * The fixup handlers are special handlers: * * - Fixup entry conditions differ from regular exceptions: * * a0: DEPC * a1: a1 * a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE * a3: exctable * depc: a0 * excsave_1: a3 * * - When the kernel enters the fixup handler, it still assumes it is in a * critical section, so EXC_TABLE_FIXUP variable is set to exc_table. * The fixup handler, therefore, has to re-register itself as the fixup * handler before it returns from the double exception. * * - Fixup handler can share the same exception frame with the fast handler. * The kernel stack pointer is not changed when entering the fixup handler. * * - Fixup handlers can jump to the default kernel and user exception * handlers. Before it jumps, though, it has to setup a exception frame * on stack. Because the default handler resets the register fixup handler * the fixup handler must make sure that the default handler returns to * it instead of the exception address, so it can re-register itself as * the fixup handler. * * In case of a critical condition where the kernel cannot recover, we jump * to unrecoverable_exception with the following entry conditions. * All registers a0...a15 are unchanged from the last exception, except: * * a0: last address before we jumped to the unrecoverable_exception. * excsave_1: a0 * * * See the handle_alloca_user and spill_registers routines for example clients. * * FIXME: Note: we currently don't allow signal handling coming from a double * exception, so the item markt with (*) is not required. */ .section .DoubleExceptionVector.text, "ax" ENTRY(_DoubleExceptionVector) xsr a3, excsave1 s32i a2, a3, EXC_TABLE_DOUBLE_SAVE /* Check for kernel double exception (usually fatal). */ rsr a2, ps _bbsi.l a2, PS_UM_BIT, 1f j .Lksp .align 4 .literal_position 1: /* Check if we are currently handling a window exception. */ /* Note: We don't need to indicate that we enter a critical section. */ xsr a0, depc # get DEPC, save a0 #ifdef SUPPORT_WINDOWED movi a2, WINDOW_VECTORS_VADDR _bltu a0, a2, .Lfixup addi a2, a2, WINDOW_VECTORS_SIZE _bgeu a0, a2, .Lfixup /* Window overflow/underflow exception. Get stack pointer. */ l32i a2, a3, EXC_TABLE_KSTK /* Check for overflow/underflow exception, jump if overflow. */ bbci.l a0, 6, _DoubleExceptionVector_WindowOverflow /* * Restart window underflow exception. * Currently: * depc = orig a0, * a0 = orig DEPC, * a2 = new sp based on KSTK from exc_table * a3 = excsave_1 * excsave_1 = orig a3 * * We return to the instruction in user space that caused the window * underflow exception. Therefore, we change window base to the value * before we entered the window underflow exception and prepare the * registers to return as if we were coming from a regular exception * by changing depc (in a0). * Note: We can trash the current window frame (a0...a3) and depc! */ _DoubleExceptionVector_WindowUnderflow: xsr a3, excsave1 wsr a2, depc # save stack pointer temporarily rsr a0, ps extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH wsr a0, windowbase rsync /* We are now in the previous window frame. Save registers again. */ xsr a2, depc # save a2 and get stack pointer s32i a0, a2, PT_AREG0 xsr a3, excsave1 rsr a0, exccause s32i a0, a2, PT_DEPC # mark it as a regular exception addx4 a0, a0, a3 xsr a3, excsave1 l32i a0, a0, EXC_TABLE_FAST_USER jx a0 #else j .Lfixup #endif /* * We only allow the ITLB miss exception if we are in kernel space. * All other exceptions are unexpected and thus unrecoverable! */ #ifdef CONFIG_MMU .extern fast_second_level_miss_double_kernel .Lksp: /* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */ rsr a3, exccause beqi a3, EXCCAUSE_ITLB_MISS, 1f addi a3, a3, -EXCCAUSE_DTLB_MISS bnez a3, .Lunrecoverable 1: movi a3, fast_second_level_miss_double_kernel jx a3 #else .equ .Lksp, .Lunrecoverable #endif /* Critical! We can't handle this situation. PANIC! */ .extern unrecoverable_exception .Lunrecoverable_fixup: l32i a2, a3, EXC_TABLE_DOUBLE_SAVE xsr a0, depc .Lunrecoverable: rsr a3, excsave1 wsr a0, excsave1 call0 unrecoverable_exception .Lfixup:/* Check for a fixup handler or if we were in a critical section. */ /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave1: a3 */ /* Enter critical section. */ l32i a2, a3, EXC_TABLE_FIXUP s32i a3, a3, EXC_TABLE_FIXUP beq a2, a3, .Lunrecoverable_fixup # critical section beqz a2, .Ldflt # no handler was registered /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */ jx a2 .Ldflt: /* Get stack pointer. */ l32i a2, a3, EXC_TABLE_DOUBLE_SAVE addi a2, a2, -PT_USER_SIZE /* a0: depc, a1: a1, a2: kstk, a3: exctable, depc: a0, excsave: a3 */ s32i a0, a2, PT_DEPC l32i a0, a3, EXC_TABLE_DOUBLE_SAVE xsr a0, depc s32i a0, a2, PT_AREG0 /* a0: avail, a1: a1, a2: kstk, a3: exctable, depc: a2, excsave: a3 */ rsr a0, exccause addx4 a0, a0, a3 xsr a3, excsave1 l32i a0, a0, EXC_TABLE_FAST_USER jx a0 #ifdef SUPPORT_WINDOWED /* * Restart window OVERFLOW exception. * Currently: * depc = orig a0, * a0 = orig DEPC, * a2 = new sp based on KSTK from exc_table * a3 = EXCSAVE_1 * excsave_1 = orig a3 * * We return to the instruction in user space that caused the window * overflow exception. Therefore, we change window base to the value * before we entered the window overflow exception and prepare the * registers to return as if we were coming from a regular exception * by changing DEPC (in a0). * * NOTE: We CANNOT trash the current window frame (a0...a3), but we * can clobber depc. * * The tricky part here is that overflow8 and overflow12 handlers * save a0, then clobber a0. To restart the handler, we have to restore * a0 if the double exception was past the point where a0 was clobbered. * * To keep things simple, we take advantage of the fact all overflow * handlers save a0 in their very first instruction. If DEPC was past * that instruction, we can safely restore a0 from where it was saved * on the stack. * * a0: depc, a1: a1, a2: kstk, a3: exc_table, depc: a0, excsave1: a3 */ _DoubleExceptionVector_WindowOverflow: extui a2, a0, 0, 6 # get offset into 64-byte vector handler beqz a2, 1f # if at start of vector, don't restore addi a0, a0, -128 bbsi.l a0, 8, 1f # don't restore except for overflow 8 and 12 /* * This fixup handler is for the extremely unlikely case where the * overflow handler's reference thru a0 gets a hardware TLB refill * that bumps out the (distinct, aliasing) TLB entry that mapped its * prior references thru a9/a13, and where our reference now thru * a9/a13 gets a 2nd-level miss exception (not hardware TLB refill). */ movi a2, window_overflow_restore_a0_fixup s32i a2, a3, EXC_TABLE_FIXUP l32i a2, a3, EXC_TABLE_DOUBLE_SAVE xsr a3, excsave1 bbsi.l a0, 7, 2f /* * Restore a0 as saved by _WindowOverflow8(). */ l32e a0, a9, -16 wsr a0, depc # replace the saved a0 j 3f 2: /* * Restore a0 as saved by _WindowOverflow12(). */ l32e a0, a13, -16 wsr a0, depc # replace the saved a0 3: xsr a3, excsave1 movi a0, 0 s32i a0, a3, EXC_TABLE_FIXUP s32i a2, a3, EXC_TABLE_DOUBLE_SAVE 1: /* * Restore WindowBase while leaving all address registers restored. * We have to use ROTW for this, because WSR.WINDOWBASE requires * an address register (which would prevent restore). * * Window Base goes from 0 ... 7 (Module 8) * Window Start is 8 bits; Ex: (0b1010 1010):0x55 from series of call4s */ rsr a0, ps extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH rsr a2, windowbase sub a0, a2, a0 extui a0, a0, 0, 3 l32i a2, a3, EXC_TABLE_DOUBLE_SAVE xsr a3, excsave1 beqi a0, 1, .L1pane beqi a0, 3, .L3pane rsr a0, depc rotw -2 /* * We are now in the user code's original window frame. * Process the exception as a user exception as if it was * taken by the user code. * * This is similar to the user exception vector, * except that PT_DEPC isn't set to EXCCAUSE. */ 1: xsr a3, excsave1 wsr a2, depc l32i a2, a3, EXC_TABLE_KSTK s32i a0, a2, PT_AREG0 rsr a0, exccause s32i a0, a2, PT_DEPC _DoubleExceptionVector_handle_exception: addi a0, a0, -EXCCAUSE_UNALIGNED beqz a0, 2f addx4 a0, a0, a3 l32i a0, a0, EXC_TABLE_FAST_USER + 4 * EXCCAUSE_UNALIGNED xsr a3, excsave1 jx a0 2: movi a0, user_exception xsr a3, excsave1 jx a0 .L1pane: rsr a0, depc rotw -1 j 1b .L3pane: rsr a0, depc rotw -3 j 1b #endif ENDPROC(_DoubleExceptionVector) #ifdef SUPPORT_WINDOWED /* * Fixup handler for TLB miss in double exception handler for window owerflow. * We get here with windowbase set to the window that was being spilled and * a0 trashed. a0 bit 7 determines if this is a call8 (bit clear) or call12 * (bit set) window. * * We do the following here: * - go to the original window retaining a0 value; * - set up exception stack to return back to appropriate a0 restore code * (we'll need to rotate window back and there's no place to save this * information, use different return address for that); * - handle the exception; * - go to the window that was being spilled; * - set up window_overflow_restore_a0_fixup as a fixup routine; * - reload a0; * - restore the original window; * - reset the default fixup routine; * - return to user. By the time we get to this fixup handler all information * about the conditions of the original double exception that happened in * the window overflow handler is lost, so we just return to userspace to * retry overflow from start. * * a0: value of depc, original value in depc * a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE * a3: exctable, original value in excsave1 */ __XTENSA_HANDLER .literal_position ENTRY(window_overflow_restore_a0_fixup) rsr a0, ps extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH rsr a2, windowbase sub a0, a2, a0 extui a0, a0, 0, 3 l32i a2, a3, EXC_TABLE_DOUBLE_SAVE xsr a3, excsave1 _beqi a0, 1, .Lhandle_1 _beqi a0, 3, .Lhandle_3 .macro overflow_fixup_handle_exception_pane n rsr a0, depc rotw -\n xsr a3, excsave1 wsr a2, depc l32i a2, a3, EXC_TABLE_KSTK s32i a0, a2, PT_AREG0 movi a0, .Lrestore_\n s32i a0, a2, PT_DEPC rsr a0, exccause j _DoubleExceptionVector_handle_exception .endm overflow_fixup_handle_exception_pane 2 .Lhandle_1: overflow_fixup_handle_exception_pane 1 .Lhandle_3: overflow_fixup_handle_exception_pane 3 .macro overflow_fixup_restore_a0_pane n rotw \n /* Need to preserve a0 value here to be able to handle exception * that may occur on a0 reload from stack. It may occur because * TLB miss handler may not be atomic and pointer to page table * may be lost before we get here. There are no free registers, * so we need to use EXC_TABLE_DOUBLE_SAVE area. */ xsr a3, excsave1 s32i a2, a3, EXC_TABLE_DOUBLE_SAVE movi a2, window_overflow_restore_a0_fixup s32i a2, a3, EXC_TABLE_FIXUP l32i a2, a3, EXC_TABLE_DOUBLE_SAVE xsr a3, excsave1 bbsi.l a0, 7, 1f l32e a0, a9, -16 j 2f 1: l32e a0, a13, -16 2: rotw -\n .endm .Lrestore_2: overflow_fixup_restore_a0_pane 2 .Lset_default_fixup: xsr a3, excsave1 s32i a2, a3, EXC_TABLE_DOUBLE_SAVE movi a2, 0 s32i a2, a3, EXC_TABLE_FIXUP l32i a2, a3, EXC_TABLE_DOUBLE_SAVE xsr a3, excsave1 rfe .Lrestore_1: overflow_fixup_restore_a0_pane 1 j .Lset_default_fixup .Lrestore_3: overflow_fixup_restore_a0_pane 3 j .Lset_default_fixup ENDPROC(window_overflow_restore_a0_fixup) #endif /* * Debug interrupt vector * * There is not much space here, so simply jump to another handler. * EXCSAVE[DEBUGLEVEL] has been set to that handler. */ .section .DebugInterruptVector.text, "ax" ENTRY(_DebugInterruptVector) xsr a3, SREG_EXCSAVE + XCHAL_DEBUGLEVEL s32i a0, a3, DT_DEBUG_SAVE l32i a0, a3, DT_DEBUG_EXCEPTION jx a0 ENDPROC(_DebugInterruptVector) /* * Medium priority level interrupt vectors * * Each takes less than 16 (0x10) bytes, no literals, by placing * the extra 8 bytes that would otherwise be required in the window * vectors area where there is space. With relocatable vectors, * all vectors are within ~ 4 kB range of each other, so we can * simply jump (J) to another vector without having to use JX. * * common_exception code gets current IRQ level in PS.INTLEVEL * and preserves it for the IRQ handling time. */ .macro irq_entry_level level .if XCHAL_EXCM_LEVEL >= \level .section .Level\level\()InterruptVector.text, "ax" ENTRY(_Level\level\()InterruptVector) wsr a0, excsave2 rsr a0, epc\level wsr a0, epc1 .if \level <= LOCKLEVEL movi a0, EXCCAUSE_LEVEL1_INTERRUPT .else movi a0, EXCCAUSE_MAPPED_NMI .endif wsr a0, exccause rsr a0, eps\level # branch to user or kernel vector j _SimulateUserKernelVectorException .endif .endm irq_entry_level 2 irq_entry_level 3 irq_entry_level 4 irq_entry_level 5 irq_entry_level 6 #if XCHAL_EXCM_LEVEL >= 2 /* * Continuation of medium priority interrupt dispatch code. * On entry here, a0 contains PS, and EPC2 contains saved a0: */ __XTENSA_HANDLER .align 4 _SimulateUserKernelVectorException: addi a0, a0, (1 << PS_EXCM_BIT) #if !XTENSA_FAKE_NMI wsr a0, ps #endif bbsi.l a0, PS_UM_BIT, 1f # branch if user mode xsr a0, excsave2 # restore a0 j _KernelExceptionVector # simulate kernel vector exception 1: xsr a0, excsave2 # restore a0 j _UserExceptionVector # simulate user vector exception #endif /* Window overflow and underflow handlers. * The handlers must be 64 bytes apart, first starting with the underflow * handlers underflow-4 to underflow-12, then the overflow handlers * overflow-4 to overflow-12. * * Note: We rerun the underflow handlers if we hit an exception, so * we try to access any page that would cause a page fault early. */ #define ENTRY_ALIGN64(name) \ .globl name; \ .align 64; \ name: .section .WindowVectors.text, "ax" #ifdef SUPPORT_WINDOWED /* 4-Register Window Overflow Vector (Handler) */ ENTRY_ALIGN64(_WindowOverflow4) s32e a0, a5, -16 s32e a1, a5, -12 s32e a2, a5, -8 s32e a3, a5, -4 rfwo ENDPROC(_WindowOverflow4) /* 4-Register Window Underflow Vector (Handler) */ ENTRY_ALIGN64(_WindowUnderflow4) l32e a0, a5, -16 l32e a1, a5, -12 l32e a2, a5, -8 l32e a3, a5, -4 rfwu ENDPROC(_WindowUnderflow4) /* 8-Register Window Overflow Vector (Handler) */ ENTRY_ALIGN64(_WindowOverflow8) s32e a0, a9, -16 l32e a0, a1, -12 s32e a2, a9, -8 s32e a1, a9, -12 s32e a3, a9, -4 s32e a4, a0, -32 s32e a5, a0, -28 s32e a6, a0, -24 s32e a7, a0, -20 rfwo ENDPROC(_WindowOverflow8) /* 8-Register Window Underflow Vector (Handler) */ ENTRY_ALIGN64(_WindowUnderflow8) l32e a1, a9, -12 l32e a0, a9, -16 l32e a7, a1, -12 l32e a2, a9, -8 l32e a4, a7, -32 l32e a3, a9, -4 l32e a5, a7, -28 l32e a6, a7, -24 l32e a7, a7, -20 rfwu ENDPROC(_WindowUnderflow8) /* 12-Register Window Overflow Vector (Handler) */ ENTRY_ALIGN64(_WindowOverflow12) s32e a0, a13, -16 l32e a0, a1, -12 s32e a1, a13, -12 s32e a2, a13, -8 s32e a3, a13, -4 s32e a4, a0, -48 s32e a5, a0, -44 s32e a6, a0, -40 s32e a7, a0, -36 s32e a8, a0, -32 s32e a9, a0, -28 s32e a10, a0, -24 s32e a11, a0, -20 rfwo ENDPROC(_WindowOverflow12) /* 12-Register Window Underflow Vector (Handler) */ ENTRY_ALIGN64(_WindowUnderflow12) l32e a1, a13, -12 l32e a0, a13, -16 l32e a11, a1, -12 l32e a2, a13, -8 l32e a4, a11, -48 l32e a8, a11, -32 l32e a3, a13, -4 l32e a5, a11, -44 l32e a6, a11, -40 l32e a7, a11, -36 l32e a9, a11, -28 l32e a10, a11, -24 l32e a11, a11, -20 rfwu ENDPROC(_WindowUnderflow12) #endif .text |