Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2020 Intel Corporation
 */
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_fb.h"
#include "skl_scaler.h"
#include "skl_universal_plane.h"

/*
 * The hardware phase 0.0 refers to the center of the pixel.
 * We want to start from the top/left edge which is phase
 * -0.5. That matches how the hardware calculates the scaling
 * factors (from top-left of the first pixel to bottom-right
 * of the last pixel, as opposed to the pixel centers).
 *
 * For 4:2:0 subsampled chroma planes we obviously have to
 * adjust that so that the chroma sample position lands in
 * the right spot.
 *
 * Note that for packed YCbCr 4:2:2 formats there is no way to
 * control chroma siting. The hardware simply replicates the
 * chroma samples for both of the luma samples, and thus we don't
 * actually get the expected MPEG2 chroma siting convention :(
 * The same behaviour is observed on pre-SKL platforms as well.
 *
 * Theory behind the formula (note that we ignore sub-pixel
 * source coordinates):
 * s = source sample position
 * d = destination sample position
 *
 * Downscaling 4:1:
 * -0.5
 * | 0.0
 * | |     1.5 (initial phase)
 * | |     |
 * v v     v
 * | s | s | s | s |
 * |       d       |
 *
 * Upscaling 1:4:
 * -0.5
 * | -0.375 (initial phase)
 * | |     0.0
 * | |     |
 * v v     v
 * |       s       |
 * | d | d | d | d |
 */
static u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
{
	int phase = -0x8000;
	u16 trip = 0;

	if (chroma_cosited)
		phase += (sub - 1) * 0x8000 / sub;

	phase += scale / (2 * sub);

	/*
	 * Hardware initial phase limited to [-0.5:1.5].
	 * Since the max hardware scale factor is 3.0, we
	 * should never actually excdeed 1.0 here.
	 */
	WARN_ON(phase < -0x8000 || phase > 0x18000);

	if (phase < 0)
		phase = 0x10000 + phase;
	else
		trip = PS_PHASE_TRIP;

	return ((phase >> 2) & PS_PHASE_MASK) | trip;
}

#define SKL_MIN_SRC_W 8
#define SKL_MAX_SRC_W 4096
#define SKL_MIN_SRC_H 8
#define SKL_MAX_SRC_H 4096
#define SKL_MIN_DST_W 8
#define SKL_MAX_DST_W 4096
#define SKL_MIN_DST_H 8
#define SKL_MAX_DST_H 4096
#define ICL_MAX_SRC_W 5120
#define ICL_MAX_SRC_H 4096
#define ICL_MAX_DST_W 5120
#define ICL_MAX_DST_H 4096
#define MTL_MAX_SRC_W 4096
#define MTL_MAX_SRC_H 8192
#define MTL_MAX_DST_W 8192
#define MTL_MAX_DST_H 8192
#define SKL_MIN_YUV_420_SRC_W 16
#define SKL_MIN_YUV_420_SRC_H 16

static int
skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
		  unsigned int scaler_user, int *scaler_id,
		  int src_w, int src_h, int dst_w, int dst_h,
		  const struct drm_format_info *format,
		  u64 modifier, bool need_scaler)
{
	struct intel_crtc_scaler_state *scaler_state =
		&crtc_state->scaler_state;
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->hw.adjusted_mode;
	int pipe_src_w = drm_rect_width(&crtc_state->pipe_src);
	int pipe_src_h = drm_rect_height(&crtc_state->pipe_src);
	int min_src_w, min_src_h, min_dst_w, min_dst_h;
	int max_src_w, max_src_h, max_dst_w, max_dst_h;

	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
	if (src_w != dst_w || src_h != dst_h)
		need_scaler = true;

	/*
	 * Scaling/fitting not supported in IF-ID mode in GEN9+
	 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
	 * Once NV12 is enabled, handle it here while allocating scaler
	 * for NV12.
	 */
	if (DISPLAY_VER(dev_priv) >= 9 && crtc_state->hw.enable &&
	    need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
		drm_dbg_kms(&dev_priv->drm,
			    "Pipe/Plane scaling not supported with IF-ID mode\n");
		return -EINVAL;
	}

	/*
	 * if plane is being disabled or scaler is no more required or force detach
	 *  - free scaler binded to this plane/crtc
	 *  - in order to do this, update crtc->scaler_usage
	 *
	 * Here scaler state in crtc_state is set free so that
	 * scaler can be assigned to other user. Actual register
	 * update to free the scaler is done in plane/panel-fit programming.
	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
	 */
	if (force_detach || !need_scaler) {
		if (*scaler_id >= 0) {
			scaler_state->scaler_users &= ~(1 << scaler_user);
			scaler_state->scalers[*scaler_id].in_use = 0;

			drm_dbg_kms(&dev_priv->drm,
				    "scaler_user index %u.%u: "
				    "Staged freeing scaler id %d scaler_users = 0x%x\n",
				    crtc->pipe, scaler_user, *scaler_id,
				    scaler_state->scaler_users);
			*scaler_id = -1;
		}
		return 0;
	}

	if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
	    (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
		drm_dbg_kms(&dev_priv->drm,
			    "Planar YUV: src dimensions not met\n");
		return -EINVAL;
	}

	min_src_w = SKL_MIN_SRC_W;
	min_src_h = SKL_MIN_SRC_H;
	min_dst_w = SKL_MIN_DST_W;
	min_dst_h = SKL_MIN_DST_H;

	if (DISPLAY_VER(dev_priv) < 11) {
		max_src_w = SKL_MAX_SRC_W;
		max_src_h = SKL_MAX_SRC_H;
		max_dst_w = SKL_MAX_DST_W;
		max_dst_h = SKL_MAX_DST_H;
	} else if (DISPLAY_VER(dev_priv) < 14) {
		max_src_w = ICL_MAX_SRC_W;
		max_src_h = ICL_MAX_SRC_H;
		max_dst_w = ICL_MAX_DST_W;
		max_dst_h = ICL_MAX_DST_H;
	} else {
		max_src_w = MTL_MAX_SRC_W;
		max_src_h = MTL_MAX_SRC_H;
		max_dst_w = MTL_MAX_DST_W;
		max_dst_h = MTL_MAX_DST_H;
	}

	/* range checks */
	if (src_w < min_src_w || src_h < min_src_h ||
	    dst_w < min_dst_w || dst_h < min_dst_h ||
	    src_w > max_src_w || src_h > max_src_h ||
	    dst_w > max_dst_w || dst_h > max_dst_h) {
		drm_dbg_kms(&dev_priv->drm,
			    "scaler_user index %u.%u: src %ux%u dst %ux%u "
			    "size is out of scaler range\n",
			    crtc->pipe, scaler_user, src_w, src_h,
			    dst_w, dst_h);
		return -EINVAL;
	}

	/*
	 * The pipe scaler does not use all the bits of PIPESRC, at least
	 * on the earlier platforms. So even when we're scaling a plane
	 * the *pipe* source size must not be too large. For simplicity
	 * we assume the limits match the scaler source size limits. Might
	 * not be 100% accurate on all platforms, but good enough for now.
	 */
	if (pipe_src_w > max_src_w || pipe_src_h > max_src_h) {
		drm_dbg_kms(&dev_priv->drm,
			    "scaler_user index %u.%u: pipe src size %ux%u "
			    "is out of scaler range\n",
			    crtc->pipe, scaler_user, pipe_src_w, pipe_src_h);
		return -EINVAL;
	}

	/* mark this plane as a scaler user in crtc_state */
	scaler_state->scaler_users |= (1 << scaler_user);
	drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: "
		    "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
		    crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
		    scaler_state->scaler_users);

	return 0;
}

int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state)
{
	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
	int width, height;

	if (crtc_state->pch_pfit.enabled) {
		width = drm_rect_width(&crtc_state->pch_pfit.dst);
		height = drm_rect_height(&crtc_state->pch_pfit.dst);
	} else {
		width = pipe_mode->crtc_hdisplay;
		height = pipe_mode->crtc_vdisplay;
	}
	return skl_update_scaler(crtc_state, !crtc_state->hw.active,
				 SKL_CRTC_INDEX,
				 &crtc_state->scaler_state.scaler_id,
				 drm_rect_width(&crtc_state->pipe_src),
				 drm_rect_height(&crtc_state->pipe_src),
				 width, height, NULL, 0,
				 crtc_state->pch_pfit.enabled);
}

/**
 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
 * @crtc_state: crtc's scaler state
 * @plane_state: atomic plane state to update
 *
 * Return
 *     0 - scaler_usage updated successfully
 *    error - requested scaling cannot be supported or other error condition
 */
int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
			    struct intel_plane_state *plane_state)
{
	struct intel_plane *intel_plane =
		to_intel_plane(plane_state->uapi.plane);
	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
	struct drm_framebuffer *fb = plane_state->hw.fb;
	int ret;
	bool force_detach = !fb || !plane_state->uapi.visible;
	bool need_scaler = false;

	/* Pre-gen11 and SDR planes always need a scaler for planar formats. */
	if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
	    fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
		need_scaler = true;

	ret = skl_update_scaler(crtc_state, force_detach,
				drm_plane_index(&intel_plane->base),
				&plane_state->scaler_id,
				drm_rect_width(&plane_state->uapi.src) >> 16,
				drm_rect_height(&plane_state->uapi.src) >> 16,
				drm_rect_width(&plane_state->uapi.dst),
				drm_rect_height(&plane_state->uapi.dst),
				fb ? fb->format : NULL,
				fb ? fb->modifier : 0,
				need_scaler);

	if (ret || plane_state->scaler_id < 0)
		return ret;

	/* check colorkey */
	if (plane_state->ckey.flags) {
		drm_dbg_kms(&dev_priv->drm,
			    "[PLANE:%d:%s] scaling with color key not allowed",
			    intel_plane->base.base.id,
			    intel_plane->base.name);
		return -EINVAL;
	}

	/* Check src format */
	switch (fb->format->format) {
	case DRM_FORMAT_RGB565:
	case DRM_FORMAT_XBGR8888:
	case DRM_FORMAT_XRGB8888:
	case DRM_FORMAT_ABGR8888:
	case DRM_FORMAT_ARGB8888:
	case DRM_FORMAT_XRGB2101010:
	case DRM_FORMAT_XBGR2101010:
	case DRM_FORMAT_ARGB2101010:
	case DRM_FORMAT_ABGR2101010:
	case DRM_FORMAT_YUYV:
	case DRM_FORMAT_YVYU:
	case DRM_FORMAT_UYVY:
	case DRM_FORMAT_VYUY:
	case DRM_FORMAT_NV12:
	case DRM_FORMAT_XYUV8888:
	case DRM_FORMAT_P010:
	case DRM_FORMAT_P012:
	case DRM_FORMAT_P016:
	case DRM_FORMAT_Y210:
	case DRM_FORMAT_Y212:
	case DRM_FORMAT_Y216:
	case DRM_FORMAT_XVYU2101010:
	case DRM_FORMAT_XVYU12_16161616:
	case DRM_FORMAT_XVYU16161616:
		break;
	case DRM_FORMAT_XBGR16161616F:
	case DRM_FORMAT_ABGR16161616F:
	case DRM_FORMAT_XRGB16161616F:
	case DRM_FORMAT_ARGB16161616F:
		if (DISPLAY_VER(dev_priv) >= 11)
			break;
		fallthrough;
	default:
		drm_dbg_kms(&dev_priv->drm,
			    "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
			    intel_plane->base.base.id, intel_plane->base.name,
			    fb->base.id, fb->format->format);
		return -EINVAL;
	}

	return 0;
}

static int glk_coef_tap(int i)
{
	return i % 7;
}

static u16 glk_nearest_filter_coef(int t)
{
	return t == 3 ? 0x0800 : 0x3000;
}

/*
 *  Theory behind setting nearest-neighbor integer scaling:
 *
 *  17 phase of 7 taps requires 119 coefficients in 60 dwords per set.
 *  The letter represents the filter tap (D is the center tap) and the number
 *  represents the coefficient set for a phase (0-16).
 *
 *         +------------+------------------------+------------------------+
 *         |Index value | Data value coeffient 1 | Data value coeffient 2 |
 *         +------------+------------------------+------------------------+
 *         |   00h      |          B0            |          A0            |
 *         +------------+------------------------+------------------------+
 *         |   01h      |          D0            |          C0            |
 *         +------------+------------------------+------------------------+
 *         |   02h      |          F0            |          E0            |
 *         +------------+------------------------+------------------------+
 *         |   03h      |          A1            |          G0            |
 *         +------------+------------------------+------------------------+
 *         |   04h      |          C1            |          B1            |
 *         +------------+------------------------+------------------------+
 *         |   ...      |          ...           |          ...           |
 *         +------------+------------------------+------------------------+
 *         |   38h      |          B16           |          A16           |
 *         +------------+------------------------+------------------------+
 *         |   39h      |          D16           |          C16           |
 *         +------------+------------------------+------------------------+
 *         |   3Ah      |          F16           |          C16           |
 *         +------------+------------------------+------------------------+
 *         |   3Bh      |        Reserved        |          G16           |
 *         +------------+------------------------+------------------------+
 *
 *  To enable nearest-neighbor scaling:  program scaler coefficents with
 *  the center tap (Dxx) values set to 1 and all other values set to 0 as per
 *  SCALER_COEFFICIENT_FORMAT
 *
 */

static void glk_program_nearest_filter_coefs(struct drm_i915_private *dev_priv,
					     enum pipe pipe, int id, int set)
{
	int i;

	intel_de_write_fw(dev_priv, GLK_PS_COEF_INDEX_SET(pipe, id, set),
			  PS_COEE_INDEX_AUTO_INC);

	for (i = 0; i < 17 * 7; i += 2) {
		u32 tmp;
		int t;

		t = glk_coef_tap(i);
		tmp = glk_nearest_filter_coef(t);

		t = glk_coef_tap(i + 1);
		tmp |= glk_nearest_filter_coef(t) << 16;

		intel_de_write_fw(dev_priv, GLK_PS_COEF_DATA_SET(pipe, id, set),
				  tmp);
	}

	intel_de_write_fw(dev_priv, GLK_PS_COEF_INDEX_SET(pipe, id, set), 0);
}

static u32 skl_scaler_get_filter_select(enum drm_scaling_filter filter, int set)
{
	if (filter == DRM_SCALING_FILTER_NEAREST_NEIGHBOR) {
		return (PS_FILTER_PROGRAMMED |
			PS_Y_VERT_FILTER_SELECT(set) |
			PS_Y_HORZ_FILTER_SELECT(set) |
			PS_UV_VERT_FILTER_SELECT(set) |
			PS_UV_HORZ_FILTER_SELECT(set));
	}

	return PS_FILTER_MEDIUM;
}

static void skl_scaler_setup_filter(struct drm_i915_private *dev_priv, enum pipe pipe,
				    int id, int set, enum drm_scaling_filter filter)
{
	switch (filter) {
	case DRM_SCALING_FILTER_DEFAULT:
		break;
	case DRM_SCALING_FILTER_NEAREST_NEIGHBOR:
		glk_program_nearest_filter_coefs(dev_priv, pipe, id, set);
		break;
	default:
		MISSING_CASE(filter);
	}
}

void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_scaler_state *scaler_state =
		&crtc_state->scaler_state;
	const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
	u16 uv_rgb_hphase, uv_rgb_vphase;
	enum pipe pipe = crtc->pipe;
	int width = drm_rect_width(dst);
	int height = drm_rect_height(dst);
	int x = dst->x1;
	int y = dst->y1;
	int hscale, vscale;
	struct drm_rect src;
	int id;
	u32 ps_ctrl;

	if (!crtc_state->pch_pfit.enabled)
		return;

	if (drm_WARN_ON(&dev_priv->drm,
			crtc_state->scaler_state.scaler_id < 0))
		return;

	drm_rect_init(&src, 0, 0,
		      drm_rect_width(&crtc_state->pipe_src) << 16,
		      drm_rect_height(&crtc_state->pipe_src) << 16);

	hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX);
	vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX);

	uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
	uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);

	id = scaler_state->scaler_id;

	ps_ctrl = skl_scaler_get_filter_select(crtc_state->hw.scaling_filter, 0);
	ps_ctrl |=  PS_SCALER_EN | scaler_state->scalers[id].mode;

	skl_scaler_setup_filter(dev_priv, pipe, id, 0,
				crtc_state->hw.scaling_filter);

	intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), ps_ctrl);

	intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id),
			  PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
	intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id),
			  PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
	intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id),
			  x << 16 | y);
	intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id),
			  width << 16 | height);
}

void
skl_program_plane_scaler(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state,
			 const struct intel_plane_state *plane_state)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_framebuffer *fb = plane_state->hw.fb;
	enum pipe pipe = plane->pipe;
	int scaler_id = plane_state->scaler_id;
	const struct intel_scaler *scaler =
		&crtc_state->scaler_state.scalers[scaler_id];
	int crtc_x = plane_state->uapi.dst.x1;
	int crtc_y = plane_state->uapi.dst.y1;
	u32 crtc_w = drm_rect_width(&plane_state->uapi.dst);
	u32 crtc_h = drm_rect_height(&plane_state->uapi.dst);
	u16 y_hphase, uv_rgb_hphase;
	u16 y_vphase, uv_rgb_vphase;
	int hscale, vscale;
	u32 ps_ctrl;

	hscale = drm_rect_calc_hscale(&plane_state->uapi.src,
				      &plane_state->uapi.dst,
				      0, INT_MAX);
	vscale = drm_rect_calc_vscale(&plane_state->uapi.src,
				      &plane_state->uapi.dst,
				      0, INT_MAX);

	/* TODO: handle sub-pixel coordinates */
	if (intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
	    !icl_is_hdr_plane(dev_priv, plane->id)) {
		y_hphase = skl_scaler_calc_phase(1, hscale, false);
		y_vphase = skl_scaler_calc_phase(1, vscale, false);

		/* MPEG2 chroma siting convention */
		uv_rgb_hphase = skl_scaler_calc_phase(2, hscale, true);
		uv_rgb_vphase = skl_scaler_calc_phase(2, vscale, false);
	} else {
		/* not used */
		y_hphase = 0;
		y_vphase = 0;

		uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
		uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
	}

	ps_ctrl = skl_scaler_get_filter_select(plane_state->hw.scaling_filter, 0);
	ps_ctrl |= PS_SCALER_EN | PS_PLANE_SEL(plane->id) | scaler->mode;

	skl_scaler_setup_filter(dev_priv, pipe, scaler_id, 0,
				plane_state->hw.scaling_filter);

	intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
	intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, scaler_id),
			  PS_Y_PHASE(y_vphase) | PS_UV_RGB_PHASE(uv_rgb_vphase));
	intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, scaler_id),
			  PS_Y_PHASE(y_hphase) | PS_UV_RGB_PHASE(uv_rgb_hphase));
	intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, scaler_id),
			  (crtc_x << 16) | crtc_y);
	intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, scaler_id),
			  (crtc_w << 16) | crtc_h);
}

static void skl_detach_scaler(struct intel_crtc *crtc, int id)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);

	intel_de_write_fw(dev_priv, SKL_PS_CTRL(crtc->pipe, id), 0);
	intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(crtc->pipe, id), 0);
	intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, id), 0);
}

/*
 * This function detaches (aka. unbinds) unused scalers in hardware
 */
void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	const struct intel_crtc_scaler_state *scaler_state =
		&crtc_state->scaler_state;
	int i;

	/* loop through and disable scalers that aren't in use */
	for (i = 0; i < crtc->num_scalers; i++) {
		if (!scaler_state->scalers[i].in_use)
			skl_detach_scaler(crtc, i);
	}
}

void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
	int i;

	for (i = 0; i < crtc->num_scalers; i++)
		skl_detach_scaler(crtc, i);
}