Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 | // SPDX-License-Identifier: GPL-2.0 /* * Time of day based timer functions. * * S390 version * Copyright IBM Corp. 1999, 2008 * Author(s): Hartmut Penner (hp@de.ibm.com), * Martin Schwidefsky (schwidefsky@de.ibm.com), * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) * * Derived from "arch/i386/kernel/time.c" * Copyright (C) 1991, 1992, 1995 Linus Torvalds */ #define KMSG_COMPONENT "time" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kernel_stat.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/cpu.h> #include <linux/stop_machine.h> #include <linux/time.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/smp.h> #include <linux/types.h> #include <linux/profile.h> #include <linux/timex.h> #include <linux/notifier.h> #include <linux/timekeeper_internal.h> #include <linux/clockchips.h> #include <linux/gfp.h> #include <linux/kprobes.h> #include <linux/uaccess.h> #include <vdso/vsyscall.h> #include <vdso/clocksource.h> #include <vdso/helpers.h> #include <asm/facility.h> #include <asm/delay.h> #include <asm/div64.h> #include <asm/vdso.h> #include <asm/irq.h> #include <asm/irq_regs.h> #include <asm/vtimer.h> #include <asm/stp.h> #include <asm/cio.h> #include "entry.h" union tod_clock tod_clock_base __section(".data"); EXPORT_SYMBOL_GPL(tod_clock_base); u64 clock_comparator_max = -1ULL; EXPORT_SYMBOL_GPL(clock_comparator_max); static DEFINE_PER_CPU(struct clock_event_device, comparators); ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); EXPORT_SYMBOL(s390_epoch_delta_notifier); unsigned char ptff_function_mask[16]; static unsigned long lpar_offset; static unsigned long initial_leap_seconds; static unsigned long tod_steering_end; static long tod_steering_delta; /* * Get time offsets with PTFF */ void __init time_early_init(void) { struct ptff_qto qto; struct ptff_qui qui; int cs; /* Initialize TOD steering parameters */ tod_steering_end = tod_clock_base.tod; for (cs = 0; cs < CS_BASES; cs++) vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; if (!test_facility(28)) return; ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); /* get LPAR offset */ if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) lpar_offset = qto.tod_epoch_difference; /* get initial leap seconds */ if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) initial_leap_seconds = (unsigned long) ((long) qui.old_leap * 4096000000L); } /* * Scheduler clock - returns current time in nanosec units. */ unsigned long long notrace sched_clock(void) { return tod_to_ns(get_tod_clock_monotonic()); } NOKPROBE_SYMBOL(sched_clock); static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt) { unsigned long rem, sec, nsec; sec = clk->us; rem = do_div(sec, 1000000); nsec = ((clk->sus + (rem << 12)) * 125) >> 9; xt->tv_sec = sec; xt->tv_nsec = nsec; } void clock_comparator_work(void) { struct clock_event_device *cd; S390_lowcore.clock_comparator = clock_comparator_max; cd = this_cpu_ptr(&comparators); cd->event_handler(cd); } static int s390_next_event(unsigned long delta, struct clock_event_device *evt) { S390_lowcore.clock_comparator = get_tod_clock() + delta; set_clock_comparator(S390_lowcore.clock_comparator); return 0; } /* * Set up lowcore and control register of the current cpu to * enable TOD clock and clock comparator interrupts. */ void init_cpu_timer(void) { struct clock_event_device *cd; int cpu; S390_lowcore.clock_comparator = clock_comparator_max; set_clock_comparator(S390_lowcore.clock_comparator); cpu = smp_processor_id(); cd = &per_cpu(comparators, cpu); cd->name = "comparator"; cd->features = CLOCK_EVT_FEAT_ONESHOT; cd->mult = 16777; cd->shift = 12; cd->min_delta_ns = 1; cd->min_delta_ticks = 1; cd->max_delta_ns = LONG_MAX; cd->max_delta_ticks = ULONG_MAX; cd->rating = 400; cd->cpumask = cpumask_of(cpu); cd->set_next_event = s390_next_event; clockevents_register_device(cd); /* Enable clock comparator timer interrupt. */ __ctl_set_bit(0,11); /* Always allow the timing alert external interrupt. */ __ctl_set_bit(0, 4); } static void clock_comparator_interrupt(struct ext_code ext_code, unsigned int param32, unsigned long param64) { inc_irq_stat(IRQEXT_CLK); if (S390_lowcore.clock_comparator == clock_comparator_max) set_clock_comparator(S390_lowcore.clock_comparator); } static void stp_timing_alert(struct stp_irq_parm *); static void timing_alert_interrupt(struct ext_code ext_code, unsigned int param32, unsigned long param64) { inc_irq_stat(IRQEXT_TLA); if (param32 & 0x00038000) stp_timing_alert((struct stp_irq_parm *) ¶m32); } static void stp_reset(void); void read_persistent_clock64(struct timespec64 *ts) { union tod_clock clk; u64 delta; delta = initial_leap_seconds + TOD_UNIX_EPOCH; store_tod_clock_ext(&clk); clk.eitod -= delta; ext_to_timespec64(&clk, ts); } void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, struct timespec64 *boot_offset) { struct timespec64 boot_time; union tod_clock clk; u64 delta; delta = initial_leap_seconds + TOD_UNIX_EPOCH; clk = tod_clock_base; clk.eitod -= delta; ext_to_timespec64(&clk, &boot_time); read_persistent_clock64(wall_time); *boot_offset = timespec64_sub(*wall_time, boot_time); } static u64 read_tod_clock(struct clocksource *cs) { unsigned long now, adj; preempt_disable(); /* protect from changes to steering parameters */ now = get_tod_clock(); adj = tod_steering_end - now; if (unlikely((s64) adj > 0)) /* * manually steer by 1 cycle every 2^16 cycles. This * corresponds to shifting the tod delta by 15. 1s is * therefore steered in ~9h. The adjust will decrease * over time, until it finally reaches 0. */ now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); preempt_enable(); return now; } static struct clocksource clocksource_tod = { .name = "tod", .rating = 400, .read = read_tod_clock, .mask = CLOCKSOURCE_MASK(64), .mult = 1000, .shift = 12, .flags = CLOCK_SOURCE_IS_CONTINUOUS, .vdso_clock_mode = VDSO_CLOCKMODE_TOD, }; struct clocksource * __init clocksource_default_clock(void) { return &clocksource_tod; } /* * Initialize the TOD clock and the CPU timer of * the boot cpu. */ void __init time_init(void) { /* Reset time synchronization interfaces. */ stp_reset(); /* request the clock comparator external interrupt */ if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) panic("Couldn't request external interrupt 0x1004"); /* request the timing alert external interrupt */ if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) panic("Couldn't request external interrupt 0x1406"); if (__clocksource_register(&clocksource_tod) != 0) panic("Could not register TOD clock source"); /* Enable TOD clock interrupts on the boot cpu. */ init_cpu_timer(); /* Enable cpu timer interrupts on the boot cpu. */ vtime_init(); } static DEFINE_PER_CPU(atomic_t, clock_sync_word); static DEFINE_MUTEX(stp_mutex); static unsigned long clock_sync_flags; #define CLOCK_SYNC_HAS_STP 0 #define CLOCK_SYNC_STP 1 #define CLOCK_SYNC_STPINFO_VALID 2 /* * The get_clock function for the physical clock. It will get the current * TOD clock, subtract the LPAR offset and write the result to *clock. * The function returns 0 if the clock is in sync with the external time * source. If the clock mode is local it will return -EOPNOTSUPP and * -EAGAIN if the clock is not in sync with the external reference. */ int get_phys_clock(unsigned long *clock) { atomic_t *sw_ptr; unsigned int sw0, sw1; sw_ptr = &get_cpu_var(clock_sync_word); sw0 = atomic_read(sw_ptr); *clock = get_tod_clock() - lpar_offset; sw1 = atomic_read(sw_ptr); put_cpu_var(clock_sync_word); if (sw0 == sw1 && (sw0 & 0x80000000U)) /* Success: time is in sync. */ return 0; if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) return -EOPNOTSUPP; if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) return -EACCES; return -EAGAIN; } EXPORT_SYMBOL(get_phys_clock); /* * Make get_phys_clock() return -EAGAIN. */ static void disable_sync_clock(void *dummy) { atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); /* * Clear the in-sync bit 2^31. All get_phys_clock calls will * fail until the sync bit is turned back on. In addition * increase the "sequence" counter to avoid the race of an * stp event and the complete recovery against get_phys_clock. */ atomic_andnot(0x80000000, sw_ptr); atomic_inc(sw_ptr); } /* * Make get_phys_clock() return 0 again. * Needs to be called from a context disabled for preemption. */ static void enable_sync_clock(void) { atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); atomic_or(0x80000000, sw_ptr); } /* * Function to check if the clock is in sync. */ static inline int check_sync_clock(void) { atomic_t *sw_ptr; int rc; sw_ptr = &get_cpu_var(clock_sync_word); rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; put_cpu_var(clock_sync_word); return rc; } /* * Apply clock delta to the global data structures. * This is called once on the CPU that performed the clock sync. */ static void clock_sync_global(long delta) { unsigned long now, adj; struct ptff_qto qto; int cs; /* Fixup the monotonic sched clock. */ tod_clock_base.eitod += delta; /* Adjust TOD steering parameters. */ now = get_tod_clock(); adj = tod_steering_end - now; if (unlikely((s64) adj >= 0)) /* Calculate how much of the old adjustment is left. */ tod_steering_delta = (tod_steering_delta < 0) ? -(adj >> 15) : (adj >> 15); tod_steering_delta += delta; if ((abs(tod_steering_delta) >> 48) != 0) panic("TOD clock sync offset %li is too large to drift\n", tod_steering_delta); tod_steering_end = now + (abs(tod_steering_delta) << 15); for (cs = 0; cs < CS_BASES; cs++) { vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta; } /* Update LPAR offset. */ if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) lpar_offset = qto.tod_epoch_difference; /* Call the TOD clock change notifier. */ atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); } /* * Apply clock delta to the per-CPU data structures of this CPU. * This is called for each online CPU after the call to clock_sync_global. */ static void clock_sync_local(long delta) { /* Add the delta to the clock comparator. */ if (S390_lowcore.clock_comparator != clock_comparator_max) { S390_lowcore.clock_comparator += delta; set_clock_comparator(S390_lowcore.clock_comparator); } /* Adjust the last_update_clock time-stamp. */ S390_lowcore.last_update_clock += delta; } /* Single threaded workqueue used for stp sync events */ static struct workqueue_struct *time_sync_wq; static void __init time_init_wq(void) { if (time_sync_wq) return; time_sync_wq = create_singlethread_workqueue("timesync"); } struct clock_sync_data { atomic_t cpus; int in_sync; long clock_delta; }; /* * Server Time Protocol (STP) code. */ static bool stp_online; static struct stp_sstpi stp_info; static void *stp_page; static void stp_work_fn(struct work_struct *work); static DECLARE_WORK(stp_work, stp_work_fn); static struct timer_list stp_timer; static int __init early_parse_stp(char *p) { return kstrtobool(p, &stp_online); } early_param("stp", early_parse_stp); /* * Reset STP attachment. */ static void __init stp_reset(void) { int rc; stp_page = (void *) get_zeroed_page(GFP_ATOMIC); rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); if (rc == 0) set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); else if (stp_online) { pr_warn("The real or virtual hardware system does not provide an STP interface\n"); free_page((unsigned long) stp_page); stp_page = NULL; stp_online = false; } } static void stp_timeout(struct timer_list *unused) { queue_work(time_sync_wq, &stp_work); } static int __init stp_init(void) { if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) return 0; timer_setup(&stp_timer, stp_timeout, 0); time_init_wq(); if (!stp_online) return 0; queue_work(time_sync_wq, &stp_work); return 0; } arch_initcall(stp_init); /* * STP timing alert. There are three causes: * 1) timing status change * 2) link availability change * 3) time control parameter change * In all three cases we are only interested in the clock source state. * If a STP clock source is now available use it. */ static void stp_timing_alert(struct stp_irq_parm *intparm) { if (intparm->tsc || intparm->lac || intparm->tcpc) queue_work(time_sync_wq, &stp_work); } /* * STP sync check machine check. This is called when the timing state * changes from the synchronized state to the unsynchronized state. * After a STP sync check the clock is not in sync. The machine check * is broadcasted to all cpus at the same time. */ int stp_sync_check(void) { disable_sync_clock(NULL); return 1; } /* * STP island condition machine check. This is called when an attached * server attempts to communicate over an STP link and the servers * have matching CTN ids and have a valid stratum-1 configuration * but the configurations do not match. */ int stp_island_check(void) { disable_sync_clock(NULL); return 1; } void stp_queue_work(void) { queue_work(time_sync_wq, &stp_work); } static int __store_stpinfo(void) { int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); if (rc) clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); else set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); return rc; } static int stpinfo_valid(void) { return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); } static int stp_sync_clock(void *data) { struct clock_sync_data *sync = data; long clock_delta, flags; static int first; int rc; enable_sync_clock(); if (xchg(&first, 1) == 0) { /* Wait until all other cpus entered the sync function. */ while (atomic_read(&sync->cpus) != 0) cpu_relax(); rc = 0; if (stp_info.todoff || stp_info.tmd != 2) { flags = vdso_update_begin(); rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, &clock_delta); if (rc == 0) { sync->clock_delta = clock_delta; clock_sync_global(clock_delta); rc = __store_stpinfo(); if (rc == 0 && stp_info.tmd != 2) rc = -EAGAIN; } vdso_update_end(flags); } sync->in_sync = rc ? -EAGAIN : 1; xchg(&first, 0); } else { /* Slave */ atomic_dec(&sync->cpus); /* Wait for in_sync to be set. */ while (READ_ONCE(sync->in_sync) == 0) __udelay(1); } if (sync->in_sync != 1) /* Didn't work. Clear per-cpu in sync bit again. */ disable_sync_clock(NULL); /* Apply clock delta to per-CPU fields of this CPU. */ clock_sync_local(sync->clock_delta); return 0; } static int stp_clear_leap(void) { struct __kernel_timex txc; int ret; memset(&txc, 0, sizeof(txc)); ret = do_adjtimex(&txc); if (ret < 0) return ret; txc.modes = ADJ_STATUS; txc.status &= ~(STA_INS|STA_DEL); return do_adjtimex(&txc); } static void stp_check_leap(void) { struct stp_stzi stzi; struct stp_lsoib *lsoib = &stzi.lsoib; struct __kernel_timex txc; int64_t timediff; int leapdiff, ret; if (!stp_info.lu || !check_sync_clock()) { /* * Either a scheduled leap second was removed by the operator, * or STP is out of sync. In both cases, clear the leap second * kernel flags. */ if (stp_clear_leap() < 0) pr_err("failed to clear leap second flags\n"); return; } if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) { pr_err("stzi failed\n"); return; } timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC; leapdiff = lsoib->nlso - lsoib->also; if (leapdiff != 1 && leapdiff != -1) { pr_err("Cannot schedule %d leap seconds\n", leapdiff); return; } if (timediff < 0) { if (stp_clear_leap() < 0) pr_err("failed to clear leap second flags\n"); } else if (timediff < 7200) { memset(&txc, 0, sizeof(txc)); ret = do_adjtimex(&txc); if (ret < 0) return; txc.modes = ADJ_STATUS; if (leapdiff > 0) txc.status |= STA_INS; else txc.status |= STA_DEL; ret = do_adjtimex(&txc); if (ret < 0) pr_err("failed to set leap second flags\n"); /* arm Timer to clear leap second flags */ mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC)); } else { /* The day the leap second is scheduled for hasn't been reached. Retry * in one hour. */ mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC)); } } /* * STP work. Check for the STP state and take over the clock * synchronization if the STP clock source is usable. */ static void stp_work_fn(struct work_struct *work) { struct clock_sync_data stp_sync; int rc; /* prevent multiple execution. */ mutex_lock(&stp_mutex); if (!stp_online) { chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); del_timer_sync(&stp_timer); goto out_unlock; } rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); if (rc) goto out_unlock; rc = __store_stpinfo(); if (rc || stp_info.c == 0) goto out_unlock; /* Skip synchronization if the clock is already in sync. */ if (!check_sync_clock()) { memset(&stp_sync, 0, sizeof(stp_sync)); cpus_read_lock(); atomic_set(&stp_sync.cpus, num_online_cpus() - 1); stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); cpus_read_unlock(); } if (!check_sync_clock()) /* * There is a usable clock but the synchonization failed. * Retry after a second. */ mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); else if (stp_info.lu) stp_check_leap(); out_unlock: mutex_unlock(&stp_mutex); } /* * STP subsys sysfs interface functions */ static struct bus_type stp_subsys = { .name = "stp", .dev_name = "stp", }; static ssize_t ctn_id_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid()) ret = sprintf(buf, "%016lx\n", *(unsigned long *) stp_info.ctnid); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(ctn_id); static ssize_t ctn_type_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid()) ret = sprintf(buf, "%i\n", stp_info.ctn); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(ctn_type); static ssize_t dst_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid() && (stp_info.vbits & 0x2000)) ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(dst_offset); static ssize_t leap_seconds_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid() && (stp_info.vbits & 0x8000)) ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(leap_seconds); static ssize_t leap_seconds_scheduled_show(struct device *dev, struct device_attribute *attr, char *buf) { struct stp_stzi stzi; ssize_t ret; mutex_lock(&stp_mutex); if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { mutex_unlock(&stp_mutex); return -ENODATA; } ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); mutex_unlock(&stp_mutex); if (ret < 0) return ret; if (!stzi.lsoib.p) return sprintf(buf, "0,0\n"); return sprintf(buf, "%lu,%d\n", tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, stzi.lsoib.nlso - stzi.lsoib.also); } static DEVICE_ATTR_RO(leap_seconds_scheduled); static ssize_t stratum_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid()) ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(stratum); static ssize_t time_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid() && (stp_info.vbits & 0x0800)) ret = sprintf(buf, "%i\n", (int) stp_info.tto); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(time_offset); static ssize_t time_zone_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid() && (stp_info.vbits & 0x4000)) ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(time_zone_offset); static ssize_t timing_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid()) ret = sprintf(buf, "%i\n", stp_info.tmd); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(timing_mode); static ssize_t timing_state_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid()) ret = sprintf(buf, "%i\n", stp_info.tst); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(timing_state); static ssize_t online_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%i\n", stp_online); } static ssize_t online_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int value; value = simple_strtoul(buf, NULL, 0); if (value != 0 && value != 1) return -EINVAL; if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) return -EOPNOTSUPP; mutex_lock(&stp_mutex); stp_online = value; if (stp_online) set_bit(CLOCK_SYNC_STP, &clock_sync_flags); else clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); queue_work(time_sync_wq, &stp_work); mutex_unlock(&stp_mutex); return count; } /* * Can't use DEVICE_ATTR because the attribute should be named * stp/online but dev_attr_online already exists in this file .. */ static DEVICE_ATTR_RW(online); static struct attribute *stp_dev_attrs[] = { &dev_attr_ctn_id.attr, &dev_attr_ctn_type.attr, &dev_attr_dst_offset.attr, &dev_attr_leap_seconds.attr, &dev_attr_online.attr, &dev_attr_leap_seconds_scheduled.attr, &dev_attr_stratum.attr, &dev_attr_time_offset.attr, &dev_attr_time_zone_offset.attr, &dev_attr_timing_mode.attr, &dev_attr_timing_state.attr, NULL }; ATTRIBUTE_GROUPS(stp_dev); static int __init stp_init_sysfs(void) { return subsys_system_register(&stp_subsys, stp_dev_groups); } device_initcall(stp_init_sysfs); |