Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | // SPDX-License-Identifier: GPL-2.0-only /* ----------------------------------------------------------------------- * * * Copyright 2014 Intel Corporation; author: H. Peter Anvin * * ----------------------------------------------------------------------- */ /* * The IRET instruction, when returning to a 16-bit segment, only * restores the bottom 16 bits of the user space stack pointer. This * causes some 16-bit software to break, but it also leaks kernel state * to user space. * * This works around this by creating percpu "ministacks", each of which * is mapped 2^16 times 64K apart. When we detect that the return SS is * on the LDT, we copy the IRET frame to the ministack and use the * relevant alias to return to userspace. The ministacks are mapped * readonly, so if the IRET fault we promote #GP to #DF which is an IST * vector and thus has its own stack; we then do the fixup in the #DF * handler. * * This file sets up the ministacks and the related page tables. The * actual ministack invocation is in entry_64.S. */ #include <linux/init.h> #include <linux/init_task.h> #include <linux/kernel.h> #include <linux/percpu.h> #include <linux/gfp.h> #include <linux/random.h> #include <linux/pgtable.h> #include <asm/pgalloc.h> #include <asm/setup.h> #include <asm/espfix.h> /* * Note: we only need 6*8 = 48 bytes for the espfix stack, but round * it up to a cache line to avoid unnecessary sharing. */ #define ESPFIX_STACK_SIZE (8*8UL) #define ESPFIX_STACKS_PER_PAGE (PAGE_SIZE/ESPFIX_STACK_SIZE) /* There is address space for how many espfix pages? */ #define ESPFIX_PAGE_SPACE (1UL << (P4D_SHIFT-PAGE_SHIFT-16)) #define ESPFIX_MAX_CPUS (ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE) #if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS # error "Need more virtual address space for the ESPFIX hack" #endif #define PGALLOC_GFP (GFP_KERNEL | __GFP_ZERO) /* This contains the *bottom* address of the espfix stack */ DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack); DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr); /* Initialization mutex - should this be a spinlock? */ static DEFINE_MUTEX(espfix_init_mutex); /* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */ #define ESPFIX_MAX_PAGES DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE) static void *espfix_pages[ESPFIX_MAX_PAGES]; static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD] __aligned(PAGE_SIZE); static unsigned int page_random, slot_random; /* * This returns the bottom address of the espfix stack for a specific CPU. * The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case * we have to account for some amount of padding at the end of each page. */ static inline unsigned long espfix_base_addr(unsigned int cpu) { unsigned long page, slot; unsigned long addr; page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random; slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE; addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE); addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16); addr += ESPFIX_BASE_ADDR; return addr; } #define PTE_STRIDE (65536/PAGE_SIZE) #define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE) #define ESPFIX_PMD_CLONES PTRS_PER_PMD #define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES)) #define PGTABLE_PROT ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX) static void init_espfix_random(void) { unsigned long rand; /* * This is run before the entropy pools are initialized, * but this is hopefully better than nothing. */ if (!arch_get_random_longs(&rand, 1)) { /* The constant is an arbitrary large prime */ rand = rdtsc(); rand *= 0xc345c6b72fd16123UL; } slot_random = rand % ESPFIX_STACKS_PER_PAGE; page_random = (rand / ESPFIX_STACKS_PER_PAGE) & (ESPFIX_PAGE_SPACE - 1); } void __init init_espfix_bsp(void) { pgd_t *pgd; p4d_t *p4d; /* Install the espfix pud into the kernel page directory */ pgd = &init_top_pgt[pgd_index(ESPFIX_BASE_ADDR)]; p4d = p4d_alloc(&init_mm, pgd, ESPFIX_BASE_ADDR); p4d_populate(&init_mm, p4d, espfix_pud_page); /* Randomize the locations */ init_espfix_random(); /* The rest is the same as for any other processor */ init_espfix_ap(0); } void init_espfix_ap(int cpu) { unsigned int page; unsigned long addr; pud_t pud, *pud_p; pmd_t pmd, *pmd_p; pte_t pte, *pte_p; int n, node; void *stack_page; pteval_t ptemask; /* We only have to do this once... */ if (likely(per_cpu(espfix_stack, cpu))) return; /* Already initialized */ addr = espfix_base_addr(cpu); page = cpu/ESPFIX_STACKS_PER_PAGE; /* Did another CPU already set this up? */ stack_page = READ_ONCE(espfix_pages[page]); if (likely(stack_page)) goto done; mutex_lock(&espfix_init_mutex); /* Did we race on the lock? */ stack_page = READ_ONCE(espfix_pages[page]); if (stack_page) goto unlock_done; node = cpu_to_node(cpu); ptemask = __supported_pte_mask; pud_p = &espfix_pud_page[pud_index(addr)]; pud = *pud_p; if (!pud_present(pud)) { struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); pmd_p = (pmd_t *)page_address(page); pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask)); paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT); for (n = 0; n < ESPFIX_PUD_CLONES; n++) set_pud(&pud_p[n], pud); } pmd_p = pmd_offset(&pud, addr); pmd = *pmd_p; if (!pmd_present(pmd)) { struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); pte_p = (pte_t *)page_address(page); pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask)); paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT); for (n = 0; n < ESPFIX_PMD_CLONES; n++) set_pmd(&pmd_p[n], pmd); } pte_p = pte_offset_kernel(&pmd, addr); stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0)); /* * __PAGE_KERNEL_* includes _PAGE_GLOBAL, which we want since * this is mapped to userspace. */ pte = __pte(__pa(stack_page) | ((__PAGE_KERNEL_RO | _PAGE_ENC) & ptemask)); for (n = 0; n < ESPFIX_PTE_CLONES; n++) set_pte(&pte_p[n*PTE_STRIDE], pte); /* Job is done for this CPU and any CPU which shares this page */ WRITE_ONCE(espfix_pages[page], stack_page); unlock_done: mutex_unlock(&espfix_init_mutex); done: per_cpu(espfix_stack, cpu) = addr; per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page + (addr & ~PAGE_MASK); } |