Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
/*
 * Copyright © 2014-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "intel_ddi.h"
#include "intel_ddi_buf_trans.h"
#include "intel_de.h"
#include "intel_display_power_well.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dpio_phy.h"
#include "vlv_sideband.h"

/**
 * DOC: DPIO
 *
 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
 * ports. DPIO is the name given to such a display PHY. These PHYs
 * don't follow the standard programming model using direct MMIO
 * registers, and instead their registers must be accessed trough IOSF
 * sideband. VLV has one such PHY for driving ports B and C, and CHV
 * adds another PHY for driving port D. Each PHY responds to specific
 * IOSF-SB port.
 *
 * Each display PHY is made up of one or two channels. Each channel
 * houses a common lane part which contains the PLL and other common
 * logic. CH0 common lane also contains the IOSF-SB logic for the
 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
 * must be running when any DPIO registers are accessed.
 *
 * In addition to having their own registers, the PHYs are also
 * controlled through some dedicated signals from the display
 * controller. These include PLL reference clock enable, PLL enable,
 * and CRI clock selection, for example.
 *
 * Eeach channel also has two splines (also called data lanes), and
 * each spline is made up of one Physical Access Coding Sub-Layer
 * (PCS) block and two TX lanes. So each channel has two PCS blocks
 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
 * data/clock pairs depending on the output type.
 *
 * Additionally the PHY also contains an AUX lane with AUX blocks
 * for each channel. This is used for DP AUX communication, but
 * this fact isn't really relevant for the driver since AUX is
 * controlled from the display controller side. No DPIO registers
 * need to be accessed during AUX communication,
 *
 * Generally on VLV/CHV the common lane corresponds to the pipe and
 * the spline (PCS/TX) corresponds to the port.
 *
 * For dual channel PHY (VLV/CHV):
 *
 *  pipe A == CMN/PLL/REF CH0
 *
 *  pipe B == CMN/PLL/REF CH1
 *
 *  port B == PCS/TX CH0
 *
 *  port C == PCS/TX CH1
 *
 * This is especially important when we cross the streams
 * ie. drive port B with pipe B, or port C with pipe A.
 *
 * For single channel PHY (CHV):
 *
 *  pipe C == CMN/PLL/REF CH0
 *
 *  port D == PCS/TX CH0
 *
 * On BXT the entire PHY channel corresponds to the port. That means
 * the PLL is also now associated with the port rather than the pipe,
 * and so the clock needs to be routed to the appropriate transcoder.
 * Port A PLL is directly connected to transcoder EDP and port B/C
 * PLLs can be routed to any transcoder A/B/C.
 *
 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
 * digital port D (CHV) or port A (BXT). ::
 *
 *
 *     Dual channel PHY (VLV/CHV/BXT)
 *     ---------------------------------
 *     |      CH0      |      CH1      |
 *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
 *     |---------------|---------------| Display PHY
 *     | PCS01 | PCS23 | PCS01 | PCS23 |
 *     |-------|-------|-------|-------|
 *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
 *     ---------------------------------
 *     |     DDI0      |     DDI1      | DP/HDMI ports
 *     ---------------------------------
 *
 *     Single channel PHY (CHV/BXT)
 *     -----------------
 *     |      CH0      |
 *     |  CMN/PLL/REF  |
 *     |---------------| Display PHY
 *     | PCS01 | PCS23 |
 *     |-------|-------|
 *     |TX0|TX1|TX2|TX3|
 *     -----------------
 *     |     DDI2      | DP/HDMI port
 *     -----------------
 */

/**
 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
 */
struct bxt_ddi_phy_info {
	/**
	 * @dual_channel: true if this phy has a second channel.
	 */
	bool dual_channel;

	/**
	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
	 * Otherwise the GRC value will be copied from the phy indicated by
	 * this field.
	 */
	enum dpio_phy rcomp_phy;

	/**
	 * @reset_delay: delay in us to wait before setting the common reset
	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
	 */
	int reset_delay;

	/**
	 * @pwron_mask: Mask with the appropriate bit set that would cause the
	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
	 */
	u32 pwron_mask;

	/**
	 * @channel: struct containing per channel information.
	 */
	struct {
		/**
		 * @channel.port: which port maps to this channel.
		 */
		enum port port;
	} channel[2];
};

static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
	[DPIO_PHY0] = {
		.dual_channel = true,
		.rcomp_phy = DPIO_PHY1,
		.pwron_mask = BIT(0),

		.channel = {
			[DPIO_CH0] = { .port = PORT_B },
			[DPIO_CH1] = { .port = PORT_C },
		}
	},
	[DPIO_PHY1] = {
		.dual_channel = false,
		.rcomp_phy = -1,
		.pwron_mask = BIT(1),

		.channel = {
			[DPIO_CH0] = { .port = PORT_A },
		}
	},
};

static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
	[DPIO_PHY0] = {
		.dual_channel = false,
		.rcomp_phy = DPIO_PHY1,
		.pwron_mask = BIT(0),
		.reset_delay = 20,

		.channel = {
			[DPIO_CH0] = { .port = PORT_B },
		}
	},
	[DPIO_PHY1] = {
		.dual_channel = false,
		.rcomp_phy = -1,
		.pwron_mask = BIT(3),
		.reset_delay = 20,

		.channel = {
			[DPIO_CH0] = { .port = PORT_A },
		}
	},
	[DPIO_PHY2] = {
		.dual_channel = false,
		.rcomp_phy = DPIO_PHY1,
		.pwron_mask = BIT(1),
		.reset_delay = 20,

		.channel = {
			[DPIO_CH0] = { .port = PORT_C },
		}
	},
};

static const struct bxt_ddi_phy_info *
bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
{
	if (IS_GEMINILAKE(dev_priv)) {
		*count =  ARRAY_SIZE(glk_ddi_phy_info);
		return glk_ddi_phy_info;
	} else {
		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
		return bxt_ddi_phy_info;
	}
}

static const struct bxt_ddi_phy_info *
bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
	int count;
	const struct bxt_ddi_phy_info *phy_list =
		bxt_get_phy_list(dev_priv, &count);

	return &phy_list[phy];
}

void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
			     enum dpio_phy *phy, enum dpio_channel *ch)
{
	const struct bxt_ddi_phy_info *phy_info, *phys;
	int i, count;

	phys = bxt_get_phy_list(dev_priv, &count);

	for (i = 0; i < count; i++) {
		phy_info = &phys[i];

		if (port == phy_info->channel[DPIO_CH0].port) {
			*phy = i;
			*ch = DPIO_CH0;
			return;
		}

		if (phy_info->dual_channel &&
		    port == phy_info->channel[DPIO_CH1].port) {
			*phy = i;
			*ch = DPIO_CH1;
			return;
		}
	}

	drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
		 port_name(port));
	*phy = DPIO_PHY0;
	*ch = DPIO_CH0;
}

void bxt_ddi_phy_set_signal_levels(struct intel_encoder *encoder,
				   const struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int level = intel_ddi_level(encoder, crtc_state, 0);
	const struct intel_ddi_buf_trans *trans;
	enum dpio_channel ch;
	enum dpio_phy phy;
	int n_entries;
	u32 val;

	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
	if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans))
		return;

	bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch);

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);

	val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch));
	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
	val |= trans->entries[level].bxt.margin << MARGIN_000_SHIFT |
		trans->entries[level].bxt.scale << UNIQ_TRANS_SCALE_SHIFT;
	intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val);

	val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch));
	val &= ~SCALE_DCOMP_METHOD;
	if (trans->entries[level].bxt.enable)
		val |= SCALE_DCOMP_METHOD;

	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
		drm_err(&dev_priv->drm,
			"Disabled scaling while ouniqetrangenmethod was set");

	intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val);

	val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch));
	val &= ~DE_EMPHASIS;
	val |= trans->entries[level].bxt.deemphasis << DEEMPH_SHIFT;
	intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val);

	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
}

bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
			    enum dpio_phy phy)
{
	const struct bxt_ddi_phy_info *phy_info;

	phy_info = bxt_get_phy_info(dev_priv, phy);

	if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
		return false;

	if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
		drm_dbg(&dev_priv->drm,
			"DDI PHY %d powered, but power hasn't settled\n", phy);

		return false;
	}

	if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
		drm_dbg(&dev_priv->drm,
			"DDI PHY %d powered, but still in reset\n", phy);

		return false;
	}

	return true;
}

static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
	u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));

	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
}

static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
				  enum dpio_phy phy)
{
	if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
				  GRC_DONE, 10))
		drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
			phy);
}

static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
			      enum dpio_phy phy)
{
	const struct bxt_ddi_phy_info *phy_info;
	u32 val;

	phy_info = bxt_get_phy_info(dev_priv, phy);

	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
		/* Still read out the GRC value for state verification */
		if (phy_info->rcomp_phy != -1)
			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);

		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
			drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
				"won't reprogram it\n", phy);
			return;
		}

		drm_dbg(&dev_priv->drm,
			"DDI PHY %d enabled with invalid state, "
			"force reprogramming it\n", phy);
	}

	val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
	val |= phy_info->pwron_mask;
	intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);

	/*
	 * The PHY registers start out inaccessible and respond to reads with
	 * all 1s.  Eventually they become accessible as they power up, then
	 * the reserved bit will give the default 0.  Poll on the reserved bit
	 * becoming 0 to find when the PHY is accessible.
	 * The flag should get set in 100us according to the HW team, but
	 * use 1ms due to occasional timeouts observed with that.
	 */
	if (intel_wait_for_register_fw(&dev_priv->uncore,
				       BXT_PORT_CL1CM_DW0(phy),
				       PHY_RESERVED | PHY_POWER_GOOD,
				       PHY_POWER_GOOD,
				       1))
		drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
			phy);

	/* Program PLL Rcomp code offset */
	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW9(phy));
	val &= ~IREF0RC_OFFSET_MASK;
	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW9(phy), val);

	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW10(phy));
	val &= ~IREF1RC_OFFSET_MASK;
	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW10(phy), val);

	/* Program power gating */
	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW28(phy));
	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
		SUS_CLK_CONFIG;
	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW28(phy), val);

	if (phy_info->dual_channel) {
		val = intel_de_read(dev_priv, BXT_PORT_CL2CM_DW6(phy));
		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
		intel_de_write(dev_priv, BXT_PORT_CL2CM_DW6(phy), val);
	}

	if (phy_info->rcomp_phy != -1) {
		u32 grc_code;

		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);

		/*
		 * PHY0 isn't connected to an RCOMP resistor so copy over
		 * the corresponding calibrated value from PHY1, and disable
		 * the automatic calibration on PHY0.
		 */
		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
							  phy_info->rcomp_phy);
		grc_code = val << GRC_CODE_FAST_SHIFT |
			   val << GRC_CODE_SLOW_SHIFT |
			   val;
		intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);

		val = intel_de_read(dev_priv, BXT_PORT_REF_DW8(phy));
		val |= GRC_DIS | GRC_RDY_OVRD;
		intel_de_write(dev_priv, BXT_PORT_REF_DW8(phy), val);
	}

	if (phy_info->reset_delay)
		udelay(phy_info->reset_delay);

	val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
	val |= COMMON_RESET_DIS;
	intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
}

void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
	const struct bxt_ddi_phy_info *phy_info;
	u32 val;

	phy_info = bxt_get_phy_info(dev_priv, phy);

	val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
	val &= ~COMMON_RESET_DIS;
	intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);

	val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
	val &= ~phy_info->pwron_mask;
	intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
}

void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
	const struct bxt_ddi_phy_info *phy_info =
		bxt_get_phy_info(dev_priv, phy);
	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
	bool was_enabled;

	lockdep_assert_held(&dev_priv->display.power.domains.lock);

	was_enabled = true;
	if (rcomp_phy != -1)
		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);

	/*
	 * We need to copy the GRC calibration value from rcomp_phy,
	 * so make sure it's powered up.
	 */
	if (!was_enabled)
		_bxt_ddi_phy_init(dev_priv, rcomp_phy);

	_bxt_ddi_phy_init(dev_priv, phy);

	if (!was_enabled)
		bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
}

static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
		       i915_reg_t reg, u32 mask, u32 expected,
		       const char *reg_fmt, ...)
{
	struct va_format vaf;
	va_list args;
	u32 val;

	val = intel_de_read(dev_priv, reg);
	if ((val & mask) == expected)
		return true;

	va_start(args, reg_fmt);
	vaf.fmt = reg_fmt;
	vaf.va = &args;

	drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
			 "current %08x, expected %08x (mask %08x)\n",
			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
			 mask);

	va_end(args);

	return false;
}

bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
			      enum dpio_phy phy)
{
	const struct bxt_ddi_phy_info *phy_info;
	u32 mask;
	bool ok;

	phy_info = bxt_get_phy_info(dev_priv, phy);

#define _CHK(reg, mask, exp, fmt, ...)					\
	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
			       ## __VA_ARGS__)

	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
		return false;

	ok = true;

	/* PLL Rcomp code offset */
	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
		    "BXT_PORT_CL1CM_DW9(%d)", phy);
	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
		    "BXT_PORT_CL1CM_DW10(%d)", phy);

	/* Power gating */
	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
		    "BXT_PORT_CL1CM_DW28(%d)", phy);

	if (phy_info->dual_channel)
		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
			   "BXT_PORT_CL2CM_DW6(%d)", phy);

	if (phy_info->rcomp_phy != -1) {
		u32 grc_code = dev_priv->bxt_phy_grc;

		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
			   grc_code << GRC_CODE_SLOW_SHIFT |
			   grc_code;
		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
		       GRC_CODE_NOM_MASK;
		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
			   "BXT_PORT_REF_DW6(%d)", phy);

		mask = GRC_DIS | GRC_RDY_OVRD;
		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
			    "BXT_PORT_REF_DW8(%d)", phy);
	}

	return ok;
#undef _CHK
}

u8
bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
{
	switch (lane_count) {
	case 1:
		return 0;
	case 2:
		return BIT(2) | BIT(0);
	case 4:
		return BIT(3) | BIT(2) | BIT(0);
	default:
		MISSING_CASE(lane_count);

		return 0;
	}
}

void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
				     u8 lane_lat_optim_mask)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum port port = encoder->port;
	enum dpio_phy phy;
	enum dpio_channel ch;
	int lane;

	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);

	for (lane = 0; lane < 4; lane++) {
		u32 val = intel_de_read(dev_priv,
					BXT_PORT_TX_DW14_LN(phy, ch, lane));

		/*
		 * Note that on CHV this flag is called UPAR, but has
		 * the same function.
		 */
		val &= ~LATENCY_OPTIM;
		if (lane_lat_optim_mask & BIT(lane))
			val |= LATENCY_OPTIM;

		intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
			       val);
	}
}

u8
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum port port = encoder->port;
	enum dpio_phy phy;
	enum dpio_channel ch;
	int lane;
	u8 mask;

	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);

	mask = 0;
	for (lane = 0; lane < 4; lane++) {
		u32 val = intel_de_read(dev_priv,
					BXT_PORT_TX_DW14_LN(phy, ch, lane));

		if (val & LATENCY_OPTIM)
			mask |= BIT(lane);
	}

	return mask;
}

void chv_set_phy_signal_level(struct intel_encoder *encoder,
			      const struct intel_crtc_state *crtc_state,
			      u32 deemph_reg_value, u32 margin_reg_value,
			      bool uniq_trans_scale)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
	enum pipe pipe = crtc->pipe;
	u32 val;
	int i;

	vlv_dpio_get(dev_priv);

	/* Clear calc init */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	if (crtc_state->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
	}

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);

	if (crtc_state->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
	}

	/* Program swing deemph */
	for (i = 0; i < crtc_state->lane_count; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
	}

	/* Program swing margin */
	for (i = 0; i < crtc_state->lane_count; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));

		val &= ~DPIO_SWING_MARGIN000_MASK;
		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;

		/*
		 * Supposedly this value shouldn't matter when unique transition
		 * scale is disabled, but in fact it does matter. Let's just
		 * always program the same value and hope it's OK.
		 */
		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;

		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
	}

	/*
	 * The document said it needs to set bit 27 for ch0 and bit 26
	 * for ch1. Might be a typo in the doc.
	 * For now, for this unique transition scale selection, set bit
	 * 27 for ch0 and ch1.
	 */
	for (i = 0; i < crtc_state->lane_count; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
		if (uniq_trans_scale)
			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
		else
			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
	}

	/* Start swing calculation */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	if (crtc_state->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
	}

	vlv_dpio_put(dev_priv);
}

void chv_data_lane_soft_reset(struct intel_encoder *encoder,
			      const struct intel_crtc_state *crtc_state,
			      bool reset)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum pipe pipe = crtc->pipe;
	u32 val;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
	if (reset)
		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
	else
		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);

	if (crtc_state->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
		if (reset)
			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
		else
			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
	}

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
	val |= CHV_PCS_REQ_SOFTRESET_EN;
	if (reset)
		val &= ~DPIO_PCS_CLK_SOFT_RESET;
	else
		val |= DPIO_PCS_CLK_SOFT_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);

	if (crtc_state->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
		val |= CHV_PCS_REQ_SOFTRESET_EN;
		if (reset)
			val &= ~DPIO_PCS_CLK_SOFT_RESET;
		else
			val |= DPIO_PCS_CLK_SOFT_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
	}
}

void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
			    const struct intel_crtc_state *crtc_state)
{
	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
	enum pipe pipe = crtc->pipe;
	unsigned int lane_mask =
		intel_dp_unused_lane_mask(crtc_state->lane_count);
	u32 val;

	/*
	 * Must trick the second common lane into life.
	 * Otherwise we can't even access the PLL.
	 */
	if (ch == DPIO_CH0 && pipe == PIPE_B)
		dig_port->release_cl2_override =
			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);

	chv_phy_powergate_lanes(encoder, true, lane_mask);

	vlv_dpio_get(dev_priv);

	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, crtc_state, true);

	/* program left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA1_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA1_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA2_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA2_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

	/* program clock channel usage */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);

	if (crtc_state->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
		if (pipe != PIPE_B)
			val &= ~CHV_PCS_USEDCLKCHANNEL;
		else
			val |= CHV_PCS_USEDCLKCHANNEL;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
	}

	/*
	 * This a a bit weird since generally CL
	 * matches the pipe, but here we need to
	 * pick the CL based on the port.
	 */
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
	if (pipe != PIPE_B)
		val &= ~CHV_CMN_USEDCLKCHANNEL;
	else
		val |= CHV_CMN_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);

	vlv_dpio_put(dev_priv);
}

void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
				const struct intel_crtc_state *crtc_state)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
	enum pipe pipe = crtc->pipe;
	int data, i, stagger;
	u32 val;

	vlv_dpio_get(dev_priv);

	/* allow hardware to manage TX FIFO reset source */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	if (crtc_state->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
	}

	/* Program Tx lane latency optimal setting*/
	for (i = 0; i < crtc_state->lane_count; i++) {
		/* Set the upar bit */
		if (crtc_state->lane_count == 1)
			data = 0x0;
		else
			data = (i == 1) ? 0x0 : 0x1;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
				data << DPIO_UPAR_SHIFT);
	}

	/* Data lane stagger programming */
	if (crtc_state->port_clock > 270000)
		stagger = 0x18;
	else if (crtc_state->port_clock > 135000)
		stagger = 0xd;
	else if (crtc_state->port_clock > 67500)
		stagger = 0x7;
	else if (crtc_state->port_clock > 33750)
		stagger = 0x4;
	else
		stagger = 0x2;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	if (crtc_state->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
		val |= DPIO_TX2_STAGGER_MASK(0x1f);
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
	}

	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
		       DPIO_LANESTAGGER_STRAP(stagger) |
		       DPIO_LANESTAGGER_STRAP_OVRD |
		       DPIO_TX1_STAGGER_MASK(0x1f) |
		       DPIO_TX1_STAGGER_MULT(6) |
		       DPIO_TX2_STAGGER_MULT(0));

	if (crtc_state->lane_count > 2) {
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
			       DPIO_LANESTAGGER_STRAP(stagger) |
			       DPIO_LANESTAGGER_STRAP_OVRD |
			       DPIO_TX1_STAGGER_MASK(0x1f) |
			       DPIO_TX1_STAGGER_MULT(7) |
			       DPIO_TX2_STAGGER_MULT(5));
	}

	/* Deassert data lane reset */
	chv_data_lane_soft_reset(encoder, crtc_state, false);

	vlv_dpio_put(dev_priv);
}

void chv_phy_release_cl2_override(struct intel_encoder *encoder)
{
	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (dig_port->release_cl2_override) {
		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
		dig_port->release_cl2_override = false;
	}
}

void chv_phy_post_pll_disable(struct intel_encoder *encoder,
			      const struct intel_crtc_state *old_crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
	u32 val;

	vlv_dpio_get(dev_priv);

	/* disable left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

	vlv_dpio_put(dev_priv);

	/*
	 * Leave the power down bit cleared for at least one
	 * lane so that chv_powergate_phy_ch() will power
	 * on something when the channel is otherwise unused.
	 * When the port is off and the override is removed
	 * the lanes power down anyway, so otherwise it doesn't
	 * really matter what the state of power down bits is
	 * after this.
	 */
	chv_phy_powergate_lanes(encoder, false, 0x0);
}

void vlv_set_phy_signal_level(struct intel_encoder *encoder,
			      const struct intel_crtc_state *crtc_state,
			      u32 demph_reg_value, u32 preemph_reg_value,
			      u32 uniqtranscale_reg_value, u32 tx3_demph)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
	enum pipe pipe = crtc->pipe;

	vlv_dpio_get(dev_priv);

	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
			 uniqtranscale_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);

	if (tx3_demph)
		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);

	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);

	vlv_dpio_put(dev_priv);
}

void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
			    const struct intel_crtc_state *crtc_state)
{
	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
	enum pipe pipe = crtc->pipe;

	/* Program Tx lane resets to default */
	vlv_dpio_get(dev_priv);

	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
			 DPIO_PCS_TX_LANE2_RESET |
			 DPIO_PCS_TX_LANE1_RESET);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
				 DPIO_PCS_CLK_SOFT_RESET);

	/* Fix up inter-pair skew failure */
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);

	vlv_dpio_put(dev_priv);
}

void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
				const struct intel_crtc_state *crtc_state)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
	enum pipe pipe = crtc->pipe;
	u32 val;

	vlv_dpio_get(dev_priv);

	/* Enable clock channels for this port */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
	val = 0;
	if (pipe)
		val |= (1<<21);
	else
		val &= ~(1<<21);
	val |= 0x001000c4;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);

	/* Program lane clock */
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);

	vlv_dpio_put(dev_priv);
}

void vlv_phy_reset_lanes(struct intel_encoder *encoder,
			 const struct intel_crtc_state *old_crtc_state)
{
	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
	enum pipe pipe = crtc->pipe;

	vlv_dpio_get(dev_priv);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
	vlv_dpio_put(dev_priv);
}