/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "basics/dc_common.h"
#include "core_types.h"
#include "resource.h"
#include "dcn201_hwseq.h"
#include "dcn201_optc.h"
#include "dce/dce_hwseq.h"
#include "hubp.h"
#include "dchubbub.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "dccg.h"
#include "clk_mgr.h"
#include "reg_helper.h"
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#define DC_LOGGER \
dc->ctx->logger
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
static bool patch_address_for_sbs_tb_stereo(
struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
{
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
bool sec_split = pipe_ctx->top_pipe &&
pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
(pipe_ctx->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_SIDE_BY_SIDE ||
pipe_ctx->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
*addr = plane_state->address.grph_stereo.left_addr;
plane_state->address.grph_stereo.left_addr =
plane_state->address.grph_stereo.right_addr;
return true;
} else {
if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
plane_state->address.grph_stereo.right_addr =
plane_state->address.grph_stereo.left_addr;
plane_state->address.grph_stereo.right_meta_addr =
plane_state->address.grph_stereo.left_meta_addr;
}
}
return false;
}
static bool gpu_addr_to_uma(struct dce_hwseq *hwseq,
PHYSICAL_ADDRESS_LOC *addr)
{
bool is_in_uma;
if (hwseq->fb_base.quad_part <= addr->quad_part &&
addr->quad_part < hwseq->fb_top.quad_part) {
addr->quad_part -= hwseq->fb_base.quad_part;
addr->quad_part += hwseq->fb_offset.quad_part;
is_in_uma = true;
} else if (hwseq->fb_offset.quad_part <= addr->quad_part &&
addr->quad_part <= hwseq->uma_top.quad_part) {
is_in_uma = true;
} else {
is_in_uma = false;
}
return is_in_uma;
}
static void plane_address_in_gpu_space_to_uma(struct dce_hwseq *hwseq,
struct dc_plane_address *addr)
{
switch (addr->type) {
case PLN_ADDR_TYPE_GRAPHICS:
gpu_addr_to_uma(hwseq, &addr->grph.addr);
gpu_addr_to_uma(hwseq, &addr->grph.meta_addr);
break;
case PLN_ADDR_TYPE_GRPH_STEREO:
gpu_addr_to_uma(hwseq, &addr->grph_stereo.left_addr);
gpu_addr_to_uma(hwseq, &addr->grph_stereo.left_meta_addr);
gpu_addr_to_uma(hwseq, &addr->grph_stereo.right_addr);
gpu_addr_to_uma(hwseq, &addr->grph_stereo.right_meta_addr);
break;
case PLN_ADDR_TYPE_VIDEO_PROGRESSIVE:
gpu_addr_to_uma(hwseq, &addr->video_progressive.luma_addr);
gpu_addr_to_uma(hwseq, &addr->video_progressive.luma_meta_addr);
gpu_addr_to_uma(hwseq, &addr->video_progressive.chroma_addr);
gpu_addr_to_uma(hwseq, &addr->video_progressive.chroma_meta_addr);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
void dcn201_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
{
bool addr_patched = false;
PHYSICAL_ADDRESS_LOC addr;
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
struct dce_hwseq *hws = dc->hwseq;
struct dc_plane_address uma;
if (plane_state == NULL)
return;
uma = plane_state->address;
addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
plane_address_in_gpu_space_to_uma(hws, &uma);
pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
pipe_ctx->plane_res.hubp,
&uma,
plane_state->flip_immediate);
plane_state->status.requested_address = plane_state->address;
if (plane_state->flip_immediate)
plane_state->status.current_address = plane_state->address;
if (addr_patched)
pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
}
/* Blank pixel data during initialization */
void dcn201_init_blank(
struct dc *dc,
struct timing_generator *tg)
{
struct dce_hwseq *hws = dc->hwseq;
enum dc_color_space color_space;
struct tg_color black_color = {0};
struct output_pixel_processor *opp = NULL;
uint32_t num_opps, opp_id_src0, opp_id_src1;
uint32_t otg_active_width, otg_active_height;
/* program opp dpg blank color */
color_space = COLOR_SPACE_SRGB;
color_space_to_black_color(dc, color_space, &black_color);
/* get the OTG active size */
tg->funcs->get_otg_active_size(tg,
&otg_active_width,
&otg_active_height);
/* get the OPTC source */
tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp);
opp = dc->res_pool->opps[opp_id_src0];
opp->funcs->opp_set_disp_pattern_generator(
opp,
CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
CONTROLLER_DP_COLOR_SPACE_UDEFINED,
COLOR_DEPTH_UNDEFINED,
&black_color,
otg_active_width,
otg_active_height,
0);
hws->funcs.wait_for_blank_complete(opp);
}
static void read_mmhub_vm_setup(struct dce_hwseq *hws)
{
uint32_t fb_base = REG_READ(MC_VM_FB_LOCATION_BASE);
uint32_t fb_top = REG_READ(MC_VM_FB_LOCATION_TOP);
uint32_t fb_offset = REG_READ(MC_VM_FB_OFFSET);
/* MC_VM_FB_LOCATION_TOP is in pages, actual top should add 1 */
fb_top++;
/* bit 23:0 in register map to bit 47:24 in address */
hws->fb_base.low_part = fb_base;
hws->fb_base.quad_part <<= 24;
hws->fb_top.low_part = fb_top;
hws->fb_top.quad_part <<= 24;
hws->fb_offset.low_part = fb_offset;
hws->fb_offset.quad_part <<= 24;
hws->uma_top.quad_part = hws->fb_top.quad_part
- hws->fb_base.quad_part + hws->fb_offset.quad_part;
}
void dcn201_init_hw(struct dc *dc)
{
int i, j;
struct dce_hwseq *hws = dc->hwseq;
struct resource_pool *res_pool = dc->res_pool;
struct dc_state *context = dc->current_state;
if (res_pool->dccg->funcs->dccg_init)
res_pool->dccg->funcs->dccg_init(res_pool->dccg);
if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);
hws->funcs.dccg_init(hws);
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
REG_WRITE(REFCLK_CNTL, 0);
} else {
hws->funcs.bios_golden_init(dc);
if (dc->ctx->dc_bios->fw_info_valid) {
res_pool->ref_clocks.xtalin_clock_inKhz =
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
if (res_pool->dccg && res_pool->hubbub) {
(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
&res_pool->ref_clocks.dccg_ref_clock_inKhz);
(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
res_pool->ref_clocks.dccg_ref_clock_inKhz,
&res_pool->ref_clocks.dchub_ref_clock_inKhz);
} else {
res_pool->ref_clocks.dccg_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
res_pool->ref_clocks.dchub_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
}
}
} else
ASSERT_CRITICAL(false);
for (i = 0; i < dc->link_count; i++) {
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector).
*/
struct dc_link *link = dc->links[i];
link->link_enc->funcs->hw_init(link->link_enc);
}
if (hws->fb_offset.quad_part == 0)
read_mmhub_vm_setup(hws);
}
/* Blank pixel data with OPP DPG */
for (i = 0; i < res_pool->timing_generator_count; i++) {
struct timing_generator *tg = res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg)) {
dcn201_init_blank(dc, tg);
}
}
for (i = 0; i < res_pool->timing_generator_count; i++) {
struct timing_generator *tg = res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg))
tg->funcs->lock(tg);
}
for (i = 0; i < res_pool->pipe_count; i++) {
struct dpp *dpp = res_pool->dpps[i];
dpp->funcs->dpp_reset(dpp);
}
/* Reset all MPCC muxes */
res_pool->mpc->funcs->mpc_init(res_pool->mpc);
/* initialize OPP mpc_tree parameter */
for (i = 0; i < res_pool->res_cap->num_opp; i++) {
res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst;
res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
for (j = 0; j < MAX_PIPES; j++)
res_pool->opps[i]->mpcc_disconnect_pending[j] = false;
}
for (i = 0; i < res_pool->timing_generator_count; i++) {
struct timing_generator *tg = res_pool->timing_generators[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = res_pool->hubps[i];
struct dpp *dpp = res_pool->dpps[i];
pipe_ctx->stream_res.tg = tg;
pipe_ctx->pipe_idx = i;
pipe_ctx->plane_res.hubp = hubp;
pipe_ctx->plane_res.dpp = dpp;
pipe_ctx->plane_res.mpcc_inst = dpp->inst;
hubp->mpcc_id = dpp->inst;
hubp->opp_id = OPP_ID_INVALID;
hubp->power_gated = false;
pipe_ctx->stream_res.opp = NULL;
hubp->funcs->hubp_init(hubp);
res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
pipe_ctx->stream_res.opp = res_pool->opps[i];
/*To do: number of MPCC != number of opp*/
hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
}
/* initialize DWB pointer to MCIF_WB */
for (i = 0; i < res_pool->res_cap->num_dwb; i++)
res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i];
for (i = 0; i < res_pool->timing_generator_count; i++) {
struct timing_generator *tg = res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg))
tg->funcs->unlock(tg);
}
for (i = 0; i < res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
dc->hwss.disable_plane(dc, pipe_ctx);
pipe_ctx->stream_res.tg = NULL;
pipe_ctx->plane_res.hubp = NULL;
}
for (i = 0; i < res_pool->timing_generator_count; i++) {
struct timing_generator *tg = res_pool->timing_generators[i];
tg->funcs->tg_init(tg);
}
/* end of FPGA. Below if real ASIC */
if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
return;
for (i = 0; i < res_pool->audio_count; i++) {
struct audio *audio = res_pool->audios[i];
audio->funcs->hw_init(audio);
}
/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
REG_WRITE(DIO_MEM_PWR_CTRL, 0);
if (!dc->debug.disable_clock_gate) {
/* enable all DCN clock gating */
REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
}
}
/* trigger HW to start disconnect plane from stream on the next vsync */
void dcn201_plane_atomic_disconnect(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct dce_hwseq *hws = dc->hwseq;
struct hubp *hubp = pipe_ctx->plane_res.hubp;
int dpp_id = pipe_ctx->plane_res.dpp->inst;
struct mpc *mpc = dc->res_pool->mpc;
struct mpc_tree *mpc_tree_params;
struct mpcc *mpcc_to_remove = NULL;
struct output_pixel_processor *opp = pipe_ctx->stream_res.opp;
bool mpcc_removed = false;
mpc_tree_params = &(opp->mpc_tree_params);
/* check if this plane is being used by an MPCC in the secondary blending chain */
if (mpc->funcs->get_mpcc_for_dpp_from_secondary)
mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp_from_secondary(mpc_tree_params, dpp_id);
/* remove MPCC from secondary if being used */
if (mpcc_to_remove != NULL && mpc->funcs->remove_mpcc_from_secondary) {
mpc->funcs->remove_mpcc_from_secondary(mpc, mpc_tree_params, mpcc_to_remove);
mpcc_removed = true;
}
/* check if this MPCC is already being used for this plane (dpp) in the primary blending chain */
mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id);
if (mpcc_to_remove != NULL) {
mpc->funcs->remove_mpcc(mpc, mpc_tree_params, mpcc_to_remove);
mpcc_removed = true;
}
/*Already reset*/
if (mpcc_removed == false)
return;
if (opp != NULL)
opp->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
dc->optimized_required = true;
if (hubp->funcs->hubp_disconnect)
hubp->funcs->hubp_disconnect(hubp);
if (dc->debug.sanity_checks)
hws->funcs.verify_allow_pstate_change_high(dc);
}
void dcn201_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
struct mpcc_blnd_cfg blnd_cfg;
bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
int mpcc_id, dpp_id;
struct mpcc *new_mpcc;
struct mpcc *remove_mpcc = NULL;
struct mpc *mpc = dc->res_pool->mpc;
struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) {
get_hdr_visual_confirm_color(
pipe_ctx, &blnd_cfg.black_color);
} else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) {
get_surface_visual_confirm_color(
pipe_ctx, &blnd_cfg.black_color);
} else {
color_space_to_black_color(
dc, pipe_ctx->stream->output_color_space,
&blnd_cfg.black_color);
}
if (per_pixel_alpha)
blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
else
blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
blnd_cfg.overlap_only = false;
if (pipe_ctx->plane_state->global_alpha_value)
blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
else
blnd_cfg.global_alpha = 0xff;
blnd_cfg.global_gain = 0xff;
blnd_cfg.background_color_bpc = 4;
blnd_cfg.bottom_gain_mode = 0;
blnd_cfg.top_gain = 0x1f000;
blnd_cfg.bottom_inside_gain = 0x1f000;
blnd_cfg.bottom_outside_gain = 0x1f000;
/*the input to MPCC is RGB*/
blnd_cfg.black_color.color_b_cb = 0;
blnd_cfg.black_color.color_g_y = 0;
blnd_cfg.black_color.color_r_cr = 0;
/* DCN1.0 has output CM before MPC which seems to screw with
* pre-multiplied alpha. This is a w/a hopefully unnecessary for DCN2.
*/
blnd_cfg.pre_multiplied_alpha = per_pixel_alpha;
/*
* TODO: remove hack
* Note: currently there is a bug in init_hw such that
* on resume from hibernate, BIOS sets up MPCC0, and
* we do mpcc_remove but the mpcc cannot go to idle
* after remove. This cause us to pick mpcc1 here,
* which causes a pstate hang for yet unknown reason.
*/
dpp_id = hubp->inst;
mpcc_id = dpp_id;
/* If there is no full update, don't need to touch MPC tree*/
if (!pipe_ctx->plane_state->update_flags.bits.full_update) {
dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id);
mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
return;
}
/* check if this plane is being used by an MPCC in the secondary blending chain */
if (mpc->funcs->get_mpcc_for_dpp_from_secondary)
remove_mpcc = mpc->funcs->get_mpcc_for_dpp_from_secondary(mpc_tree_params, dpp_id);
/* remove MPCC from secondary if being used */
if (remove_mpcc != NULL && mpc->funcs->remove_mpcc_from_secondary)
mpc->funcs->remove_mpcc_from_secondary(mpc, mpc_tree_params, remove_mpcc);
/* check if this MPCC is already being used for this plane (dpp) in the primary blending chain */
remove_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id);
/* remove MPCC if being used */
if (remove_mpcc != NULL)
mpc->funcs->remove_mpcc(mpc, mpc_tree_params, remove_mpcc);
else
if (dc->debug.sanity_checks)
mpc->funcs->assert_mpcc_idle_before_connect(
dc->res_pool->mpc, mpcc_id);
/* Call MPC to insert new plane */
dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id);
new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
mpc_tree_params,
&blnd_cfg,
NULL,
NULL,
dpp_id,
mpcc_id);
ASSERT(new_mpcc != NULL);
hubp->opp_id = pipe_ctx->stream_res.opp->inst;
hubp->mpcc_id = mpcc_id;
}
void dcn201_pipe_control_lock(
struct dc *dc,
struct pipe_ctx *pipe,
bool lock)
{
struct dce_hwseq *hws = dc->hwseq;
struct hubp *hubp = NULL;
hubp = dc->res_pool->hubps[pipe->pipe_idx];
/* use TG master update lock to lock everything on the TG
* therefore only top pipe need to lock
*/
if (pipe->top_pipe)
return;
if (dc->debug.sanity_checks)
hws->funcs.verify_allow_pstate_change_high(dc);
if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) {
if (lock)
pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg);
else
pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg);
} else {
if (lock)
pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
else
pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
}
if (dc->debug.sanity_checks)
hws->funcs.verify_allow_pstate_change_high(dc);
}
void dcn201_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
{
struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
gpu_addr_to_uma(pipe_ctx->stream->ctx->dc->hwseq, &attributes->address);
pipe_ctx->plane_res.hubp->funcs->set_cursor_attributes(
pipe_ctx->plane_res.hubp, attributes);
pipe_ctx->plane_res.dpp->funcs->set_cursor_attributes(
pipe_ctx->plane_res.dpp, attributes);
}
void dcn201_set_dmdata_attributes(struct pipe_ctx *pipe_ctx)
{
struct dc_dmdata_attributes attr = { 0 };
struct hubp *hubp = pipe_ctx->plane_res.hubp;
gpu_addr_to_uma(pipe_ctx->stream->ctx->dc->hwseq,
&pipe_ctx->stream->dmdata_address);
attr.dmdata_mode = DMDATA_HW_MODE;
attr.dmdata_size =
dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36;
attr.address.quad_part =
pipe_ctx->stream->dmdata_address.quad_part;
attr.dmdata_dl_delta = 0;
attr.dmdata_qos_mode = 0;
attr.dmdata_qos_level = 0;
attr.dmdata_repeat = 1; /* always repeat */
attr.dmdata_updated = 1;
attr.dmdata_sw_data = NULL;
hubp->funcs->dmdata_set_attributes(hubp, &attr);
}
void dcn201_unblank_stream(struct pipe_ctx *pipe_ctx,
struct dc_link_settings *link_settings)
{
struct encoder_unblank_param params = { { 0 } };
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dce_hwseq *hws = link->dc->hwseq;
/* only 3 items below are used by unblank */
params.timing = pipe_ctx->stream->timing;
params.link_settings.link_rate = link_settings->link_rate;
if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
/*check whether it is half the rate*/
if (optc201_is_two_pixels_per_containter(&stream->timing))
params.timing.pix_clk_100hz /= 2;
pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms);
}
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
hws->funcs.edp_backlight_control(link, true);
}
}