Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
// SPDX-License-Identifier: GPL-2.0

/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
 * Copyright (C) 2018-2021 Linaro Ltd.
 */

#include <linux/clk.h>
#include <linux/device.h>
#include <linux/interconnect.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/bitops.h>

#include "linux/soc/qcom/qcom_aoss.h"

#include "ipa.h"
#include "ipa_power.h"
#include "ipa_endpoint.h"
#include "ipa_modem.h"
#include "ipa_data.h"

/**
 * DOC: IPA Power Management
 *
 * The IPA hardware is enabled when the IPA core clock and all the
 * interconnects (buses) it depends on are enabled.  Runtime power
 * management is used to determine whether the core clock and
 * interconnects are enabled, and if not in use to be suspended
 * automatically.
 *
 * The core clock currently runs at a fixed clock rate when enabled,
 * an all interconnects use a fixed average and peak bandwidth.
 */

#define IPA_AUTOSUSPEND_DELAY	500	/* milliseconds */

/**
 * enum ipa_power_flag - IPA power flags
 * @IPA_POWER_FLAG_RESUMED:	Whether resume from suspend has been signaled
 * @IPA_POWER_FLAG_SYSTEM:	Hardware is system (not runtime) suspended
 * @IPA_POWER_FLAG_STOPPED:	Modem TX is disabled by ipa_start_xmit()
 * @IPA_POWER_FLAG_STARTED:	Modem TX was enabled by ipa_runtime_resume()
 * @IPA_POWER_FLAG_COUNT:	Number of defined power flags
 */
enum ipa_power_flag {
	IPA_POWER_FLAG_RESUMED,
	IPA_POWER_FLAG_SYSTEM,
	IPA_POWER_FLAG_STOPPED,
	IPA_POWER_FLAG_STARTED,
	IPA_POWER_FLAG_COUNT,		/* Last; not a flag */
};

/**
 * struct ipa_power - IPA power management information
 * @dev:		IPA device pointer
 * @core:		IPA core clock
 * @qmp:		QMP handle for AOSS communication
 * @spinlock:		Protects modem TX queue enable/disable
 * @flags:		Boolean state flags
 * @interconnect_count:	Number of elements in interconnect[]
 * @interconnect:	Interconnect array
 */
struct ipa_power {
	struct device *dev;
	struct clk *core;
	struct qmp *qmp;
	spinlock_t spinlock;	/* used with STOPPED/STARTED power flags */
	DECLARE_BITMAP(flags, IPA_POWER_FLAG_COUNT);
	u32 interconnect_count;
	struct icc_bulk_data interconnect[];
};

/* Initialize interconnects required for IPA operation */
static int ipa_interconnect_init(struct ipa_power *power,
				 const struct ipa_interconnect_data *data)
{
	struct icc_bulk_data *interconnect;
	int ret;
	u32 i;

	/* Initialize our interconnect data array for bulk operations */
	interconnect = &power->interconnect[0];
	for (i = 0; i < power->interconnect_count; i++) {
		/* interconnect->path is filled in by of_icc_bulk_get() */
		interconnect->name = data->name;
		interconnect->avg_bw = data->average_bandwidth;
		interconnect->peak_bw = data->peak_bandwidth;
		data++;
		interconnect++;
	}

	ret = of_icc_bulk_get(power->dev, power->interconnect_count,
			      power->interconnect);
	if (ret)
		return ret;

	/* All interconnects are initially disabled */
	icc_bulk_disable(power->interconnect_count, power->interconnect);

	/* Set the bandwidth values to be used when enabled */
	ret = icc_bulk_set_bw(power->interconnect_count, power->interconnect);
	if (ret)
		icc_bulk_put(power->interconnect_count, power->interconnect);

	return ret;
}

/* Inverse of ipa_interconnect_init() */
static void ipa_interconnect_exit(struct ipa_power *power)
{
	icc_bulk_put(power->interconnect_count, power->interconnect);
}

/* Enable IPA power, enabling interconnects and the core clock */
static int ipa_power_enable(struct ipa *ipa)
{
	struct ipa_power *power = ipa->power;
	int ret;

	ret = icc_bulk_enable(power->interconnect_count, power->interconnect);
	if (ret)
		return ret;

	ret = clk_prepare_enable(power->core);
	if (ret) {
		dev_err(power->dev, "error %d enabling core clock\n", ret);
		icc_bulk_disable(power->interconnect_count,
				 power->interconnect);
	}

	return ret;
}

/* Inverse of ipa_power_enable() */
static void ipa_power_disable(struct ipa *ipa)
{
	struct ipa_power *power = ipa->power;

	clk_disable_unprepare(power->core);

	icc_bulk_disable(power->interconnect_count, power->interconnect);
}

static int ipa_runtime_suspend(struct device *dev)
{
	struct ipa *ipa = dev_get_drvdata(dev);

	/* Endpoints aren't usable until setup is complete */
	if (ipa->setup_complete) {
		__clear_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags);
		ipa_endpoint_suspend(ipa);
		gsi_suspend(&ipa->gsi);
	}

	ipa_power_disable(ipa);

	return 0;
}

static int ipa_runtime_resume(struct device *dev)
{
	struct ipa *ipa = dev_get_drvdata(dev);
	int ret;

	ret = ipa_power_enable(ipa);
	if (WARN_ON(ret < 0))
		return ret;

	/* Endpoints aren't usable until setup is complete */
	if (ipa->setup_complete) {
		gsi_resume(&ipa->gsi);
		ipa_endpoint_resume(ipa);
	}

	return 0;
}

static int ipa_suspend(struct device *dev)
{
	struct ipa *ipa = dev_get_drvdata(dev);

	__set_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags);

	return pm_runtime_force_suspend(dev);
}

static int ipa_resume(struct device *dev)
{
	struct ipa *ipa = dev_get_drvdata(dev);
	int ret;

	ret = pm_runtime_force_resume(dev);

	__clear_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags);

	return ret;
}

/* Return the current IPA core clock rate */
u32 ipa_core_clock_rate(struct ipa *ipa)
{
	return ipa->power ? (u32)clk_get_rate(ipa->power->core) : 0;
}

/**
 * ipa_suspend_handler() - Handle the suspend IPA interrupt
 * @ipa:	IPA pointer
 * @irq_id:	IPA interrupt type (unused)
 *
 * If an RX endpoint is suspended, and the IPA has a packet destined for
 * that endpoint, the IPA generates a SUSPEND interrupt to inform the AP
 * that it should resume the endpoint.  If we get one of these interrupts
 * we just wake up the system.
 */
static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
{
	/* To handle an IPA interrupt we will have resumed the hardware
	 * just to handle the interrupt, so we're done.  If we are in a
	 * system suspend, trigger a system resume.
	 */
	if (!__test_and_set_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags))
		if (test_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags))
			pm_wakeup_dev_event(&ipa->pdev->dev, 0, true);

	/* Acknowledge/clear the suspend interrupt on all endpoints */
	ipa_interrupt_suspend_clear_all(ipa->interrupt);
}

/* The next few functions coordinate stopping and starting the modem
 * network device transmit queue.
 *
 * Transmit can be running concurrent with power resume, and there's a
 * chance the resume completes before the transmit path stops the queue,
 * leaving the queue in a stopped state.  The next two functions are used
 * to avoid this: ipa_power_modem_queue_stop() is used by ipa_start_xmit()
 * to conditionally stop the TX queue; and ipa_power_modem_queue_start()
 * is used by ipa_runtime_resume() to conditionally restart it.
 *
 * Two flags and a spinlock are used.  If the queue is stopped, the STOPPED
 * power flag is set.  And if the queue is started, the STARTED flag is set.
 * The queue is only started on resume if the STOPPED flag is set.  And the
 * queue is only started in ipa_start_xmit() if the STARTED flag is *not*
 * set.  As a result, the queue remains operational if the two activites
 * happen concurrently regardless of the order they complete.  The spinlock
 * ensures the flag and TX queue operations are done atomically.
 *
 * The first function stops the modem netdev transmit queue, but only if
 * the STARTED flag is *not* set.  That flag is cleared if it was set.
 * If the queue is stopped, the STOPPED flag is set.  This is called only
 * from the power ->runtime_resume operation.
 */
void ipa_power_modem_queue_stop(struct ipa *ipa)
{
	struct ipa_power *power = ipa->power;
	unsigned long flags;

	spin_lock_irqsave(&power->spinlock, flags);

	if (!__test_and_clear_bit(IPA_POWER_FLAG_STARTED, power->flags)) {
		netif_stop_queue(ipa->modem_netdev);
		__set_bit(IPA_POWER_FLAG_STOPPED, power->flags);
	}

	spin_unlock_irqrestore(&power->spinlock, flags);
}

/* This function starts the modem netdev transmit queue, but only if the
 * STOPPED flag is set.  That flag is cleared if it was set.  If the queue
 * was restarted, the STARTED flag is set; this allows ipa_start_xmit()
 * to skip stopping the queue in the event of a race.
 */
void ipa_power_modem_queue_wake(struct ipa *ipa)
{
	struct ipa_power *power = ipa->power;
	unsigned long flags;

	spin_lock_irqsave(&power->spinlock, flags);

	if (__test_and_clear_bit(IPA_POWER_FLAG_STOPPED, power->flags)) {
		__set_bit(IPA_POWER_FLAG_STARTED, power->flags);
		netif_wake_queue(ipa->modem_netdev);
	}

	spin_unlock_irqrestore(&power->spinlock, flags);
}

/* This function clears the STARTED flag once the TX queue is operating */
void ipa_power_modem_queue_active(struct ipa *ipa)
{
	clear_bit(IPA_POWER_FLAG_STARTED, ipa->power->flags);
}

static int ipa_power_retention_init(struct ipa_power *power)
{
	struct qmp *qmp = qmp_get(power->dev);

	if (IS_ERR(qmp)) {
		if (PTR_ERR(qmp) == -EPROBE_DEFER)
			return -EPROBE_DEFER;

		/* We assume any other error means it's not defined/needed */
		qmp = NULL;
	}
	power->qmp = qmp;

	return 0;
}

static void ipa_power_retention_exit(struct ipa_power *power)
{
	qmp_put(power->qmp);
	power->qmp = NULL;
}

/* Control register retention on power collapse */
void ipa_power_retention(struct ipa *ipa, bool enable)
{
	static const char fmt[] = "{ class: bcm, res: ipa_pc, val: %c }";
	struct ipa_power *power = ipa->power;
	char buf[36];	/* Exactly enough for fmt[]; size a multiple of 4 */
	int ret;

	if (!power->qmp)
		return;		/* Not needed on this platform */

	(void)snprintf(buf, sizeof(buf), fmt, enable ? '1' : '0');

	ret = qmp_send(power->qmp, buf, sizeof(buf));
	if (ret)
		dev_err(power->dev, "error %d sending QMP %sable request\n",
			ret, enable ? "en" : "dis");
}

int ipa_power_setup(struct ipa *ipa)
{
	int ret;

	ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND,
			  ipa_suspend_handler);

	ret = device_init_wakeup(&ipa->pdev->dev, true);
	if (ret)
		ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);

	return ret;
}

void ipa_power_teardown(struct ipa *ipa)
{
	(void)device_init_wakeup(&ipa->pdev->dev, false);
	ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
}

/* Initialize IPA power management */
struct ipa_power *
ipa_power_init(struct device *dev, const struct ipa_power_data *data)
{
	struct ipa_power *power;
	struct clk *clk;
	size_t size;
	int ret;

	clk = clk_get(dev, "core");
	if (IS_ERR(clk)) {
		dev_err_probe(dev, PTR_ERR(clk), "error getting core clock\n");

		return ERR_CAST(clk);
	}

	ret = clk_set_rate(clk, data->core_clock_rate);
	if (ret) {
		dev_err(dev, "error %d setting core clock rate to %u\n",
			ret, data->core_clock_rate);
		goto err_clk_put;
	}

	size = struct_size(power, interconnect, data->interconnect_count);
	power = kzalloc(size, GFP_KERNEL);
	if (!power) {
		ret = -ENOMEM;
		goto err_clk_put;
	}
	power->dev = dev;
	power->core = clk;
	spin_lock_init(&power->spinlock);
	power->interconnect_count = data->interconnect_count;

	ret = ipa_interconnect_init(power, data->interconnect_data);
	if (ret)
		goto err_kfree;

	ret = ipa_power_retention_init(power);
	if (ret)
		goto err_interconnect_exit;

	pm_runtime_set_autosuspend_delay(dev, IPA_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(dev);
	pm_runtime_enable(dev);

	return power;

err_interconnect_exit:
	ipa_interconnect_exit(power);
err_kfree:
	kfree(power);
err_clk_put:
	clk_put(clk);

	return ERR_PTR(ret);
}

/* Inverse of ipa_power_init() */
void ipa_power_exit(struct ipa_power *power)
{
	struct device *dev = power->dev;
	struct clk *clk = power->core;

	pm_runtime_disable(dev);
	pm_runtime_dont_use_autosuspend(dev);
	ipa_power_retention_exit(power);
	ipa_interconnect_exit(power);
	kfree(power);
	clk_put(clk);
}

const struct dev_pm_ops ipa_pm_ops = {
	.suspend		= ipa_suspend,
	.resume			= ipa_resume,
	.runtime_suspend	= ipa_runtime_suspend,
	.runtime_resume		= ipa_runtime_resume,
};