Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 | // SPDX-License-Identifier: GPL-2.0 /* * Timer events oriented CPU idle governor * * Copyright (C) 2018 Intel Corporation * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> * * The idea of this governor is based on the observation that on many systems * timer events are two or more orders of magnitude more frequent than any * other interrupts, so they are likely to be the most significant source of CPU * wakeups from idle states. Moreover, information about what happened in the * (relatively recent) past can be used to estimate whether or not the deepest * idle state with target residency within the time to the closest timer is * likely to be suitable for the upcoming idle time of the CPU and, if not, then * which of the shallower idle states to choose. * * Of course, non-timer wakeup sources are more important in some use cases and * they can be covered by taking a few most recent idle time intervals of the * CPU into account. However, even in that case it is not necessary to consider * idle duration values greater than the time till the closest timer, as the * patterns that they may belong to produce average values close enough to * the time till the closest timer (sleep length) anyway. * * Thus this governor estimates whether or not the upcoming idle time of the CPU * is likely to be significantly shorter than the sleep length and selects an * idle state for it in accordance with that, as follows: * * - Find an idle state on the basis of the sleep length and state statistics * collected over time: * * o Find the deepest idle state whose target residency is less than or equal * to the sleep length. * * o Select it if it matched both the sleep length and the observed idle * duration in the past more often than it matched the sleep length alone * (i.e. the observed idle duration was significantly shorter than the sleep * length matched by it). * * o Otherwise, select the shallower state with the greatest matched "early" * wakeups metric. * * - If the majority of the most recent idle duration values are below the * target residency of the idle state selected so far, use those values to * compute the new expected idle duration and find an idle state matching it * (which has to be shallower than the one selected so far). */ #include <linux/cpuidle.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/sched/clock.h> #include <linux/tick.h> /* * The PULSE value is added to metrics when they grow and the DECAY_SHIFT value * is used for decreasing metrics on a regular basis. */ #define PULSE 1024 #define DECAY_SHIFT 3 /* * Number of the most recent idle duration values to take into consideration for * the detection of wakeup patterns. */ #define INTERVALS 8 /** * struct teo_idle_state - Idle state data used by the TEO cpuidle governor. * @early_hits: "Early" CPU wakeups "matching" this state. * @hits: "On time" CPU wakeups "matching" this state. * @misses: CPU wakeups "missing" this state. * * A CPU wakeup is "matched" by a given idle state if the idle duration measured * after the wakeup is between the target residency of that state and the target * residency of the next one (or if this is the deepest available idle state, it * "matches" a CPU wakeup when the measured idle duration is at least equal to * its target residency). * * Also, from the TEO governor perspective, a CPU wakeup from idle is "early" if * it occurs significantly earlier than the closest expected timer event (that * is, early enough to match an idle state shallower than the one matching the * time till the closest timer event). Otherwise, the wakeup is "on time", or * it is a "hit". * * A "miss" occurs when the given state doesn't match the wakeup, but it matches * the time till the closest timer event used for idle state selection. */ struct teo_idle_state { unsigned int early_hits; unsigned int hits; unsigned int misses; }; /** * struct teo_cpu - CPU data used by the TEO cpuidle governor. * @time_span_ns: Time between idle state selection and post-wakeup update. * @sleep_length_ns: Time till the closest timer event (at the selection time). * @states: Idle states data corresponding to this CPU. * @interval_idx: Index of the most recent saved idle interval. * @intervals: Saved idle duration values. */ struct teo_cpu { u64 time_span_ns; u64 sleep_length_ns; struct teo_idle_state states[CPUIDLE_STATE_MAX]; int interval_idx; u64 intervals[INTERVALS]; }; static DEFINE_PER_CPU(struct teo_cpu, teo_cpus); /** * teo_update - Update CPU data after wakeup. * @drv: cpuidle driver containing state data. * @dev: Target CPU. */ static void teo_update(struct cpuidle_driver *drv, struct cpuidle_device *dev) { struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); int i, idx_hit = -1, idx_timer = -1; u64 measured_ns; if (cpu_data->time_span_ns >= cpu_data->sleep_length_ns) { /* * One of the safety nets has triggered or the wakeup was close * enough to the closest timer event expected at the idle state * selection time to be discarded. */ measured_ns = U64_MAX; } else { u64 lat_ns = drv->states[dev->last_state_idx].exit_latency_ns; /* * The computations below are to determine whether or not the * (saved) time till the next timer event and the measured idle * duration fall into the same "bin", so use last_residency_ns * for that instead of time_span_ns which includes the cpuidle * overhead. */ measured_ns = dev->last_residency_ns; /* * The delay between the wakeup and the first instruction * executed by the CPU is not likely to be worst-case every * time, so take 1/2 of the exit latency as a very rough * approximation of the average of it. */ if (measured_ns >= lat_ns) measured_ns -= lat_ns / 2; else measured_ns /= 2; } /* * Decay the "early hits" metric for all of the states and find the * states matching the sleep length and the measured idle duration. */ for (i = 0; i < drv->state_count; i++) { unsigned int early_hits = cpu_data->states[i].early_hits; cpu_data->states[i].early_hits -= early_hits >> DECAY_SHIFT; if (drv->states[i].target_residency_ns <= cpu_data->sleep_length_ns) { idx_timer = i; if (drv->states[i].target_residency_ns <= measured_ns) idx_hit = i; } } /* * Update the "hits" and "misses" data for the state matching the sleep * length. If it matches the measured idle duration too, this is a hit, * so increase the "hits" metric for it then. Otherwise, this is a * miss, so increase the "misses" metric for it. In the latter case * also increase the "early hits" metric for the state that actually * matches the measured idle duration. */ if (idx_timer >= 0) { unsigned int hits = cpu_data->states[idx_timer].hits; unsigned int misses = cpu_data->states[idx_timer].misses; hits -= hits >> DECAY_SHIFT; misses -= misses >> DECAY_SHIFT; if (idx_timer > idx_hit) { misses += PULSE; if (idx_hit >= 0) cpu_data->states[idx_hit].early_hits += PULSE; } else { hits += PULSE; } cpu_data->states[idx_timer].misses = misses; cpu_data->states[idx_timer].hits = hits; } /* * Save idle duration values corresponding to non-timer wakeups for * pattern detection. */ cpu_data->intervals[cpu_data->interval_idx++] = measured_ns; if (cpu_data->interval_idx >= INTERVALS) cpu_data->interval_idx = 0; } static bool teo_time_ok(u64 interval_ns) { return !tick_nohz_tick_stopped() || interval_ns >= TICK_NSEC; } /** * teo_find_shallower_state - Find shallower idle state matching given duration. * @drv: cpuidle driver containing state data. * @dev: Target CPU. * @state_idx: Index of the capping idle state. * @duration_ns: Idle duration value to match. */ static int teo_find_shallower_state(struct cpuidle_driver *drv, struct cpuidle_device *dev, int state_idx, u64 duration_ns) { int i; for (i = state_idx - 1; i >= 0; i--) { if (dev->states_usage[i].disable) continue; state_idx = i; if (drv->states[i].target_residency_ns <= duration_ns) break; } return state_idx; } /** * teo_select - Selects the next idle state to enter. * @drv: cpuidle driver containing state data. * @dev: Target CPU. * @stop_tick: Indication on whether or not to stop the scheduler tick. */ static int teo_select(struct cpuidle_driver *drv, struct cpuidle_device *dev, bool *stop_tick) { struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); s64 latency_req = cpuidle_governor_latency_req(dev->cpu); u64 duration_ns; unsigned int hits, misses, early_hits; int max_early_idx, prev_max_early_idx, constraint_idx, idx, i; ktime_t delta_tick; if (dev->last_state_idx >= 0) { teo_update(drv, dev); dev->last_state_idx = -1; } cpu_data->time_span_ns = local_clock(); duration_ns = tick_nohz_get_sleep_length(&delta_tick); cpu_data->sleep_length_ns = duration_ns; hits = 0; misses = 0; early_hits = 0; max_early_idx = -1; prev_max_early_idx = -1; constraint_idx = drv->state_count; idx = -1; for (i = 0; i < drv->state_count; i++) { struct cpuidle_state *s = &drv->states[i]; if (dev->states_usage[i].disable) { /* * Ignore disabled states with target residencies beyond * the anticipated idle duration. */ if (s->target_residency_ns > duration_ns) continue; /* * This state is disabled, so the range of idle duration * values corresponding to it is covered by the current * candidate state, but still the "hits" and "misses" * metrics of the disabled state need to be used to * decide whether or not the state covering the range in * question is good enough. */ hits = cpu_data->states[i].hits; misses = cpu_data->states[i].misses; if (early_hits >= cpu_data->states[i].early_hits || idx < 0) continue; /* * If the current candidate state has been the one with * the maximum "early hits" metric so far, the "early * hits" metric of the disabled state replaces the * current "early hits" count to avoid selecting a * deeper state with lower "early hits" metric. */ if (max_early_idx == idx) { early_hits = cpu_data->states[i].early_hits; continue; } /* * The current candidate state is closer to the disabled * one than the current maximum "early hits" state, so * replace the latter with it, but in case the maximum * "early hits" state index has not been set so far, * check if the current candidate state is not too * shallow for that role. */ if (teo_time_ok(drv->states[idx].target_residency_ns)) { prev_max_early_idx = max_early_idx; early_hits = cpu_data->states[i].early_hits; max_early_idx = idx; } continue; } if (idx < 0) { idx = i; /* first enabled state */ hits = cpu_data->states[i].hits; misses = cpu_data->states[i].misses; } if (s->target_residency_ns > duration_ns) break; if (s->exit_latency_ns > latency_req && constraint_idx > i) constraint_idx = i; idx = i; hits = cpu_data->states[i].hits; misses = cpu_data->states[i].misses; if (early_hits < cpu_data->states[i].early_hits && teo_time_ok(drv->states[i].target_residency_ns)) { prev_max_early_idx = max_early_idx; early_hits = cpu_data->states[i].early_hits; max_early_idx = i; } } /* * If the "hits" metric of the idle state matching the sleep length is * greater than its "misses" metric, that is the one to use. Otherwise, * it is more likely that one of the shallower states will match the * idle duration observed after wakeup, so take the one with the maximum * "early hits" metric, but if that cannot be determined, just use the * state selected so far. */ if (hits <= misses) { /* * The current candidate state is not suitable, so take the one * whose "early hits" metric is the maximum for the range of * shallower states. */ if (idx == max_early_idx) max_early_idx = prev_max_early_idx; if (max_early_idx >= 0) { idx = max_early_idx; duration_ns = drv->states[idx].target_residency_ns; } } /* * If there is a latency constraint, it may be necessary to use a * shallower idle state than the one selected so far. */ if (constraint_idx < idx) idx = constraint_idx; if (idx < 0) { idx = 0; /* No states enabled. Must use 0. */ } else if (idx > 0) { unsigned int count = 0; u64 sum = 0; /* * Count and sum the most recent idle duration values less than * the current expected idle duration value. */ for (i = 0; i < INTERVALS; i++) { u64 val = cpu_data->intervals[i]; if (val >= duration_ns) continue; count++; sum += val; } /* * Give up unless the majority of the most recent idle duration * values are in the interesting range. */ if (count > INTERVALS / 2) { u64 avg_ns = div64_u64(sum, count); /* * Avoid spending too much time in an idle state that * would be too shallow. */ if (teo_time_ok(avg_ns)) { duration_ns = avg_ns; if (drv->states[idx].target_residency_ns > avg_ns) idx = teo_find_shallower_state(drv, dev, idx, avg_ns); } } } /* * Don't stop the tick if the selected state is a polling one or if the * expected idle duration is shorter than the tick period length. */ if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) || duration_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) { *stop_tick = false; /* * The tick is not going to be stopped, so if the target * residency of the state to be returned is not within the time * till the closest timer including the tick, try to correct * that. */ if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) idx = teo_find_shallower_state(drv, dev, idx, delta_tick); } return idx; } /** * teo_reflect - Note that governor data for the CPU need to be updated. * @dev: Target CPU. * @state: Entered state. */ static void teo_reflect(struct cpuidle_device *dev, int state) { struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); dev->last_state_idx = state; /* * If the wakeup was not "natural", but triggered by one of the safety * nets, assume that the CPU might have been idle for the entire sleep * length time. */ if (dev->poll_time_limit || (tick_nohz_idle_got_tick() && cpu_data->sleep_length_ns > TICK_NSEC)) { dev->poll_time_limit = false; cpu_data->time_span_ns = cpu_data->sleep_length_ns; } else { cpu_data->time_span_ns = local_clock() - cpu_data->time_span_ns; } } /** * teo_enable_device - Initialize the governor's data for the target CPU. * @drv: cpuidle driver (not used). * @dev: Target CPU. */ static int teo_enable_device(struct cpuidle_driver *drv, struct cpuidle_device *dev) { struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); int i; memset(cpu_data, 0, sizeof(*cpu_data)); for (i = 0; i < INTERVALS; i++) cpu_data->intervals[i] = U64_MAX; return 0; } static struct cpuidle_governor teo_governor = { .name = "teo", .rating = 19, .enable = teo_enable_device, .select = teo_select, .reflect = teo_reflect, }; static int __init teo_governor_init(void) { return cpuidle_register_governor(&teo_governor); } postcore_initcall(teo_governor_init); |