Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | // SPDX-License-Identifier: GPL-2.0 /* * linux/arch/alpha/kernel/sys_eiger.c * * Copyright (C) 1995 David A Rusling * Copyright (C) 1996, 1999 Jay A Estabrook * Copyright (C) 1998, 1999 Richard Henderson * Copyright (C) 1999 Iain Grant * * Code supporting the EIGER (EV6+TSUNAMI). */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/bitops.h> #include <asm/ptrace.h> #include <asm/dma.h> #include <asm/irq.h> #include <asm/mmu_context.h> #include <asm/io.h> #include <asm/pgtable.h> #include <asm/core_tsunami.h> #include <asm/hwrpb.h> #include <asm/tlbflush.h> #include "proto.h" #include "irq_impl.h" #include "pci_impl.h" #include "machvec_impl.h" /* Note that this interrupt code is identical to TAKARA. */ /* Note mask bit is true for DISABLED irqs. */ static unsigned long cached_irq_mask[2] = { -1, -1 }; static inline void eiger_update_irq_hw(unsigned long irq, unsigned long mask) { int regaddr; mask = (irq >= 64 ? mask << 16 : mask >> ((irq - 16) & 0x30)); regaddr = 0x510 + (((irq - 16) >> 2) & 0x0c); outl(mask & 0xffff0000UL, regaddr); } static inline void eiger_enable_irq(struct irq_data *d) { unsigned int irq = d->irq; unsigned long mask; mask = (cached_irq_mask[irq >= 64] &= ~(1UL << (irq & 63))); eiger_update_irq_hw(irq, mask); } static void eiger_disable_irq(struct irq_data *d) { unsigned int irq = d->irq; unsigned long mask; mask = (cached_irq_mask[irq >= 64] |= 1UL << (irq & 63)); eiger_update_irq_hw(irq, mask); } static struct irq_chip eiger_irq_type = { .name = "EIGER", .irq_unmask = eiger_enable_irq, .irq_mask = eiger_disable_irq, .irq_mask_ack = eiger_disable_irq, }; static void eiger_device_interrupt(unsigned long vector) { unsigned intstatus; /* * The PALcode will have passed us vectors 0x800 or 0x810, * which are fairly arbitrary values and serve only to tell * us whether an interrupt has come in on IRQ0 or IRQ1. If * it's IRQ1 it's a PCI interrupt; if it's IRQ0, it's * probably ISA, but PCI interrupts can come through IRQ0 * as well if the interrupt controller isn't in accelerated * mode. * * OTOH, the accelerator thing doesn't seem to be working * overly well, so what we'll do instead is try directly * examining the Master Interrupt Register to see if it's a * PCI interrupt, and if _not_ then we'll pass it on to the * ISA handler. */ intstatus = inw(0x500) & 15; if (intstatus) { /* * This is a PCI interrupt. Check each bit and * despatch an interrupt if it's set. */ if (intstatus & 8) handle_irq(16+3); if (intstatus & 4) handle_irq(16+2); if (intstatus & 2) handle_irq(16+1); if (intstatus & 1) handle_irq(16+0); } else { isa_device_interrupt(vector); } } static void eiger_srm_device_interrupt(unsigned long vector) { int irq = (vector - 0x800) >> 4; handle_irq(irq); } static void __init eiger_init_irq(void) { long i; outb(0, DMA1_RESET_REG); outb(0, DMA2_RESET_REG); outb(DMA_MODE_CASCADE, DMA2_MODE_REG); outb(0, DMA2_MASK_REG); if (alpha_using_srm) alpha_mv.device_interrupt = eiger_srm_device_interrupt; for (i = 16; i < 128; i += 16) eiger_update_irq_hw(i, -1); init_i8259a_irqs(); for (i = 16; i < 128; ++i) { irq_set_chip_and_handler(i, &eiger_irq_type, handle_level_irq); irq_set_status_flags(i, IRQ_LEVEL); } } static int eiger_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { u8 irq_orig; /* The SRM console has already calculated out the IRQ value's for option cards. As this works lets just read in the value already set and change it to a useable value by Linux. All the IRQ values generated by the console are greater than 90, so we subtract 80 because it is (90 - allocated ISA IRQ's). */ pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq_orig); return irq_orig - 0x80; } static u8 eiger_swizzle(struct pci_dev *dev, u8 *pinp) { struct pci_controller *hose = dev->sysdata; int slot, pin = *pinp; int bridge_count = 0; /* Find the number of backplane bridges. */ int backplane = inw(0x502) & 0x0f; switch (backplane) { case 0x00: bridge_count = 0; break; /* No bridges */ case 0x01: bridge_count = 1; break; /* 1 */ case 0x03: bridge_count = 2; break; /* 2 */ case 0x07: bridge_count = 3; break; /* 3 */ case 0x0f: bridge_count = 4; break; /* 4 */ }; slot = PCI_SLOT(dev->devfn); while (dev->bus->self) { /* Check for built-in bridges on hose 0. */ if (hose->index == 0 && (PCI_SLOT(dev->bus->self->devfn) > 20 - bridge_count)) { slot = PCI_SLOT(dev->devfn); break; } /* Must be a card-based bridge. */ pin = pci_swizzle_interrupt_pin(dev, pin); /* Move up the chain of bridges. */ dev = dev->bus->self; } *pinp = pin; return slot; } /* * The System Vectors */ struct alpha_machine_vector eiger_mv __initmv = { .vector_name = "Eiger", DO_EV6_MMU, DO_DEFAULT_RTC, DO_TSUNAMI_IO, .machine_check = tsunami_machine_check, .max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS, .min_io_address = DEFAULT_IO_BASE, .min_mem_address = DEFAULT_MEM_BASE, .pci_dac_offset = TSUNAMI_DAC_OFFSET, .nr_irqs = 128, .device_interrupt = eiger_device_interrupt, .init_arch = tsunami_init_arch, .init_irq = eiger_init_irq, .init_rtc = common_init_rtc, .init_pci = common_init_pci, .kill_arch = tsunami_kill_arch, .pci_map_irq = eiger_map_irq, .pci_swizzle = eiger_swizzle, }; ALIAS_MV(eiger) |