Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | // SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <linux/kobject.h> #include <linux/sysfs.h> #include "i915_drv.h" #include "intel_engine.h" #include "intel_engine_heartbeat.h" #include "sysfs_engines.h" struct kobj_engine { struct kobject base; struct intel_engine_cs *engine; }; static struct intel_engine_cs *kobj_to_engine(struct kobject *kobj) { return container_of(kobj, struct kobj_engine, base)->engine; } static ssize_t name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%s\n", kobj_to_engine(kobj)->name); } static struct kobj_attribute name_attr = __ATTR(name, 0444, name_show, NULL); static ssize_t class_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%d\n", kobj_to_engine(kobj)->uabi_class); } static struct kobj_attribute class_attr = __ATTR(class, 0444, class_show, NULL); static ssize_t inst_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%d\n", kobj_to_engine(kobj)->uabi_instance); } static struct kobj_attribute inst_attr = __ATTR(instance, 0444, inst_show, NULL); static ssize_t mmio_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "0x%x\n", kobj_to_engine(kobj)->mmio_base); } static struct kobj_attribute mmio_attr = __ATTR(mmio_base, 0444, mmio_show, NULL); static const char * const vcs_caps[] = { [ilog2(I915_VIDEO_CLASS_CAPABILITY_HEVC)] = "hevc", [ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc", }; static const char * const vecs_caps[] = { [ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc", }; static ssize_t repr_trim(char *buf, ssize_t len) { /* Trim off the trailing space and replace with a newline */ if (len > PAGE_SIZE) len = PAGE_SIZE; if (len > 0) buf[len - 1] = '\n'; return len; } static ssize_t __caps_show(struct intel_engine_cs *engine, u32 caps, char *buf, bool show_unknown) { const char * const *repr; int count, n; ssize_t len; BUILD_BUG_ON(!typecheck(typeof(caps), engine->uabi_capabilities)); switch (engine->class) { case VIDEO_DECODE_CLASS: repr = vcs_caps; count = ARRAY_SIZE(vcs_caps); break; case VIDEO_ENHANCEMENT_CLASS: repr = vecs_caps; count = ARRAY_SIZE(vecs_caps); break; default: repr = NULL; count = 0; break; } GEM_BUG_ON(count > BITS_PER_TYPE(typeof(caps))); len = 0; for_each_set_bit(n, (unsigned long *)&caps, show_unknown ? BITS_PER_TYPE(typeof(caps)) : count) { if (n >= count || !repr[n]) { if (GEM_WARN_ON(show_unknown)) len += snprintf(buf + len, PAGE_SIZE - len, "[%x] ", n); } else { len += snprintf(buf + len, PAGE_SIZE - len, "%s ", repr[n]); } if (GEM_WARN_ON(len >= PAGE_SIZE)) break; } return repr_trim(buf, len); } static ssize_t caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return __caps_show(engine, engine->uabi_capabilities, buf, true); } static struct kobj_attribute caps_attr = __ATTR(capabilities, 0444, caps_show, NULL); static ssize_t all_caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return __caps_show(kobj_to_engine(kobj), -1, buf, false); } static struct kobj_attribute all_caps_attr = __ATTR(known_capabilities, 0444, all_caps_show, NULL); static ssize_t max_spin_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_engine_cs *engine = kobj_to_engine(kobj); unsigned long long duration; int err; /* * When waiting for a request, if is it currently being executed * on the GPU, we busywait for a short while before sleeping. The * premise is that most requests are short, and if it is already * executing then there is a good chance that it will complete * before we can setup the interrupt handler and go to sleep. * We try to offset the cost of going to sleep, by first spinning * on the request -- if it completed in less time than it would take * to go sleep, process the interrupt and return back to the client, * then we have saved the client some latency, albeit at the cost * of spinning on an expensive CPU core. * * While we try to avoid waiting at all for a request that is unlikely * to complete, deciding how long it is worth spinning is for is an * arbitrary decision: trading off power vs latency. */ err = kstrtoull(buf, 0, &duration); if (err) return err; if (duration > jiffies_to_nsecs(2)) return -EINVAL; WRITE_ONCE(engine->props.max_busywait_duration_ns, duration); return count; } static ssize_t max_spin_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sprintf(buf, "%lu\n", engine->props.max_busywait_duration_ns); } static struct kobj_attribute max_spin_attr = __ATTR(max_busywait_duration_ns, 0644, max_spin_show, max_spin_store); static ssize_t timeslice_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_engine_cs *engine = kobj_to_engine(kobj); unsigned long long duration; int err; /* * Execlists uses a scheduling quantum (a timeslice) to alternate * execution between ready-to-run contexts of equal priority. This * ensures that all users (though only if they of equal importance) * have the opportunity to run and prevents livelocks where contexts * may have implicit ordering due to userspace semaphores. */ err = kstrtoull(buf, 0, &duration); if (err) return err; if (duration > jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)) return -EINVAL; WRITE_ONCE(engine->props.timeslice_duration_ms, duration); if (execlists_active(&engine->execlists)) set_timer_ms(&engine->execlists.timer, duration); return count; } static ssize_t timeslice_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sprintf(buf, "%lu\n", engine->props.timeslice_duration_ms); } static struct kobj_attribute timeslice_duration_attr = __ATTR(timeslice_duration_ms, 0644, timeslice_show, timeslice_store); static ssize_t stop_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_engine_cs *engine = kobj_to_engine(kobj); unsigned long long duration; int err; /* * When we allow ourselves to sleep before a GPU reset after disabling * submission, even for a few milliseconds, gives an innocent context * the opportunity to clear the GPU before the reset occurs. However, * how long to sleep depends on the typical non-preemptible duration * (a similar problem to determining the ideal preempt-reset timeout * or even the heartbeat interval). */ err = kstrtoull(buf, 0, &duration); if (err) return err; if (duration > jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)) return -EINVAL; WRITE_ONCE(engine->props.stop_timeout_ms, duration); return count; } static ssize_t stop_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sprintf(buf, "%lu\n", engine->props.stop_timeout_ms); } static struct kobj_attribute stop_timeout_attr = __ATTR(stop_timeout_ms, 0644, stop_show, stop_store); static ssize_t preempt_timeout_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_engine_cs *engine = kobj_to_engine(kobj); unsigned long long timeout; int err; /* * After initialising a preemption request, we give the current * resident a small amount of time to vacate the GPU. The preemption * request is for a higher priority context and should be immediate to * maintain high quality of service (and avoid priority inversion). * However, the preemption granularity of the GPU can be quite coarse * and so we need a compromise. */ err = kstrtoull(buf, 0, &timeout); if (err) return err; if (timeout > jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)) return -EINVAL; WRITE_ONCE(engine->props.preempt_timeout_ms, timeout); if (READ_ONCE(engine->execlists.pending[0])) set_timer_ms(&engine->execlists.preempt, timeout); return count; } static ssize_t preempt_timeout_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sprintf(buf, "%lu\n", engine->props.preempt_timeout_ms); } static struct kobj_attribute preempt_timeout_attr = __ATTR(preempt_timeout_ms, 0644, preempt_timeout_show, preempt_timeout_store); static ssize_t heartbeat_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_engine_cs *engine = kobj_to_engine(kobj); unsigned long long delay; int err; /* * We monitor the health of the system via periodic heartbeat pulses. * The pulses also provide the opportunity to perform garbage * collection. However, we interpret an incomplete pulse (a missed * heartbeat) as an indication that the system is no longer responsive, * i.e. hung, and perform an engine or full GPU reset. Given that the * preemption granularity can be very coarse on a system, the optimal * value for any workload is unknowable! */ err = kstrtoull(buf, 0, &delay); if (err) return err; if (delay >= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)) return -EINVAL; err = intel_engine_set_heartbeat(engine, delay); if (err) return err; return count; } static ssize_t heartbeat_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sprintf(buf, "%lu\n", engine->props.heartbeat_interval_ms); } static struct kobj_attribute heartbeat_interval_attr = __ATTR(heartbeat_interval_ms, 0644, heartbeat_show, heartbeat_store); static void kobj_engine_release(struct kobject *kobj) { kfree(kobj); } static struct kobj_type kobj_engine_type = { .release = kobj_engine_release, .sysfs_ops = &kobj_sysfs_ops }; static struct kobject * kobj_engine(struct kobject *dir, struct intel_engine_cs *engine) { struct kobj_engine *ke; ke = kzalloc(sizeof(*ke), GFP_KERNEL); if (!ke) return NULL; kobject_init(&ke->base, &kobj_engine_type); ke->engine = engine; if (kobject_add(&ke->base, dir, "%s", engine->name)) { kobject_put(&ke->base); return NULL; } /* xfer ownership to sysfs tree */ return &ke->base; } void intel_engines_add_sysfs(struct drm_i915_private *i915) { static const struct attribute *files[] = { &name_attr.attr, &class_attr.attr, &inst_attr.attr, &mmio_attr.attr, &caps_attr.attr, &all_caps_attr.attr, &max_spin_attr.attr, &stop_timeout_attr.attr, #if CONFIG_DRM_I915_HEARTBEAT_INTERVAL &heartbeat_interval_attr.attr, #endif NULL }; struct device *kdev = i915->drm.primary->kdev; struct intel_engine_cs *engine; struct kobject *dir; dir = kobject_create_and_add("engine", &kdev->kobj); if (!dir) return; for_each_uabi_engine(engine, i915) { struct kobject *kobj; kobj = kobj_engine(dir, engine); if (!kobj) goto err_engine; if (sysfs_create_files(kobj, files)) goto err_object; if (intel_engine_has_timeslices(engine) && sysfs_create_file(kobj, ×lice_duration_attr.attr)) goto err_engine; if (intel_engine_has_preempt_reset(engine) && sysfs_create_file(kobj, &preempt_timeout_attr.attr)) goto err_engine; if (0) { err_object: kobject_put(kobj); err_engine: dev_err(kdev, "Failed to add sysfs engine '%s'\n", engine->name); break; } } } |