Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
// SPDX-License-Identifier: GPL-2.0-only
/*
 * intel_soc_dts_iosf.c
 * Copyright (c) 2015, Intel Corporation.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <asm/iosf_mbi.h>
#include "intel_soc_dts_iosf.h"

#define SOC_DTS_OFFSET_ENABLE		0xB0
#define SOC_DTS_OFFSET_TEMP		0xB1

#define SOC_DTS_OFFSET_PTPS		0xB2
#define SOC_DTS_OFFSET_PTTS		0xB3
#define SOC_DTS_OFFSET_PTTSS		0xB4
#define SOC_DTS_OFFSET_PTMC		0x80
#define SOC_DTS_TE_AUX0			0xB5
#define SOC_DTS_TE_AUX1			0xB6

#define SOC_DTS_AUX0_ENABLE_BIT		BIT(0)
#define SOC_DTS_AUX1_ENABLE_BIT		BIT(1)
#define SOC_DTS_CPU_MODULE0_ENABLE_BIT	BIT(16)
#define SOC_DTS_CPU_MODULE1_ENABLE_BIT	BIT(17)
#define SOC_DTS_TE_SCI_ENABLE		BIT(9)
#define SOC_DTS_TE_SMI_ENABLE		BIT(10)
#define SOC_DTS_TE_MSI_ENABLE		BIT(11)
#define SOC_DTS_TE_APICA_ENABLE		BIT(14)
#define SOC_DTS_PTMC_APIC_DEASSERT_BIT	BIT(4)

/* DTS encoding for TJ MAX temperature */
#define SOC_DTS_TJMAX_ENCODING		0x7F

/* Only 2 out of 4 is allowed for OSPM */
#define SOC_MAX_DTS_TRIPS		2

/* Mask for two trips in status bits */
#define SOC_DTS_TRIP_MASK		0x03

/* DTS0 and DTS 1 */
#define SOC_MAX_DTS_SENSORS		2

static int get_tj_max(u32 *tj_max)
{
	u32 eax, edx;
	u32 val;
	int err;

	err = rdmsr_safe(MSR_IA32_TEMPERATURE_TARGET, &eax, &edx);
	if (err)
		goto err_ret;
	else {
		val = (eax >> 16) & 0xff;
		if (val)
			*tj_max = val * 1000;
		else {
			err = -EINVAL;
			goto err_ret;
		}
	}

	return 0;
err_ret:
	*tj_max = 0;

	return err;
}

static int sys_get_trip_temp(struct thermal_zone_device *tzd, int trip,
			     int *temp)
{
	int status;
	u32 out;
	struct intel_soc_dts_sensor_entry *dts;
	struct intel_soc_dts_sensors *sensors;

	dts = tzd->devdata;
	sensors = dts->sensors;
	mutex_lock(&sensors->dts_update_lock);
	status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
			       SOC_DTS_OFFSET_PTPS, &out);
	mutex_unlock(&sensors->dts_update_lock);
	if (status)
		return status;

	out = (out >> (trip * 8)) & SOC_DTS_TJMAX_ENCODING;
	if (!out)
		*temp = 0;
	else
		*temp = sensors->tj_max - out * 1000;

	return 0;
}

static int update_trip_temp(struct intel_soc_dts_sensor_entry *dts,
			    int thres_index, int temp,
			    enum thermal_trip_type trip_type)
{
	int status;
	u32 temp_out;
	u32 out;
	unsigned long update_ptps;
	u32 store_ptps;
	u32 store_ptmc;
	u32 store_te_out;
	u32 te_out;
	u32 int_enable_bit = SOC_DTS_TE_APICA_ENABLE;
	struct intel_soc_dts_sensors *sensors = dts->sensors;

	if (sensors->intr_type == INTEL_SOC_DTS_INTERRUPT_MSI)
		int_enable_bit |= SOC_DTS_TE_MSI_ENABLE;

	temp_out = (sensors->tj_max - temp) / 1000;

	status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
			       SOC_DTS_OFFSET_PTPS, &store_ptps);
	if (status)
		return status;

	update_ptps = store_ptps;
	bitmap_set_value8(&update_ptps, temp_out & 0xFF, thres_index * 8);
	out = update_ptps;

	status = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
				SOC_DTS_OFFSET_PTPS, out);
	if (status)
		return status;

	pr_debug("update_trip_temp PTPS = %x\n", out);
	status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
			       SOC_DTS_OFFSET_PTMC, &out);
	if (status)
		goto err_restore_ptps;

	store_ptmc = out;

	status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
			       SOC_DTS_TE_AUX0 + thres_index,
			       &te_out);
	if (status)
		goto err_restore_ptmc;

	store_te_out = te_out;
	/* Enable for CPU module 0 and module 1 */
	out |= (SOC_DTS_CPU_MODULE0_ENABLE_BIT |
					SOC_DTS_CPU_MODULE1_ENABLE_BIT);
	if (temp) {
		if (thres_index)
			out |= SOC_DTS_AUX1_ENABLE_BIT;
		else
			out |= SOC_DTS_AUX0_ENABLE_BIT;
		te_out |= int_enable_bit;
	} else {
		if (thres_index)
			out &= ~SOC_DTS_AUX1_ENABLE_BIT;
		else
			out &= ~SOC_DTS_AUX0_ENABLE_BIT;
		te_out &= ~int_enable_bit;
	}
	status = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
				SOC_DTS_OFFSET_PTMC, out);
	if (status)
		goto err_restore_te_out;

	status = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
				SOC_DTS_TE_AUX0 + thres_index,
				te_out);
	if (status)
		goto err_restore_te_out;

	dts->trip_types[thres_index] = trip_type;

	return 0;
err_restore_te_out:
	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
		       SOC_DTS_OFFSET_PTMC, store_te_out);
err_restore_ptmc:
	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
		       SOC_DTS_OFFSET_PTMC, store_ptmc);
err_restore_ptps:
	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
		       SOC_DTS_OFFSET_PTPS, store_ptps);
	/* Nothing we can do if restore fails */

	return status;
}

static int sys_set_trip_temp(struct thermal_zone_device *tzd, int trip,
			     int temp)
{
	struct intel_soc_dts_sensor_entry *dts = tzd->devdata;
	struct intel_soc_dts_sensors *sensors = dts->sensors;
	int status;

	if (temp > sensors->tj_max)
		return -EINVAL;

	mutex_lock(&sensors->dts_update_lock);
	status = update_trip_temp(tzd->devdata, trip, temp,
				  dts->trip_types[trip]);
	mutex_unlock(&sensors->dts_update_lock);

	return status;
}

static int sys_get_trip_type(struct thermal_zone_device *tzd,
			     int trip, enum thermal_trip_type *type)
{
	struct intel_soc_dts_sensor_entry *dts;

	dts = tzd->devdata;

	*type = dts->trip_types[trip];

	return 0;
}

static int sys_get_curr_temp(struct thermal_zone_device *tzd,
			     int *temp)
{
	int status;
	u32 out;
	struct intel_soc_dts_sensor_entry *dts;
	struct intel_soc_dts_sensors *sensors;
	unsigned long raw;

	dts = tzd->devdata;
	sensors = dts->sensors;
	status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
			       SOC_DTS_OFFSET_TEMP, &out);
	if (status)
		return status;

	raw = out;
	out = bitmap_get_value8(&raw, dts->id * 8) - SOC_DTS_TJMAX_ENCODING;
	*temp = sensors->tj_max - out * 1000;

	return 0;
}

static struct thermal_zone_device_ops tzone_ops = {
	.get_temp = sys_get_curr_temp,
	.get_trip_temp = sys_get_trip_temp,
	.get_trip_type = sys_get_trip_type,
	.set_trip_temp = sys_set_trip_temp,
};

static int soc_dts_enable(int id)
{
	u32 out;
	int ret;

	ret = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
			    SOC_DTS_OFFSET_ENABLE, &out);
	if (ret)
		return ret;

	if (!(out & BIT(id))) {
		out |= BIT(id);
		ret = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
				     SOC_DTS_OFFSET_ENABLE, out);
		if (ret)
			return ret;
	}

	return ret;
}

static void remove_dts_thermal_zone(struct intel_soc_dts_sensor_entry *dts)
{
	if (dts) {
		iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
			       SOC_DTS_OFFSET_ENABLE, dts->store_status);
		thermal_zone_device_unregister(dts->tzone);
	}
}

static int add_dts_thermal_zone(int id, struct intel_soc_dts_sensor_entry *dts,
				bool notification_support, int trip_cnt,
				int read_only_trip_cnt)
{
	char name[10];
	unsigned long trip;
	int trip_count = 0;
	int trip_mask = 0;
	int writable_trip_cnt = 0;
	unsigned long ptps;
	u32 store_ptps;
	unsigned long i;
	int ret;

	/* Store status to restor on exit */
	ret = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
			    SOC_DTS_OFFSET_ENABLE, &dts->store_status);
	if (ret)
		goto err_ret;

	dts->id = id;
	if (notification_support) {
		trip_count = min(SOC_MAX_DTS_TRIPS, trip_cnt);
		writable_trip_cnt = trip_count - read_only_trip_cnt;
		trip_mask = GENMASK(writable_trip_cnt - 1, 0);
	}

	/* Check if the writable trip we provide is not used by BIOS */
	ret = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
			    SOC_DTS_OFFSET_PTPS, &store_ptps);
	if (ret)
		trip_mask = 0;
	else {
		ptps = store_ptps;
		for_each_set_clump8(i, trip, &ptps, writable_trip_cnt * 8)
			trip_mask &= ~BIT(i / 8);
	}
	dts->trip_mask = trip_mask;
	dts->trip_count = trip_count;
	snprintf(name, sizeof(name), "soc_dts%d", id);
	dts->tzone = thermal_zone_device_register(name,
						  trip_count,
						  trip_mask,
						  dts, &tzone_ops,
						  NULL, 0, 0);
	if (IS_ERR(dts->tzone)) {
		ret = PTR_ERR(dts->tzone);
		goto err_ret;
	}

	ret = soc_dts_enable(id);
	if (ret)
		goto err_enable;

	return 0;
err_enable:
	thermal_zone_device_unregister(dts->tzone);
err_ret:
	return ret;
}

int intel_soc_dts_iosf_add_read_only_critical_trip(
	struct intel_soc_dts_sensors *sensors, int critical_offset)
{
	int i, j;

	for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
		for (j = 0; j < sensors->soc_dts[i].trip_count; ++j) {
			if (!(sensors->soc_dts[i].trip_mask & BIT(j))) {
				return update_trip_temp(&sensors->soc_dts[i], j,
					sensors->tj_max - critical_offset,
					THERMAL_TRIP_CRITICAL);
			}
		}
	}

	return -EINVAL;
}
EXPORT_SYMBOL_GPL(intel_soc_dts_iosf_add_read_only_critical_trip);

void intel_soc_dts_iosf_interrupt_handler(struct intel_soc_dts_sensors *sensors)
{
	u32 sticky_out;
	int status;
	u32 ptmc_out;
	unsigned long flags;

	spin_lock_irqsave(&sensors->intr_notify_lock, flags);

	status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
			       SOC_DTS_OFFSET_PTMC, &ptmc_out);
	ptmc_out |= SOC_DTS_PTMC_APIC_DEASSERT_BIT;
	status = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
				SOC_DTS_OFFSET_PTMC, ptmc_out);

	status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
			       SOC_DTS_OFFSET_PTTSS, &sticky_out);
	pr_debug("status %d PTTSS %x\n", status, sticky_out);
	if (sticky_out & SOC_DTS_TRIP_MASK) {
		int i;
		/* reset sticky bit */
		status = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
					SOC_DTS_OFFSET_PTTSS, sticky_out);
		spin_unlock_irqrestore(&sensors->intr_notify_lock, flags);

		for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
			pr_debug("TZD update for zone %d\n", i);
			thermal_zone_device_update(sensors->soc_dts[i].tzone,
						   THERMAL_EVENT_UNSPECIFIED);
		}
	} else
		spin_unlock_irqrestore(&sensors->intr_notify_lock, flags);
}
EXPORT_SYMBOL_GPL(intel_soc_dts_iosf_interrupt_handler);

struct intel_soc_dts_sensors *intel_soc_dts_iosf_init(
	enum intel_soc_dts_interrupt_type intr_type, int trip_count,
	int read_only_trip_count)
{
	struct intel_soc_dts_sensors *sensors;
	bool notification;
	u32 tj_max;
	int ret;
	int i;

	if (!iosf_mbi_available())
		return ERR_PTR(-ENODEV);

	if (!trip_count || read_only_trip_count > trip_count)
		return ERR_PTR(-EINVAL);

	if (get_tj_max(&tj_max))
		return ERR_PTR(-EINVAL);

	sensors = kzalloc(sizeof(*sensors), GFP_KERNEL);
	if (!sensors)
		return ERR_PTR(-ENOMEM);

	spin_lock_init(&sensors->intr_notify_lock);
	mutex_init(&sensors->dts_update_lock);
	sensors->intr_type = intr_type;
	sensors->tj_max = tj_max;
	if (intr_type == INTEL_SOC_DTS_INTERRUPT_NONE)
		notification = false;
	else
		notification = true;
	for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
		sensors->soc_dts[i].sensors = sensors;
		ret = add_dts_thermal_zone(i, &sensors->soc_dts[i],
					   notification, trip_count,
					   read_only_trip_count);
		if (ret)
			goto err_free;
	}

	for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
		ret = update_trip_temp(&sensors->soc_dts[i], 0, 0,
				       THERMAL_TRIP_PASSIVE);
		if (ret)
			goto err_remove_zone;

		ret = update_trip_temp(&sensors->soc_dts[i], 1, 0,
				       THERMAL_TRIP_PASSIVE);
		if (ret)
			goto err_remove_zone;
	}

	return sensors;
err_remove_zone:
	for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i)
		remove_dts_thermal_zone(&sensors->soc_dts[i]);

err_free:
	kfree(sensors);
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(intel_soc_dts_iosf_init);

void intel_soc_dts_iosf_exit(struct intel_soc_dts_sensors *sensors)
{
	int i;

	for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
		update_trip_temp(&sensors->soc_dts[i], 0, 0, 0);
		update_trip_temp(&sensors->soc_dts[i], 1, 0, 0);
		remove_dts_thermal_zone(&sensors->soc_dts[i]);
	}
	kfree(sensors);
}
EXPORT_SYMBOL_GPL(intel_soc_dts_iosf_exit);

MODULE_LICENSE("GPL v2");