/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/bsearch.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_pm4_headers_vi.h"
#include "cwsr_trap_handler.h"
#include "kfd_iommu.h"
#include "amdgpu_amdkfd.h"
#define MQD_SIZE_ALIGNED 768
/*
* kfd_locked is used to lock the kfd driver during suspend or reset
* once locked, kfd driver will stop any further GPU execution.
* create process (open) will return -EAGAIN.
*/
static atomic_t kfd_locked = ATOMIC_INIT(0);
#ifdef CONFIG_DRM_AMDGPU_CIK
extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
#endif
extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
extern const struct kfd2kgd_calls arcturus_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
#ifdef KFD_SUPPORT_IOMMU_V2
#ifdef CONFIG_DRM_AMDGPU_CIK
[CHIP_KAVERI] = &gfx_v7_kfd2kgd,
#endif
[CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
[CHIP_RAVEN] = &gfx_v9_kfd2kgd,
#endif
#ifdef CONFIG_DRM_AMDGPU_CIK
[CHIP_HAWAII] = &gfx_v7_kfd2kgd,
#endif
[CHIP_TONGA] = &gfx_v8_kfd2kgd,
[CHIP_FIJI] = &gfx_v8_kfd2kgd,
[CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
[CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
[CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
[CHIP_VEGAM] = &gfx_v8_kfd2kgd,
[CHIP_VEGA10] = &gfx_v9_kfd2kgd,
[CHIP_VEGA12] = &gfx_v9_kfd2kgd,
[CHIP_VEGA20] = &gfx_v9_kfd2kgd,
[CHIP_RENOIR] = &gfx_v9_kfd2kgd,
[CHIP_ARCTURUS] = &arcturus_kfd2kgd,
[CHIP_NAVI10] = &gfx_v10_kfd2kgd,
[CHIP_NAVI12] = &gfx_v10_kfd2kgd,
[CHIP_NAVI14] = &gfx_v10_kfd2kgd,
};
#ifdef KFD_SUPPORT_IOMMU_V2
static const struct kfd_device_info kaveri_device_info = {
.asic_family = CHIP_KAVERI,
.asic_name = "kaveri",
.max_pasid_bits = 16,
/* max num of queues for KV.TODO should be a dynamic value */
.max_no_of_hqd = 24,
.doorbell_size = 4,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = false,
.needs_iommu_device = true,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info carrizo_device_info = {
.asic_family = CHIP_CARRIZO,
.asic_name = "carrizo",
.max_pasid_bits = 16,
/* max num of queues for CZ.TODO should be a dynamic value */
.max_no_of_hqd = 24,
.doorbell_size = 4,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = true,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info raven_device_info = {
.asic_family = CHIP_RAVEN,
.asic_name = "raven",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 8,
.ih_ring_entry_size = 8 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_v9,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = true,
.needs_pci_atomics = true,
.num_sdma_engines = 1,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
#endif
static const struct kfd_device_info hawaii_device_info = {
.asic_family = CHIP_HAWAII,
.asic_name = "hawaii",
.max_pasid_bits = 16,
/* max num of queues for KV.TODO should be a dynamic value */
.max_no_of_hqd = 24,
.doorbell_size = 4,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = false,
.needs_iommu_device = false,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info tonga_device_info = {
.asic_family = CHIP_TONGA,
.asic_name = "tonga",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 4,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = false,
.needs_iommu_device = false,
.needs_pci_atomics = true,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info fiji_device_info = {
.asic_family = CHIP_FIJI,
.asic_name = "fiji",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 4,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = true,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info fiji_vf_device_info = {
.asic_family = CHIP_FIJI,
.asic_name = "fiji",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 4,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info polaris10_device_info = {
.asic_family = CHIP_POLARIS10,
.asic_name = "polaris10",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 4,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = true,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info polaris10_vf_device_info = {
.asic_family = CHIP_POLARIS10,
.asic_name = "polaris10",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 4,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info polaris11_device_info = {
.asic_family = CHIP_POLARIS11,
.asic_name = "polaris11",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 4,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = true,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info polaris12_device_info = {
.asic_family = CHIP_POLARIS12,
.asic_name = "polaris12",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 4,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = true,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info vegam_device_info = {
.asic_family = CHIP_VEGAM,
.asic_name = "vegam",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 4,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = true,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info vega10_device_info = {
.asic_family = CHIP_VEGA10,
.asic_name = "vega10",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 8,
.ih_ring_entry_size = 8 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_v9,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info vega10_vf_device_info = {
.asic_family = CHIP_VEGA10,
.asic_name = "vega10",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 8,
.ih_ring_entry_size = 8 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_v9,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info vega12_device_info = {
.asic_family = CHIP_VEGA12,
.asic_name = "vega12",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 8,
.ih_ring_entry_size = 8 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_v9,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info vega20_device_info = {
.asic_family = CHIP_VEGA20,
.asic_name = "vega20",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 8,
.ih_ring_entry_size = 8 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_v9,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 8,
};
static const struct kfd_device_info arcturus_device_info = {
.asic_family = CHIP_ARCTURUS,
.asic_name = "arcturus",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 8,
.ih_ring_entry_size = 8 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_v9,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 6,
.num_sdma_queues_per_engine = 8,
};
static const struct kfd_device_info renoir_device_info = {
.asic_family = CHIP_RENOIR,
.asic_name = "renoir",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 8,
.ih_ring_entry_size = 8 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_v9,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
.needs_iommu_device = false,
.needs_pci_atomics = false,
.num_sdma_engines = 1,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 2,
};
static const struct kfd_device_info navi10_device_info = {
.asic_family = CHIP_NAVI10,
.asic_name = "navi10",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 8,
.ih_ring_entry_size = 8 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_v9,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.needs_iommu_device = false,
.supports_cwsr = true,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 8,
};
static const struct kfd_device_info navi12_device_info = {
.asic_family = CHIP_NAVI12,
.asic_name = "navi12",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 8,
.ih_ring_entry_size = 8 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_v9,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.needs_iommu_device = false,
.supports_cwsr = true,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 8,
};
static const struct kfd_device_info navi14_device_info = {
.asic_family = CHIP_NAVI14,
.asic_name = "navi14",
.max_pasid_bits = 16,
.max_no_of_hqd = 24,
.doorbell_size = 8,
.ih_ring_entry_size = 8 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_v9,
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED,
.needs_iommu_device = false,
.supports_cwsr = true,
.needs_pci_atomics = false,
.num_sdma_engines = 2,
.num_xgmi_sdma_engines = 0,
.num_sdma_queues_per_engine = 8,
};
/* For each entry, [0] is regular and [1] is virtualisation device. */
static const struct kfd_device_info *kfd_supported_devices[][2] = {
#ifdef KFD_SUPPORT_IOMMU_V2
[CHIP_KAVERI] = {&kaveri_device_info, NULL},
[CHIP_CARRIZO] = {&carrizo_device_info, NULL},
[CHIP_RAVEN] = {&raven_device_info, NULL},
#endif
[CHIP_HAWAII] = {&hawaii_device_info, NULL},
[CHIP_TONGA] = {&tonga_device_info, NULL},
[CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
[CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
[CHIP_POLARIS11] = {&polaris11_device_info, NULL},
[CHIP_POLARIS12] = {&polaris12_device_info, NULL},
[CHIP_VEGAM] = {&vegam_device_info, NULL},
[CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
[CHIP_VEGA12] = {&vega12_device_info, NULL},
[CHIP_VEGA20] = {&vega20_device_info, NULL},
[CHIP_RENOIR] = {&renoir_device_info, NULL},
[CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
[CHIP_NAVI10] = {&navi10_device_info, NULL},
[CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
[CHIP_NAVI14] = {&navi14_device_info, NULL},
};
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
unsigned int chunk_size);
static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
static int kfd_resume(struct kfd_dev *kfd);
struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
struct pci_dev *pdev, unsigned int asic_type, bool vf)
{
struct kfd_dev *kfd;
const struct kfd_device_info *device_info;
const struct kfd2kgd_calls *f2g;
if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
|| asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
return NULL; /* asic_type out of range */
}
device_info = kfd_supported_devices[asic_type][vf];
f2g = kfd2kgd_funcs[asic_type];
if (!device_info || !f2g) {
dev_err(kfd_device, "%s %s not supported in kfd\n",
amdgpu_asic_name[asic_type], vf ? "VF" : "");
return NULL;
}
kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
if (!kfd)
return NULL;
/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
* 32 and 64-bit requests are possible and must be
* supported.
*/
kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
if (device_info->needs_pci_atomics &&
!kfd->pci_atomic_requested) {
dev_info(kfd_device,
"skipped device %x:%x, PCI rejects atomics\n",
pdev->vendor, pdev->device);
kfree(kfd);
return NULL;
}
kfd->kgd = kgd;
kfd->device_info = device_info;
kfd->pdev = pdev;
kfd->init_complete = false;
kfd->kfd2kgd = f2g;
atomic_set(&kfd->compute_profile, 0);
mutex_init(&kfd->doorbell_mutex);
memset(&kfd->doorbell_available_index, 0,
sizeof(kfd->doorbell_available_index));
atomic_set(&kfd->sram_ecc_flag, 0);
return kfd;
}
static void kfd_cwsr_init(struct kfd_dev *kfd)
{
if (cwsr_enable && kfd->device_info->supports_cwsr) {
if (kfd->device_info->asic_family < CHIP_VEGA10) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
kfd->cwsr_isa = cwsr_trap_gfx8_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
kfd->cwsr_isa = cwsr_trap_arcturus_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
kfd->cwsr_isa = cwsr_trap_gfx9_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
} else {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
kfd->cwsr_isa = cwsr_trap_gfx10_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
}
kfd->cwsr_enabled = true;
}
}
bool kgd2kfd_device_init(struct kfd_dev *kfd,
struct drm_device *ddev,
const struct kgd2kfd_shared_resources *gpu_resources)
{
unsigned int size;
kfd->ddev = ddev;
kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
KGD_ENGINE_MEC1);
kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
KGD_ENGINE_SDMA1);
kfd->shared_resources = *gpu_resources;
kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
- kfd->vm_info.first_vmid_kfd + 1;
/* Verify module parameters regarding mapped process number*/
if ((hws_max_conc_proc < 0)
|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
dev_err(kfd_device,
"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
kfd->vm_info.vmid_num_kfd);
kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
} else
kfd->max_proc_per_quantum = hws_max_conc_proc;
/* Allocate global GWS that is shared by all KFD processes */
if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd,
amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) {
dev_err(kfd_device, "Could not allocate %d gws\n",
amdgpu_amdkfd_get_num_gws(kfd->kgd));
goto out;
}
/* calculate max size of mqds needed for queues */
size = max_num_of_queues_per_device *
kfd->device_info->mqd_size_aligned;
/*
* calculate max size of runlist packet.
* There can be only 2 packets at once
*/
size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
+ sizeof(struct pm4_mes_runlist)) * 2;
/* Add size of HIQ & DIQ */
size += KFD_KERNEL_QUEUE_SIZE * 2;
/* add another 512KB for all other allocations on gart (HPD, fences) */
size += 512 * 1024;
if (amdgpu_amdkfd_alloc_gtt_mem(
kfd->kgd, size, &kfd->gtt_mem,
&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
false)) {
dev_err(kfd_device, "Could not allocate %d bytes\n", size);
goto alloc_gtt_mem_failure;
}
dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
/* Initialize GTT sa with 512 byte chunk size */
if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
goto kfd_gtt_sa_init_error;
}
if (kfd_doorbell_init(kfd)) {
dev_err(kfd_device,
"Error initializing doorbell aperture\n");
goto kfd_doorbell_error;
}
if (kfd->kfd2kgd->get_hive_id)
kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
if (kfd_interrupt_init(kfd)) {
dev_err(kfd_device, "Error initializing interrupts\n");
goto kfd_interrupt_error;
}
kfd->dqm = device_queue_manager_init(kfd);
if (!kfd->dqm) {
dev_err(kfd_device, "Error initializing queue manager\n");
goto device_queue_manager_error;
}
if (kfd_iommu_device_init(kfd)) {
dev_err(kfd_device, "Error initializing iommuv2\n");
goto device_iommu_error;
}
kfd_cwsr_init(kfd);
if (kfd_resume(kfd))
goto kfd_resume_error;
kfd->dbgmgr = NULL;
if (kfd_topology_add_device(kfd)) {
dev_err(kfd_device, "Error adding device to topology\n");
goto kfd_topology_add_device_error;
}
kfd->init_complete = true;
dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
kfd->pdev->device);
pr_debug("Starting kfd with the following scheduling policy %d\n",
kfd->dqm->sched_policy);
goto out;
kfd_topology_add_device_error:
kfd_resume_error:
device_iommu_error:
device_queue_manager_uninit(kfd->dqm);
device_queue_manager_error:
kfd_interrupt_exit(kfd);
kfd_interrupt_error:
kfd_doorbell_fini(kfd);
kfd_doorbell_error:
kfd_gtt_sa_fini(kfd);
kfd_gtt_sa_init_error:
amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
alloc_gtt_mem_failure:
if (hws_gws_support)
amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
dev_err(kfd_device,
"device %x:%x NOT added due to errors\n",
kfd->pdev->vendor, kfd->pdev->device);
out:
return kfd->init_complete;
}
void kgd2kfd_device_exit(struct kfd_dev *kfd)
{
if (kfd->init_complete) {
kgd2kfd_suspend(kfd);
device_queue_manager_uninit(kfd->dqm);
kfd_interrupt_exit(kfd);
kfd_topology_remove_device(kfd);
kfd_doorbell_fini(kfd);
kfd_gtt_sa_fini(kfd);
amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
if (hws_gws_support)
amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
}
kfree(kfd);
}
int kgd2kfd_pre_reset(struct kfd_dev *kfd)
{
if (!kfd->init_complete)
return 0;
kfd->dqm->ops.pre_reset(kfd->dqm);
kgd2kfd_suspend(kfd);
kfd_signal_reset_event(kfd);
return 0;
}
/*
* Fix me. KFD won't be able to resume existing process for now.
* We will keep all existing process in a evicted state and
* wait the process to be terminated.
*/
int kgd2kfd_post_reset(struct kfd_dev *kfd)
{
int ret;
if (!kfd->init_complete)
return 0;
ret = kfd_resume(kfd);
if (ret)
return ret;
atomic_dec(&kfd_locked);
atomic_set(&kfd->sram_ecc_flag, 0);
return 0;
}
bool kfd_is_locked(void)
{
return (atomic_read(&kfd_locked) > 0);
}
void kgd2kfd_suspend(struct kfd_dev *kfd)
{
if (!kfd->init_complete)
return;
/* For first KFD device suspend all the KFD processes */
if (atomic_inc_return(&kfd_locked) == 1)
kfd_suspend_all_processes();
kfd->dqm->ops.stop(kfd->dqm);
kfd_iommu_suspend(kfd);
}
int kgd2kfd_resume(struct kfd_dev *kfd)
{
int ret, count;
if (!kfd->init_complete)
return 0;
ret = kfd_resume(kfd);
if (ret)
return ret;
count = atomic_dec_return(&kfd_locked);
WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
if (count == 0)
ret = kfd_resume_all_processes();
return ret;
}
static int kfd_resume(struct kfd_dev *kfd)
{
int err = 0;
err = kfd_iommu_resume(kfd);
if (err) {
dev_err(kfd_device,
"Failed to resume IOMMU for device %x:%x\n",
kfd->pdev->vendor, kfd->pdev->device);
return err;
}
err = kfd->dqm->ops.start(kfd->dqm);
if (err) {
dev_err(kfd_device,
"Error starting queue manager for device %x:%x\n",
kfd->pdev->vendor, kfd->pdev->device);
goto dqm_start_error;
}
return err;
dqm_start_error:
kfd_iommu_suspend(kfd);
return err;
}
static inline void kfd_queue_work(struct workqueue_struct *wq,
struct work_struct *work)
{
int cpu, new_cpu;
cpu = new_cpu = smp_processor_id();
do {
new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
if (cpu_to_node(new_cpu) == numa_node_id())
break;
} while (cpu != new_cpu);
queue_work_on(new_cpu, wq, work);
}
/* This is called directly from KGD at ISR. */
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
{
uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
bool is_patched = false;
unsigned long flags;
if (!kfd->init_complete)
return;
if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
dev_err_once(kfd_device, "Ring entry too small\n");
return;
}
spin_lock_irqsave(&kfd->interrupt_lock, flags);
if (kfd->interrupts_active
&& interrupt_is_wanted(kfd, ih_ring_entry,
patched_ihre, &is_patched)
&& enqueue_ih_ring_entry(kfd,
is_patched ? patched_ihre : ih_ring_entry))
kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
}
int kgd2kfd_quiesce_mm(struct mm_struct *mm)
{
struct kfd_process *p;
int r;
/* Because we are called from arbitrary context (workqueue) as opposed
* to process context, kfd_process could attempt to exit while we are
* running so the lookup function increments the process ref count.
*/
p = kfd_lookup_process_by_mm(mm);
if (!p)
return -ESRCH;
r = kfd_process_evict_queues(p);
kfd_unref_process(p);
return r;
}
int kgd2kfd_resume_mm(struct mm_struct *mm)
{
struct kfd_process *p;
int r;
/* Because we are called from arbitrary context (workqueue) as opposed
* to process context, kfd_process could attempt to exit while we are
* running so the lookup function increments the process ref count.
*/
p = kfd_lookup_process_by_mm(mm);
if (!p)
return -ESRCH;
r = kfd_process_restore_queues(p);
kfd_unref_process(p);
return r;
}
/** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
* prepare for safe eviction of KFD BOs that belong to the specified
* process.
*
* @mm: mm_struct that identifies the specified KFD process
* @fence: eviction fence attached to KFD process BOs
*
*/
int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
struct dma_fence *fence)
{
struct kfd_process *p;
unsigned long active_time;
unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
if (!fence)
return -EINVAL;
if (dma_fence_is_signaled(fence))
return 0;
p = kfd_lookup_process_by_mm(mm);
if (!p)
return -ENODEV;
if (fence->seqno == p->last_eviction_seqno)
goto out;
p->last_eviction_seqno = fence->seqno;
/* Avoid KFD process starvation. Wait for at least
* PROCESS_ACTIVE_TIME_MS before evicting the process again
*/
active_time = get_jiffies_64() - p->last_restore_timestamp;
if (delay_jiffies > active_time)
delay_jiffies -= active_time;
else
delay_jiffies = 0;
/* During process initialization eviction_work.dwork is initialized
* to kfd_evict_bo_worker
*/
schedule_delayed_work(&p->eviction_work, delay_jiffies);
out:
kfd_unref_process(p);
return 0;
}
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
unsigned int chunk_size)
{
unsigned int num_of_longs;
if (WARN_ON(buf_size < chunk_size))
return -EINVAL;
if (WARN_ON(buf_size == 0))
return -EINVAL;
if (WARN_ON(chunk_size == 0))
return -EINVAL;
kfd->gtt_sa_chunk_size = chunk_size;
kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
BITS_PER_LONG;
kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
if (!kfd->gtt_sa_bitmap)
return -ENOMEM;
pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
mutex_init(&kfd->gtt_sa_lock);
return 0;
}
static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
{
mutex_destroy(&kfd->gtt_sa_lock);
kfree(kfd->gtt_sa_bitmap);
}
static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
unsigned int bit_num,
unsigned int chunk_size)
{
return start_addr + bit_num * chunk_size;
}
static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
unsigned int bit_num,
unsigned int chunk_size)
{
return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
}
int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
struct kfd_mem_obj **mem_obj)
{
unsigned int found, start_search, cur_size;
if (size == 0)
return -EINVAL;
if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
return -ENOMEM;
*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
if (!(*mem_obj))
return -ENOMEM;
pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
start_search = 0;
mutex_lock(&kfd->gtt_sa_lock);
kfd_gtt_restart_search:
/* Find the first chunk that is free */
found = find_next_zero_bit(kfd->gtt_sa_bitmap,
kfd->gtt_sa_num_of_chunks,
start_search);
pr_debug("Found = %d\n", found);
/* If there wasn't any free chunk, bail out */
if (found == kfd->gtt_sa_num_of_chunks)
goto kfd_gtt_no_free_chunk;
/* Update fields of mem_obj */
(*mem_obj)->range_start = found;
(*mem_obj)->range_end = found;
(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
kfd->gtt_start_gpu_addr,
found,
kfd->gtt_sa_chunk_size);
(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
kfd->gtt_start_cpu_ptr,
found,
kfd->gtt_sa_chunk_size);
pr_debug("gpu_addr = %p, cpu_addr = %p\n",
(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
/* If we need only one chunk, mark it as allocated and get out */
if (size <= kfd->gtt_sa_chunk_size) {
pr_debug("Single bit\n");
set_bit(found, kfd->gtt_sa_bitmap);
goto kfd_gtt_out;
}
/* Otherwise, try to see if we have enough contiguous chunks */
cur_size = size - kfd->gtt_sa_chunk_size;
do {
(*mem_obj)->range_end =
find_next_zero_bit(kfd->gtt_sa_bitmap,
kfd->gtt_sa_num_of_chunks, ++found);
/*
* If next free chunk is not contiguous than we need to
* restart our search from the last free chunk we found (which
* wasn't contiguous to the previous ones
*/
if ((*mem_obj)->range_end != found) {
start_search = found;
goto kfd_gtt_restart_search;
}
/*
* If we reached end of buffer, bail out with error
*/
if (found == kfd->gtt_sa_num_of_chunks)
goto kfd_gtt_no_free_chunk;
/* Check if we don't need another chunk */
if (cur_size <= kfd->gtt_sa_chunk_size)
cur_size = 0;
else
cur_size -= kfd->gtt_sa_chunk_size;
} while (cur_size > 0);
pr_debug("range_start = %d, range_end = %d\n",
(*mem_obj)->range_start, (*mem_obj)->range_end);
/* Mark the chunks as allocated */
for (found = (*mem_obj)->range_start;
found <= (*mem_obj)->range_end;
found++)
set_bit(found, kfd->gtt_sa_bitmap);
kfd_gtt_out:
mutex_unlock(&kfd->gtt_sa_lock);
return 0;
kfd_gtt_no_free_chunk:
pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
mutex_unlock(&kfd->gtt_sa_lock);
kfree(mem_obj);
return -ENOMEM;
}
int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
{
unsigned int bit;
/* Act like kfree when trying to free a NULL object */
if (!mem_obj)
return 0;
pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
mem_obj, mem_obj->range_start, mem_obj->range_end);
mutex_lock(&kfd->gtt_sa_lock);
/* Mark the chunks as free */
for (bit = mem_obj->range_start;
bit <= mem_obj->range_end;
bit++)
clear_bit(bit, kfd->gtt_sa_bitmap);
mutex_unlock(&kfd->gtt_sa_lock);
kfree(mem_obj);
return 0;
}
void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
{
if (kfd)
atomic_inc(&kfd->sram_ecc_flag);
}
void kfd_inc_compute_active(struct kfd_dev *kfd)
{
if (atomic_inc_return(&kfd->compute_profile) == 1)
amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
}
void kfd_dec_compute_active(struct kfd_dev *kfd)
{
int count = atomic_dec_return(&kfd->compute_profile);
if (count == 0)
amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
WARN_ONCE(count < 0, "Compute profile ref. count error");
}
#if defined(CONFIG_DEBUG_FS)
/* This function will send a package to HIQ to hang the HWS
* which will trigger a GPU reset and bring the HWS back to normal state
*/
int kfd_debugfs_hang_hws(struct kfd_dev *dev)
{
int r = 0;
if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
pr_err("HWS is not enabled");
return -EINVAL;
}
r = pm_debugfs_hang_hws(&dev->dqm->packets);
if (!r)
r = dqm_debugfs_execute_queues(dev->dqm);
return r;
}
#endif