Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1991,1992 Linus Torvalds * * entry_32.S contains the system-call and low-level fault and trap handling routines. * * Stack layout while running C code: * ptrace needs to have all registers on the stack. * If the order here is changed, it needs to be * updated in fork.c:copy_process(), signal.c:do_signal(), * ptrace.c and ptrace.h * * 0(%esp) - %ebx * 4(%esp) - %ecx * 8(%esp) - %edx * C(%esp) - %esi * 10(%esp) - %edi * 14(%esp) - %ebp * 18(%esp) - %eax * 1C(%esp) - %ds * 20(%esp) - %es * 24(%esp) - %fs * 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS * 2C(%esp) - orig_eax * 30(%esp) - %eip * 34(%esp) - %cs * 38(%esp) - %eflags * 3C(%esp) - %oldesp * 40(%esp) - %oldss */ #include <linux/linkage.h> #include <linux/err.h> #include <asm/thread_info.h> #include <asm/irqflags.h> #include <asm/errno.h> #include <asm/segment.h> #include <asm/smp.h> #include <asm/percpu.h> #include <asm/processor-flags.h> #include <asm/irq_vectors.h> #include <asm/cpufeatures.h> #include <asm/alternative-asm.h> #include <asm/asm.h> #include <asm/smap.h> #include <asm/frame.h> #include <asm/nospec-branch.h> #include "calling.h" .section .entry.text, "ax" /* * We use macros for low-level operations which need to be overridden * for paravirtualization. The following will never clobber any registers: * INTERRUPT_RETURN (aka. "iret") * GET_CR0_INTO_EAX (aka. "movl %cr0, %eax") * ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit"). * * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY). * Allowing a register to be clobbered can shrink the paravirt replacement * enough to patch inline, increasing performance. */ #ifdef CONFIG_PREEMPTION # define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF #else # define preempt_stop(clobbers) #endif .macro TRACE_IRQS_IRET #ifdef CONFIG_TRACE_IRQFLAGS testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off? jz 1f TRACE_IRQS_ON 1: #endif .endm #define PTI_SWITCH_MASK (1 << PAGE_SHIFT) /* * User gs save/restore * * %gs is used for userland TLS and kernel only uses it for stack * canary which is required to be at %gs:20 by gcc. Read the comment * at the top of stackprotector.h for more info. * * Local labels 98 and 99 are used. */ #ifdef CONFIG_X86_32_LAZY_GS /* unfortunately push/pop can't be no-op */ .macro PUSH_GS pushl $0 .endm .macro POP_GS pop=0 addl $(4 + \pop), %esp .endm .macro POP_GS_EX .endm /* all the rest are no-op */ .macro PTGS_TO_GS .endm .macro PTGS_TO_GS_EX .endm .macro GS_TO_REG reg .endm .macro REG_TO_PTGS reg .endm .macro SET_KERNEL_GS reg .endm #else /* CONFIG_X86_32_LAZY_GS */ .macro PUSH_GS pushl %gs .endm .macro POP_GS pop=0 98: popl %gs .if \pop <> 0 add $\pop, %esp .endif .endm .macro POP_GS_EX .pushsection .fixup, "ax" 99: movl $0, (%esp) jmp 98b .popsection _ASM_EXTABLE(98b, 99b) .endm .macro PTGS_TO_GS 98: mov PT_GS(%esp), %gs .endm .macro PTGS_TO_GS_EX .pushsection .fixup, "ax" 99: movl $0, PT_GS(%esp) jmp 98b .popsection _ASM_EXTABLE(98b, 99b) .endm .macro GS_TO_REG reg movl %gs, \reg .endm .macro REG_TO_PTGS reg movl \reg, PT_GS(%esp) .endm .macro SET_KERNEL_GS reg movl $(__KERNEL_STACK_CANARY), \reg movl \reg, %gs .endm #endif /* CONFIG_X86_32_LAZY_GS */ /* Unconditionally switch to user cr3 */ .macro SWITCH_TO_USER_CR3 scratch_reg:req ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI movl %cr3, \scratch_reg orl $PTI_SWITCH_MASK, \scratch_reg movl \scratch_reg, %cr3 .Lend_\@: .endm .macro BUG_IF_WRONG_CR3 no_user_check=0 #ifdef CONFIG_DEBUG_ENTRY ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI .if \no_user_check == 0 /* coming from usermode? */ testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp) jz .Lend_\@ .endif /* On user-cr3? */ movl %cr3, %eax testl $PTI_SWITCH_MASK, %eax jnz .Lend_\@ /* From userspace with kernel cr3 - BUG */ ud2 .Lend_\@: #endif .endm /* * Switch to kernel cr3 if not already loaded and return current cr3 in * \scratch_reg */ .macro SWITCH_TO_KERNEL_CR3 scratch_reg:req ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI movl %cr3, \scratch_reg /* Test if we are already on kernel CR3 */ testl $PTI_SWITCH_MASK, \scratch_reg jz .Lend_\@ andl $(~PTI_SWITCH_MASK), \scratch_reg movl \scratch_reg, %cr3 /* Return original CR3 in \scratch_reg */ orl $PTI_SWITCH_MASK, \scratch_reg .Lend_\@: .endm #define CS_FROM_ENTRY_STACK (1 << 31) #define CS_FROM_USER_CR3 (1 << 30) #define CS_FROM_KERNEL (1 << 29) #define CS_FROM_ESPFIX (1 << 28) .macro FIXUP_FRAME /* * The high bits of the CS dword (__csh) are used for CS_FROM_*. * Clear them in case hardware didn't do this for us. */ andl $0x0000ffff, 4*4(%esp) #ifdef CONFIG_VM86 testl $X86_EFLAGS_VM, 5*4(%esp) jnz .Lfrom_usermode_no_fixup_\@ #endif testl $USER_SEGMENT_RPL_MASK, 4*4(%esp) jnz .Lfrom_usermode_no_fixup_\@ orl $CS_FROM_KERNEL, 4*4(%esp) /* * When we're here from kernel mode; the (exception) stack looks like: * * 6*4(%esp) - <previous context> * 5*4(%esp) - flags * 4*4(%esp) - cs * 3*4(%esp) - ip * 2*4(%esp) - orig_eax * 1*4(%esp) - gs / function * 0*4(%esp) - fs * * Lets build a 5 entry IRET frame after that, such that struct pt_regs * is complete and in particular regs->sp is correct. This gives us * the original 6 enties as gap: * * 14*4(%esp) - <previous context> * 13*4(%esp) - gap / flags * 12*4(%esp) - gap / cs * 11*4(%esp) - gap / ip * 10*4(%esp) - gap / orig_eax * 9*4(%esp) - gap / gs / function * 8*4(%esp) - gap / fs * 7*4(%esp) - ss * 6*4(%esp) - sp * 5*4(%esp) - flags * 4*4(%esp) - cs * 3*4(%esp) - ip * 2*4(%esp) - orig_eax * 1*4(%esp) - gs / function * 0*4(%esp) - fs */ pushl %ss # ss pushl %esp # sp (points at ss) addl $7*4, (%esp) # point sp back at the previous context pushl 7*4(%esp) # flags pushl 7*4(%esp) # cs pushl 7*4(%esp) # ip pushl 7*4(%esp) # orig_eax pushl 7*4(%esp) # gs / function pushl 7*4(%esp) # fs .Lfrom_usermode_no_fixup_\@: .endm .macro IRET_FRAME /* * We're called with %ds, %es, %fs, and %gs from the interrupted * frame, so we shouldn't use them. Also, we may be in ESPFIX * mode and therefore have a nonzero SS base and an offset ESP, * so any attempt to access the stack needs to use SS. (except for * accesses through %esp, which automatically use SS.) */ testl $CS_FROM_KERNEL, 1*4(%esp) jz .Lfinished_frame_\@ /* * Reconstruct the 3 entry IRET frame right after the (modified) * regs->sp without lowering %esp in between, such that an NMI in the * middle doesn't scribble our stack. */ pushl %eax pushl %ecx movl 5*4(%esp), %eax # (modified) regs->sp movl 4*4(%esp), %ecx # flags movl %ecx, %ss:-1*4(%eax) movl 3*4(%esp), %ecx # cs andl $0x0000ffff, %ecx movl %ecx, %ss:-2*4(%eax) movl 2*4(%esp), %ecx # ip movl %ecx, %ss:-3*4(%eax) movl 1*4(%esp), %ecx # eax movl %ecx, %ss:-4*4(%eax) popl %ecx lea -4*4(%eax), %esp popl %eax .Lfinished_frame_\@: .endm .macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0 cld .if \skip_gs == 0 PUSH_GS .endif pushl %fs pushl %eax movl $(__KERNEL_PERCPU), %eax movl %eax, %fs .if \unwind_espfix > 0 UNWIND_ESPFIX_STACK .endif popl %eax FIXUP_FRAME pushl %es pushl %ds pushl \pt_regs_ax pushl %ebp pushl %edi pushl %esi pushl %edx pushl %ecx pushl %ebx movl $(__USER_DS), %edx movl %edx, %ds movl %edx, %es .if \skip_gs == 0 SET_KERNEL_GS %edx .endif /* Switch to kernel stack if necessary */ .if \switch_stacks > 0 SWITCH_TO_KERNEL_STACK .endif .endm .macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0 SAVE_ALL unwind_espfix=\unwind_espfix BUG_IF_WRONG_CR3 /* * Now switch the CR3 when PTI is enabled. * * We can enter with either user or kernel cr3, the code will * store the old cr3 in \cr3_reg and switches to the kernel cr3 * if necessary. */ SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg .Lend_\@: .endm .macro RESTORE_INT_REGS popl %ebx popl %ecx popl %edx popl %esi popl %edi popl %ebp popl %eax .endm .macro RESTORE_REGS pop=0 RESTORE_INT_REGS 1: popl %ds 2: popl %es 3: popl %fs POP_GS \pop IRET_FRAME .pushsection .fixup, "ax" 4: movl $0, (%esp) jmp 1b 5: movl $0, (%esp) jmp 2b 6: movl $0, (%esp) jmp 3b .popsection _ASM_EXTABLE(1b, 4b) _ASM_EXTABLE(2b, 5b) _ASM_EXTABLE(3b, 6b) POP_GS_EX .endm .macro RESTORE_ALL_NMI cr3_reg:req pop=0 /* * Now switch the CR3 when PTI is enabled. * * We enter with kernel cr3 and switch the cr3 to the value * stored on \cr3_reg, which is either a user or a kernel cr3. */ ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI testl $PTI_SWITCH_MASK, \cr3_reg jz .Lswitched_\@ /* User cr3 in \cr3_reg - write it to hardware cr3 */ movl \cr3_reg, %cr3 .Lswitched_\@: BUG_IF_WRONG_CR3 RESTORE_REGS pop=\pop .endm .macro CHECK_AND_APPLY_ESPFIX #ifdef CONFIG_X86_ESPFIX32 #define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8) #define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS /* * Warning: PT_OLDSS(%esp) contains the wrong/random values if we * are returning to the kernel. * See comments in process.c:copy_thread() for details. */ movb PT_OLDSS(%esp), %ah movb PT_CS(%esp), %al andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax jne .Lend_\@ # returning to user-space with LDT SS /* * Setup and switch to ESPFIX stack * * We're returning to userspace with a 16 bit stack. The CPU will not * restore the high word of ESP for us on executing iret... This is an * "official" bug of all the x86-compatible CPUs, which we can work * around to make dosemu and wine happy. We do this by preloading the * high word of ESP with the high word of the userspace ESP while * compensating for the offset by changing to the ESPFIX segment with * a base address that matches for the difference. */ mov %esp, %edx /* load kernel esp */ mov PT_OLDESP(%esp), %eax /* load userspace esp */ mov %dx, %ax /* eax: new kernel esp */ sub %eax, %edx /* offset (low word is 0) */ shr $16, %edx mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */ mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */ pushl $__ESPFIX_SS pushl %eax /* new kernel esp */ /* * Disable interrupts, but do not irqtrace this section: we * will soon execute iret and the tracer was already set to * the irqstate after the IRET: */ DISABLE_INTERRUPTS(CLBR_ANY) lss (%esp), %esp /* switch to espfix segment */ .Lend_\@: #endif /* CONFIG_X86_ESPFIX32 */ .endm /* * Called with pt_regs fully populated and kernel segments loaded, * so we can access PER_CPU and use the integer registers. * * We need to be very careful here with the %esp switch, because an NMI * can happen everywhere. If the NMI handler finds itself on the * entry-stack, it will overwrite the task-stack and everything we * copied there. So allocate the stack-frame on the task-stack and * switch to it before we do any copying. */ .macro SWITCH_TO_KERNEL_STACK ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV BUG_IF_WRONG_CR3 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax /* * %eax now contains the entry cr3 and we carry it forward in * that register for the time this macro runs */ /* Are we on the entry stack? Bail out if not! */ movl PER_CPU_VAR(cpu_entry_area), %ecx addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx subl %esp, %ecx /* ecx = (end of entry_stack) - esp */ cmpl $SIZEOF_entry_stack, %ecx jae .Lend_\@ /* Load stack pointer into %esi and %edi */ movl %esp, %esi movl %esi, %edi /* Move %edi to the top of the entry stack */ andl $(MASK_entry_stack), %edi addl $(SIZEOF_entry_stack), %edi /* Load top of task-stack into %edi */ movl TSS_entry2task_stack(%edi), %edi /* Special case - entry from kernel mode via entry stack */ #ifdef CONFIG_VM86 movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS movb PT_CS(%esp), %cl andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx #else movl PT_CS(%esp), %ecx andl $SEGMENT_RPL_MASK, %ecx #endif cmpl $USER_RPL, %ecx jb .Lentry_from_kernel_\@ /* Bytes to copy */ movl $PTREGS_SIZE, %ecx #ifdef CONFIG_VM86 testl $X86_EFLAGS_VM, PT_EFLAGS(%esi) jz .Lcopy_pt_regs_\@ /* * Stack-frame contains 4 additional segment registers when * coming from VM86 mode */ addl $(4 * 4), %ecx #endif .Lcopy_pt_regs_\@: /* Allocate frame on task-stack */ subl %ecx, %edi /* Switch to task-stack */ movl %edi, %esp /* * We are now on the task-stack and can safely copy over the * stack-frame */ shrl $2, %ecx cld rep movsl jmp .Lend_\@ .Lentry_from_kernel_\@: /* * This handles the case when we enter the kernel from * kernel-mode and %esp points to the entry-stack. When this * happens we need to switch to the task-stack to run C code, * but switch back to the entry-stack again when we approach * iret and return to the interrupted code-path. This usually * happens when we hit an exception while restoring user-space * segment registers on the way back to user-space or when the * sysenter handler runs with eflags.tf set. * * When we switch to the task-stack here, we can't trust the * contents of the entry-stack anymore, as the exception handler * might be scheduled out or moved to another CPU. Therefore we * copy the complete entry-stack to the task-stack and set a * marker in the iret-frame (bit 31 of the CS dword) to detect * what we've done on the iret path. * * On the iret path we copy everything back and switch to the * entry-stack, so that the interrupted kernel code-path * continues on the same stack it was interrupted with. * * Be aware that an NMI can happen anytime in this code. * * %esi: Entry-Stack pointer (same as %esp) * %edi: Top of the task stack * %eax: CR3 on kernel entry */ /* Calculate number of bytes on the entry stack in %ecx */ movl %esi, %ecx /* %ecx to the top of entry-stack */ andl $(MASK_entry_stack), %ecx addl $(SIZEOF_entry_stack), %ecx /* Number of bytes on the entry stack to %ecx */ sub %esi, %ecx /* Mark stackframe as coming from entry stack */ orl $CS_FROM_ENTRY_STACK, PT_CS(%esp) /* * Test the cr3 used to enter the kernel and add a marker * so that we can switch back to it before iret. */ testl $PTI_SWITCH_MASK, %eax jz .Lcopy_pt_regs_\@ orl $CS_FROM_USER_CR3, PT_CS(%esp) /* * %esi and %edi are unchanged, %ecx contains the number of * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate * the stack-frame on task-stack and copy everything over */ jmp .Lcopy_pt_regs_\@ .Lend_\@: .endm /* * Switch back from the kernel stack to the entry stack. * * The %esp register must point to pt_regs on the task stack. It will * first calculate the size of the stack-frame to copy, depending on * whether we return to VM86 mode or not. With that it uses 'rep movsl' * to copy the contents of the stack over to the entry stack. * * We must be very careful here, as we can't trust the contents of the * task-stack once we switched to the entry-stack. When an NMI happens * while on the entry-stack, the NMI handler will switch back to the top * of the task stack, overwriting our stack-frame we are about to copy. * Therefore we switch the stack only after everything is copied over. */ .macro SWITCH_TO_ENTRY_STACK ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV /* Bytes to copy */ movl $PTREGS_SIZE, %ecx #ifdef CONFIG_VM86 testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp) jz .Lcopy_pt_regs_\@ /* Additional 4 registers to copy when returning to VM86 mode */ addl $(4 * 4), %ecx .Lcopy_pt_regs_\@: #endif /* Initialize source and destination for movsl */ movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi subl %ecx, %edi movl %esp, %esi /* Save future stack pointer in %ebx */ movl %edi, %ebx /* Copy over the stack-frame */ shrl $2, %ecx cld rep movsl /* * Switch to entry-stack - needs to happen after everything is * copied because the NMI handler will overwrite the task-stack * when on entry-stack */ movl %ebx, %esp .Lend_\@: .endm /* * This macro handles the case when we return to kernel-mode on the iret * path and have to switch back to the entry stack and/or user-cr3 * * See the comments below the .Lentry_from_kernel_\@ label in the * SWITCH_TO_KERNEL_STACK macro for more details. */ .macro PARANOID_EXIT_TO_KERNEL_MODE /* * Test if we entered the kernel with the entry-stack. Most * likely we did not, because this code only runs on the * return-to-kernel path. */ testl $CS_FROM_ENTRY_STACK, PT_CS(%esp) jz .Lend_\@ /* Unlikely slow-path */ /* Clear marker from stack-frame */ andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp) /* Copy the remaining task-stack contents to entry-stack */ movl %esp, %esi movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi /* Bytes on the task-stack to ecx */ movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx subl %esi, %ecx /* Allocate stack-frame on entry-stack */ subl %ecx, %edi /* * Save future stack-pointer, we must not switch until the * copy is done, otherwise the NMI handler could destroy the * contents of the task-stack we are about to copy. */ movl %edi, %ebx /* Do the copy */ shrl $2, %ecx cld rep movsl /* Safe to switch to entry-stack now */ movl %ebx, %esp /* * We came from entry-stack and need to check if we also need to * switch back to user cr3. */ testl $CS_FROM_USER_CR3, PT_CS(%esp) jz .Lend_\@ /* Clear marker from stack-frame */ andl $(~CS_FROM_USER_CR3), PT_CS(%esp) SWITCH_TO_USER_CR3 scratch_reg=%eax .Lend_\@: .endm /* * %eax: prev task * %edx: next task */ ENTRY(__switch_to_asm) /* * Save callee-saved registers * This must match the order in struct inactive_task_frame */ pushl %ebp pushl %ebx pushl %edi pushl %esi pushfl /* switch stack */ movl %esp, TASK_threadsp(%eax) movl TASK_threadsp(%edx), %esp #ifdef CONFIG_STACKPROTECTOR movl TASK_stack_canary(%edx), %ebx movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset #endif /* * When switching from a shallower to a deeper call stack * the RSB may either underflow or use entries populated * with userspace addresses. On CPUs where those concerns * exist, overwrite the RSB with entries which capture * speculative execution to prevent attack. */ FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW /* restore callee-saved registers */ popfl popl %esi popl %edi popl %ebx popl %ebp jmp __switch_to END(__switch_to_asm) /* * The unwinder expects the last frame on the stack to always be at the same * offset from the end of the page, which allows it to validate the stack. * Calling schedule_tail() directly would break that convention because its an * asmlinkage function so its argument has to be pushed on the stack. This * wrapper creates a proper "end of stack" frame header before the call. */ ENTRY(schedule_tail_wrapper) FRAME_BEGIN pushl %eax call schedule_tail popl %eax FRAME_END ret ENDPROC(schedule_tail_wrapper) /* * A newly forked process directly context switches into this address. * * eax: prev task we switched from * ebx: kernel thread func (NULL for user thread) * edi: kernel thread arg */ ENTRY(ret_from_fork) call schedule_tail_wrapper testl %ebx, %ebx jnz 1f /* kernel threads are uncommon */ 2: /* When we fork, we trace the syscall return in the child, too. */ movl %esp, %eax call syscall_return_slowpath STACKLEAK_ERASE jmp restore_all /* kernel thread */ 1: movl %edi, %eax CALL_NOSPEC %ebx /* * A kernel thread is allowed to return here after successfully * calling do_execve(). Exit to userspace to complete the execve() * syscall. */ movl $0, PT_EAX(%esp) jmp 2b END(ret_from_fork) /* * Return to user mode is not as complex as all this looks, * but we want the default path for a system call return to * go as quickly as possible which is why some of this is * less clear than it otherwise should be. */ # userspace resumption stub bypassing syscall exit tracing ALIGN ret_from_exception: preempt_stop(CLBR_ANY) ret_from_intr: #ifdef CONFIG_VM86 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS movb PT_CS(%esp), %al andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax #else /* * We can be coming here from child spawned by kernel_thread(). */ movl PT_CS(%esp), %eax andl $SEGMENT_RPL_MASK, %eax #endif cmpl $USER_RPL, %eax jb restore_all_kernel # not returning to v8086 or userspace ENTRY(resume_userspace) DISABLE_INTERRUPTS(CLBR_ANY) TRACE_IRQS_OFF movl %esp, %eax call prepare_exit_to_usermode jmp restore_all END(ret_from_exception) GLOBAL(__begin_SYSENTER_singlestep_region) /* * All code from here through __end_SYSENTER_singlestep_region is subject * to being single-stepped if a user program sets TF and executes SYSENTER. * There is absolutely nothing that we can do to prevent this from happening * (thanks Intel!). To keep our handling of this situation as simple as * possible, we handle TF just like AC and NT, except that our #DB handler * will ignore all of the single-step traps generated in this range. */ #ifdef CONFIG_XEN_PV /* * Xen doesn't set %esp to be precisely what the normal SYSENTER * entry point expects, so fix it up before using the normal path. */ SYM_CODE_START(xen_sysenter_target) addl $5*4, %esp /* remove xen-provided frame */ jmp .Lsysenter_past_esp SYM_CODE_END(xen_sysenter_target) #endif /* * 32-bit SYSENTER entry. * * 32-bit system calls through the vDSO's __kernel_vsyscall enter here * if X86_FEATURE_SEP is available. This is the preferred system call * entry on 32-bit systems. * * The SYSENTER instruction, in principle, should *only* occur in the * vDSO. In practice, a small number of Android devices were shipped * with a copy of Bionic that inlined a SYSENTER instruction. This * never happened in any of Google's Bionic versions -- it only happened * in a narrow range of Intel-provided versions. * * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs. * IF and VM in RFLAGS are cleared (IOW: interrupts are off). * SYSENTER does not save anything on the stack, * and does not save old EIP (!!!), ESP, or EFLAGS. * * To avoid losing track of EFLAGS.VM (and thus potentially corrupting * user and/or vm86 state), we explicitly disable the SYSENTER * instruction in vm86 mode by reprogramming the MSRs. * * Arguments: * eax system call number * ebx arg1 * ecx arg2 * edx arg3 * esi arg4 * edi arg5 * ebp user stack * 0(%ebp) arg6 */ ENTRY(entry_SYSENTER_32) /* * On entry-stack with all userspace-regs live - save and * restore eflags and %eax to use it as scratch-reg for the cr3 * switch. */ pushfl pushl %eax BUG_IF_WRONG_CR3 no_user_check=1 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax popl %eax popfl /* Stack empty again, switch to task stack */ movl TSS_entry2task_stack(%esp), %esp .Lsysenter_past_esp: pushl $__USER_DS /* pt_regs->ss */ pushl %ebp /* pt_regs->sp (stashed in bp) */ pushfl /* pt_regs->flags (except IF = 0) */ orl $X86_EFLAGS_IF, (%esp) /* Fix IF */ pushl $__USER_CS /* pt_regs->cs */ pushl $0 /* pt_regs->ip = 0 (placeholder) */ pushl %eax /* pt_regs->orig_ax */ SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */ /* * SYSENTER doesn't filter flags, so we need to clear NT, AC * and TF ourselves. To save a few cycles, we can check whether * either was set instead of doing an unconditional popfq. * This needs to happen before enabling interrupts so that * we don't get preempted with NT set. * * If TF is set, we will single-step all the way to here -- do_debug * will ignore all the traps. (Yes, this is slow, but so is * single-stepping in general. This allows us to avoid having * a more complicated code to handle the case where a user program * forces us to single-step through the SYSENTER entry code.) * * NB.: .Lsysenter_fix_flags is a label with the code under it moved * out-of-line as an optimization: NT is unlikely to be set in the * majority of the cases and instead of polluting the I$ unnecessarily, * we're keeping that code behind a branch which will predict as * not-taken and therefore its instructions won't be fetched. */ testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp) jnz .Lsysenter_fix_flags .Lsysenter_flags_fixed: /* * User mode is traced as though IRQs are on, and SYSENTER * turned them off. */ TRACE_IRQS_OFF movl %esp, %eax call do_fast_syscall_32 /* XEN PV guests always use IRET path */ ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \ "jmp .Lsyscall_32_done", X86_FEATURE_XENPV STACKLEAK_ERASE /* Opportunistic SYSEXIT */ TRACE_IRQS_ON /* User mode traces as IRQs on. */ /* * Setup entry stack - we keep the pointer in %eax and do the * switch after almost all user-state is restored. */ /* Load entry stack pointer and allocate frame for eflags/eax */ movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax subl $(2*4), %eax /* Copy eflags and eax to entry stack */ movl PT_EFLAGS(%esp), %edi movl PT_EAX(%esp), %esi movl %edi, (%eax) movl %esi, 4(%eax) /* Restore user registers and segments */ movl PT_EIP(%esp), %edx /* pt_regs->ip */ movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */ 1: mov PT_FS(%esp), %fs PTGS_TO_GS popl %ebx /* pt_regs->bx */ addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */ popl %esi /* pt_regs->si */ popl %edi /* pt_regs->di */ popl %ebp /* pt_regs->bp */ /* Switch to entry stack */ movl %eax, %esp /* Now ready to switch the cr3 */ SWITCH_TO_USER_CR3 scratch_reg=%eax /* * Restore all flags except IF. (We restore IF separately because * STI gives a one-instruction window in which we won't be interrupted, * whereas POPF does not.) */ btrl $X86_EFLAGS_IF_BIT, (%esp) BUG_IF_WRONG_CR3 no_user_check=1 popfl popl %eax /* * Return back to the vDSO, which will pop ecx and edx. * Don't bother with DS and ES (they already contain __USER_DS). */ sti sysexit .pushsection .fixup, "ax" 2: movl $0, PT_FS(%esp) jmp 1b .popsection _ASM_EXTABLE(1b, 2b) PTGS_TO_GS_EX .Lsysenter_fix_flags: pushl $X86_EFLAGS_FIXED popfl jmp .Lsysenter_flags_fixed GLOBAL(__end_SYSENTER_singlestep_region) ENDPROC(entry_SYSENTER_32) /* * 32-bit legacy system call entry. * * 32-bit x86 Linux system calls traditionally used the INT $0x80 * instruction. INT $0x80 lands here. * * This entry point can be used by any 32-bit perform system calls. * Instances of INT $0x80 can be found inline in various programs and * libraries. It is also used by the vDSO's __kernel_vsyscall * fallback for hardware that doesn't support a faster entry method. * Restarted 32-bit system calls also fall back to INT $0x80 * regardless of what instruction was originally used to do the system * call. (64-bit programs can use INT $0x80 as well, but they can * only run on 64-bit kernels and therefore land in * entry_INT80_compat.) * * This is considered a slow path. It is not used by most libc * implementations on modern hardware except during process startup. * * Arguments: * eax system call number * ebx arg1 * ecx arg2 * edx arg3 * esi arg4 * edi arg5 * ebp arg6 */ ENTRY(entry_INT80_32) ASM_CLAC pushl %eax /* pt_regs->orig_ax */ SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */ /* * User mode is traced as though IRQs are on, and the interrupt gate * turned them off. */ TRACE_IRQS_OFF movl %esp, %eax call do_int80_syscall_32 .Lsyscall_32_done: STACKLEAK_ERASE restore_all: TRACE_IRQS_IRET SWITCH_TO_ENTRY_STACK .Lrestore_all_notrace: CHECK_AND_APPLY_ESPFIX .Lrestore_nocheck: /* Switch back to user CR3 */ SWITCH_TO_USER_CR3 scratch_reg=%eax BUG_IF_WRONG_CR3 /* Restore user state */ RESTORE_REGS pop=4 # skip orig_eax/error_code .Lirq_return: /* * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization * when returning from IPI handler and when returning from * scheduler to user-space. */ INTERRUPT_RETURN restore_all_kernel: #ifdef CONFIG_PREEMPTION DISABLE_INTERRUPTS(CLBR_ANY) cmpl $0, PER_CPU_VAR(__preempt_count) jnz .Lno_preempt testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ? jz .Lno_preempt call preempt_schedule_irq .Lno_preempt: #endif TRACE_IRQS_IRET PARANOID_EXIT_TO_KERNEL_MODE BUG_IF_WRONG_CR3 RESTORE_REGS 4 jmp .Lirq_return .section .fixup, "ax" ENTRY(iret_exc ) pushl $0 # no error code pushl $do_iret_error #ifdef CONFIG_DEBUG_ENTRY /* * The stack-frame here is the one that iret faulted on, so its a * return-to-user frame. We are on kernel-cr3 because we come here from * the fixup code. This confuses the CR3 checker, so switch to user-cr3 * as the checker expects it. */ pushl %eax SWITCH_TO_USER_CR3 scratch_reg=%eax popl %eax #endif jmp common_exception .previous _ASM_EXTABLE(.Lirq_return, iret_exc) ENDPROC(entry_INT80_32) .macro FIXUP_ESPFIX_STACK /* * Switch back for ESPFIX stack to the normal zerobased stack * * We can't call C functions using the ESPFIX stack. This code reads * the high word of the segment base from the GDT and swiches to the * normal stack and adjusts ESP with the matching offset. * * We might be on user CR3 here, so percpu data is not mapped and we can't * access the GDT through the percpu segment. Instead, use SGDT to find * the cpu_entry_area alias of the GDT. */ #ifdef CONFIG_X86_ESPFIX32 /* fixup the stack */ pushl %ecx subl $2*4, %esp sgdt (%esp) movl 2(%esp), %ecx /* GDT address */ /* * Careful: ECX is a linear pointer, so we need to force base * zero. %cs is the only known-linear segment we have right now. */ mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */ mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */ shl $16, %eax addl $2*4, %esp popl %ecx addl %esp, %eax /* the adjusted stack pointer */ pushl $__KERNEL_DS pushl %eax lss (%esp), %esp /* switch to the normal stack segment */ #endif .endm .macro UNWIND_ESPFIX_STACK /* It's safe to clobber %eax, all other regs need to be preserved */ #ifdef CONFIG_X86_ESPFIX32 movl %ss, %eax /* see if on espfix stack */ cmpw $__ESPFIX_SS, %ax jne .Lno_fixup_\@ /* switch to normal stack */ FIXUP_ESPFIX_STACK .Lno_fixup_\@: #endif .endm /* * Build the entry stubs with some assembler magic. * We pack 1 stub into every 8-byte block. */ .align 8 ENTRY(irq_entries_start) vector=FIRST_EXTERNAL_VECTOR .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR) pushl $(~vector+0x80) /* Note: always in signed byte range */ vector=vector+1 jmp common_interrupt .align 8 .endr END(irq_entries_start) #ifdef CONFIG_X86_LOCAL_APIC .align 8 ENTRY(spurious_entries_start) vector=FIRST_SYSTEM_VECTOR .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR) pushl $(~vector+0x80) /* Note: always in signed byte range */ vector=vector+1 jmp common_spurious .align 8 .endr END(spurious_entries_start) common_spurious: ASM_CLAC addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */ SAVE_ALL switch_stacks=1 ENCODE_FRAME_POINTER TRACE_IRQS_OFF movl %esp, %eax call smp_spurious_interrupt jmp ret_from_intr ENDPROC(common_spurious) #endif /* * the CPU automatically disables interrupts when executing an IRQ vector, * so IRQ-flags tracing has to follow that: */ .p2align CONFIG_X86_L1_CACHE_SHIFT common_interrupt: ASM_CLAC addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */ SAVE_ALL switch_stacks=1 ENCODE_FRAME_POINTER TRACE_IRQS_OFF movl %esp, %eax call do_IRQ jmp ret_from_intr ENDPROC(common_interrupt) #define BUILD_INTERRUPT3(name, nr, fn) \ ENTRY(name) \ ASM_CLAC; \ pushl $~(nr); \ SAVE_ALL switch_stacks=1; \ ENCODE_FRAME_POINTER; \ TRACE_IRQS_OFF \ movl %esp, %eax; \ call fn; \ jmp ret_from_intr; \ ENDPROC(name) #define BUILD_INTERRUPT(name, nr) \ BUILD_INTERRUPT3(name, nr, smp_##name); \ /* The include is where all of the SMP etc. interrupts come from */ #include <asm/entry_arch.h> ENTRY(coprocessor_error) ASM_CLAC pushl $0 pushl $do_coprocessor_error jmp common_exception END(coprocessor_error) ENTRY(simd_coprocessor_error) ASM_CLAC pushl $0 #ifdef CONFIG_X86_INVD_BUG /* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */ ALTERNATIVE "pushl $do_general_protection", \ "pushl $do_simd_coprocessor_error", \ X86_FEATURE_XMM #else pushl $do_simd_coprocessor_error #endif jmp common_exception END(simd_coprocessor_error) ENTRY(device_not_available) ASM_CLAC pushl $-1 # mark this as an int pushl $do_device_not_available jmp common_exception END(device_not_available) #ifdef CONFIG_PARAVIRT ENTRY(native_iret) iret _ASM_EXTABLE(native_iret, iret_exc) END(native_iret) #endif ENTRY(overflow) ASM_CLAC pushl $0 pushl $do_overflow jmp common_exception END(overflow) ENTRY(bounds) ASM_CLAC pushl $0 pushl $do_bounds jmp common_exception END(bounds) ENTRY(invalid_op) ASM_CLAC pushl $0 pushl $do_invalid_op jmp common_exception END(invalid_op) ENTRY(coprocessor_segment_overrun) ASM_CLAC pushl $0 pushl $do_coprocessor_segment_overrun jmp common_exception END(coprocessor_segment_overrun) ENTRY(invalid_TSS) ASM_CLAC pushl $do_invalid_TSS jmp common_exception END(invalid_TSS) ENTRY(segment_not_present) ASM_CLAC pushl $do_segment_not_present jmp common_exception END(segment_not_present) ENTRY(stack_segment) ASM_CLAC pushl $do_stack_segment jmp common_exception END(stack_segment) ENTRY(alignment_check) ASM_CLAC pushl $do_alignment_check jmp common_exception END(alignment_check) ENTRY(divide_error) ASM_CLAC pushl $0 # no error code pushl $do_divide_error jmp common_exception END(divide_error) #ifdef CONFIG_X86_MCE ENTRY(machine_check) ASM_CLAC pushl $0 pushl machine_check_vector jmp common_exception END(machine_check) #endif ENTRY(spurious_interrupt_bug) ASM_CLAC pushl $0 pushl $do_spurious_interrupt_bug jmp common_exception END(spurious_interrupt_bug) #ifdef CONFIG_XEN_PV ENTRY(xen_hypervisor_callback) /* * Check to see if we got the event in the critical * region in xen_iret_direct, after we've reenabled * events and checked for pending events. This simulates * iret instruction's behaviour where it delivers a * pending interrupt when enabling interrupts: */ cmpl $xen_iret_start_crit, (%esp) jb 1f cmpl $xen_iret_end_crit, (%esp) jae 1f call xen_iret_crit_fixup 1: pushl $-1 /* orig_ax = -1 => not a system call */ SAVE_ALL ENCODE_FRAME_POINTER TRACE_IRQS_OFF mov %esp, %eax call xen_evtchn_do_upcall #ifndef CONFIG_PREEMPTION call xen_maybe_preempt_hcall #endif jmp ret_from_intr ENDPROC(xen_hypervisor_callback) /* * Hypervisor uses this for application faults while it executes. * We get here for two reasons: * 1. Fault while reloading DS, ES, FS or GS * 2. Fault while executing IRET * Category 1 we fix up by reattempting the load, and zeroing the segment * register if the load fails. * Category 2 we fix up by jumping to do_iret_error. We cannot use the * normal Linux return path in this case because if we use the IRET hypercall * to pop the stack frame we end up in an infinite loop of failsafe callbacks. * We distinguish between categories by maintaining a status value in EAX. */ ENTRY(xen_failsafe_callback) pushl %eax movl $1, %eax 1: mov 4(%esp), %ds 2: mov 8(%esp), %es 3: mov 12(%esp), %fs 4: mov 16(%esp), %gs /* EAX == 0 => Category 1 (Bad segment) EAX != 0 => Category 2 (Bad IRET) */ testl %eax, %eax popl %eax lea 16(%esp), %esp jz 5f jmp iret_exc 5: pushl $-1 /* orig_ax = -1 => not a system call */ SAVE_ALL ENCODE_FRAME_POINTER jmp ret_from_exception .section .fixup, "ax" 6: xorl %eax, %eax movl %eax, 4(%esp) jmp 1b 7: xorl %eax, %eax movl %eax, 8(%esp) jmp 2b 8: xorl %eax, %eax movl %eax, 12(%esp) jmp 3b 9: xorl %eax, %eax movl %eax, 16(%esp) jmp 4b .previous _ASM_EXTABLE(1b, 6b) _ASM_EXTABLE(2b, 7b) _ASM_EXTABLE(3b, 8b) _ASM_EXTABLE(4b, 9b) ENDPROC(xen_failsafe_callback) #endif /* CONFIG_XEN_PV */ #ifdef CONFIG_XEN_PVHVM BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR, xen_evtchn_do_upcall) #endif #if IS_ENABLED(CONFIG_HYPERV) BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR, hyperv_vector_handler) BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR, hyperv_reenlightenment_intr) BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR, hv_stimer0_vector_handler) #endif /* CONFIG_HYPERV */ ENTRY(page_fault) ASM_CLAC pushl $do_page_fault jmp common_exception_read_cr2 END(page_fault) common_exception_read_cr2: /* the function address is in %gs's slot on the stack */ SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1 ENCODE_FRAME_POINTER /* fixup %gs */ GS_TO_REG %ecx movl PT_GS(%esp), %edi REG_TO_PTGS %ecx SET_KERNEL_GS %ecx GET_CR2_INTO(%ecx) # might clobber %eax /* fixup orig %eax */ movl PT_ORIG_EAX(%esp), %edx # get the error code movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart TRACE_IRQS_OFF movl %esp, %eax # pt_regs pointer CALL_NOSPEC %edi jmp ret_from_exception END(common_exception_read_cr2) common_exception: /* the function address is in %gs's slot on the stack */ SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1 ENCODE_FRAME_POINTER /* fixup %gs */ GS_TO_REG %ecx movl PT_GS(%esp), %edi # get the function address REG_TO_PTGS %ecx SET_KERNEL_GS %ecx /* fixup orig %eax */ movl PT_ORIG_EAX(%esp), %edx # get the error code movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart TRACE_IRQS_OFF movl %esp, %eax # pt_regs pointer CALL_NOSPEC %edi jmp ret_from_exception END(common_exception) ENTRY(debug) /* * Entry from sysenter is now handled in common_exception */ ASM_CLAC pushl $-1 # mark this as an int pushl $do_debug jmp common_exception END(debug) /* * NMI is doubly nasty. It can happen on the first instruction of * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32 * switched stacks. We handle both conditions by simply checking whether we * interrupted kernel code running on the SYSENTER stack. */ ENTRY(nmi) ASM_CLAC #ifdef CONFIG_X86_ESPFIX32 /* * ESPFIX_SS is only ever set on the return to user path * after we've switched to the entry stack. */ pushl %eax movl %ss, %eax cmpw $__ESPFIX_SS, %ax popl %eax je .Lnmi_espfix_stack #endif pushl %eax # pt_regs->orig_ax SAVE_ALL_NMI cr3_reg=%edi ENCODE_FRAME_POINTER xorl %edx, %edx # zero error code movl %esp, %eax # pt_regs pointer /* Are we currently on the SYSENTER stack? */ movl PER_CPU_VAR(cpu_entry_area), %ecx addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx subl %eax, %ecx /* ecx = (end of entry_stack) - esp */ cmpl $SIZEOF_entry_stack, %ecx jb .Lnmi_from_sysenter_stack /* Not on SYSENTER stack. */ call do_nmi jmp .Lnmi_return .Lnmi_from_sysenter_stack: /* * We're on the SYSENTER stack. Switch off. No one (not even debug) * is using the thread stack right now, so it's safe for us to use it. */ movl %esp, %ebx movl PER_CPU_VAR(cpu_current_top_of_stack), %esp call do_nmi movl %ebx, %esp .Lnmi_return: #ifdef CONFIG_X86_ESPFIX32 testl $CS_FROM_ESPFIX, PT_CS(%esp) jnz .Lnmi_from_espfix #endif CHECK_AND_APPLY_ESPFIX RESTORE_ALL_NMI cr3_reg=%edi pop=4 jmp .Lirq_return #ifdef CONFIG_X86_ESPFIX32 .Lnmi_espfix_stack: /* * Create the pointer to LSS back */ pushl %ss pushl %esp addl $4, (%esp) /* Copy the (short) IRET frame */ pushl 4*4(%esp) # flags pushl 4*4(%esp) # cs pushl 4*4(%esp) # ip pushl %eax # orig_ax SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1 ENCODE_FRAME_POINTER /* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */ xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp) xorl %edx, %edx # zero error code movl %esp, %eax # pt_regs pointer jmp .Lnmi_from_sysenter_stack .Lnmi_from_espfix: RESTORE_ALL_NMI cr3_reg=%edi /* * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to * fix up the gap and long frame: * * 3 - original frame (exception) * 2 - ESPFIX block (above) * 6 - gap (FIXUP_FRAME) * 5 - long frame (FIXUP_FRAME) * 1 - orig_ax */ lss (1+5+6)*4(%esp), %esp # back to espfix stack jmp .Lirq_return #endif END(nmi) ENTRY(int3) ASM_CLAC pushl $-1 # mark this as an int SAVE_ALL switch_stacks=1 ENCODE_FRAME_POINTER TRACE_IRQS_OFF xorl %edx, %edx # zero error code movl %esp, %eax # pt_regs pointer call do_int3 jmp ret_from_exception END(int3) ENTRY(general_protection) ASM_CLAC pushl $do_general_protection jmp common_exception END(general_protection) #ifdef CONFIG_KVM_GUEST ENTRY(async_page_fault) ASM_CLAC pushl $do_async_page_fault jmp common_exception_read_cr2 END(async_page_fault) #endif ENTRY(rewind_stack_and_make_dead) /* Prevent any naive code from trying to unwind to our caller. */ xorl %ebp, %ebp movl PER_CPU_VAR(cpu_current_top_of_stack), %esi leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp call make_task_dead 1: jmp 1b END(rewind_stack_and_make_dead) |