Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2020 Linaro Limited * * Author: Daniel Lezcano <daniel.lezcano@linaro.org> * * The powercap based Dynamic Thermal Power Management framework * provides to the userspace a consistent API to set the power limit * on some devices. * * DTPM defines the functions to create a tree of constraints. Each * parent node is a virtual description of the aggregation of the * children. It propagates the constraints set at its level to its * children and collect the children power information. The leaves of * the tree are the real devices which have the ability to get their * current power consumption and set their power limit. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/dtpm.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/powercap.h> #include <linux/slab.h> #include <linux/mutex.h> #define DTPM_POWER_LIMIT_FLAG 0 static const char *constraint_name[] = { "Instantaneous", }; static DEFINE_MUTEX(dtpm_lock); static struct powercap_control_type *pct; static struct dtpm *root; static int get_time_window_us(struct powercap_zone *pcz, int cid, u64 *window) { return -ENOSYS; } static int set_time_window_us(struct powercap_zone *pcz, int cid, u64 window) { return -ENOSYS; } static int get_max_power_range_uw(struct powercap_zone *pcz, u64 *max_power_uw) { struct dtpm *dtpm = to_dtpm(pcz); mutex_lock(&dtpm_lock); *max_power_uw = dtpm->power_max - dtpm->power_min; mutex_unlock(&dtpm_lock); return 0; } static int __get_power_uw(struct dtpm *dtpm, u64 *power_uw) { struct dtpm *child; u64 power; int ret = 0; if (dtpm->ops) { *power_uw = dtpm->ops->get_power_uw(dtpm); return 0; } *power_uw = 0; list_for_each_entry(child, &dtpm->children, sibling) { ret = __get_power_uw(child, &power); if (ret) break; *power_uw += power; } return ret; } static int get_power_uw(struct powercap_zone *pcz, u64 *power_uw) { struct dtpm *dtpm = to_dtpm(pcz); int ret; mutex_lock(&dtpm_lock); ret = __get_power_uw(dtpm, power_uw); mutex_unlock(&dtpm_lock); return ret; } static void __dtpm_rebalance_weight(struct dtpm *dtpm) { struct dtpm *child; list_for_each_entry(child, &dtpm->children, sibling) { pr_debug("Setting weight '%d' for '%s'\n", child->weight, child->zone.name); child->weight = DIV64_U64_ROUND_CLOSEST( child->power_max * 1024, dtpm->power_max); __dtpm_rebalance_weight(child); } } static void __dtpm_sub_power(struct dtpm *dtpm) { struct dtpm *parent = dtpm->parent; while (parent) { parent->power_min -= dtpm->power_min; parent->power_max -= dtpm->power_max; parent->power_limit -= dtpm->power_limit; parent = parent->parent; } __dtpm_rebalance_weight(root); } static void __dtpm_add_power(struct dtpm *dtpm) { struct dtpm *parent = dtpm->parent; while (parent) { parent->power_min += dtpm->power_min; parent->power_max += dtpm->power_max; parent->power_limit += dtpm->power_limit; parent = parent->parent; } __dtpm_rebalance_weight(root); } /** * dtpm_update_power - Update the power on the dtpm * @dtpm: a pointer to a dtpm structure to update * @power_min: a u64 representing the new power_min value * @power_max: a u64 representing the new power_max value * * Function to update the power values of the dtpm node specified in * parameter. These new values will be propagated to the tree. * * Return: zero on success, -EINVAL if the values are inconsistent */ int dtpm_update_power(struct dtpm *dtpm, u64 power_min, u64 power_max) { int ret = 0; mutex_lock(&dtpm_lock); if (power_min == dtpm->power_min && power_max == dtpm->power_max) goto unlock; if (power_max < power_min) { ret = -EINVAL; goto unlock; } __dtpm_sub_power(dtpm); dtpm->power_min = power_min; dtpm->power_max = power_max; if (!test_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags)) dtpm->power_limit = power_max; __dtpm_add_power(dtpm); unlock: mutex_unlock(&dtpm_lock); return ret; } /** * dtpm_release_zone - Cleanup when the node is released * @pcz: a pointer to a powercap_zone structure * * Do some housecleaning and update the weight on the tree. The * release will be denied if the node has children. This function must * be called by the specific release callback of the different * backends. * * Return: 0 on success, -EBUSY if there are children */ int dtpm_release_zone(struct powercap_zone *pcz) { struct dtpm *dtpm = to_dtpm(pcz); struct dtpm *parent = dtpm->parent; mutex_lock(&dtpm_lock); if (!list_empty(&dtpm->children)) { mutex_unlock(&dtpm_lock); return -EBUSY; } if (parent) list_del(&dtpm->sibling); __dtpm_sub_power(dtpm); mutex_unlock(&dtpm_lock); if (dtpm->ops) dtpm->ops->release(dtpm); if (root == dtpm) root = NULL; kfree(dtpm); return 0; } static int __get_power_limit_uw(struct dtpm *dtpm, int cid, u64 *power_limit) { *power_limit = dtpm->power_limit; return 0; } static int get_power_limit_uw(struct powercap_zone *pcz, int cid, u64 *power_limit) { struct dtpm *dtpm = to_dtpm(pcz); int ret; mutex_lock(&dtpm_lock); ret = __get_power_limit_uw(dtpm, cid, power_limit); mutex_unlock(&dtpm_lock); return ret; } /* * Set the power limit on the nodes, the power limit is distributed * given the weight of the children. * * The dtpm node lock must be held when calling this function. */ static int __set_power_limit_uw(struct dtpm *dtpm, int cid, u64 power_limit) { struct dtpm *child; int ret = 0; u64 power; /* * A max power limitation means we remove the power limit, * otherwise we set a constraint and flag the dtpm node. */ if (power_limit == dtpm->power_max) { clear_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags); } else { set_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags); } pr_debug("Setting power limit for '%s': %llu uW\n", dtpm->zone.name, power_limit); /* * Only leaves of the dtpm tree has ops to get/set the power */ if (dtpm->ops) { dtpm->power_limit = dtpm->ops->set_power_uw(dtpm, power_limit); } else { dtpm->power_limit = 0; list_for_each_entry(child, &dtpm->children, sibling) { /* * Integer division rounding will inevitably * lead to a different min or max value when * set several times. In order to restore the * initial value, we force the child's min or * max power every time if the constraint is * at the boundaries. */ if (power_limit == dtpm->power_max) { power = child->power_max; } else if (power_limit == dtpm->power_min) { power = child->power_min; } else { power = DIV_ROUND_CLOSEST_ULL( power_limit * child->weight, 1024); } pr_debug("Setting power limit for '%s': %llu uW\n", child->zone.name, power); ret = __set_power_limit_uw(child, cid, power); if (!ret) ret = __get_power_limit_uw(child, cid, &power); if (ret) break; dtpm->power_limit += power; } } return ret; } static int set_power_limit_uw(struct powercap_zone *pcz, int cid, u64 power_limit) { struct dtpm *dtpm = to_dtpm(pcz); int ret; mutex_lock(&dtpm_lock); /* * Don't allow values outside of the power range previously * set when initializing the power numbers. */ power_limit = clamp_val(power_limit, dtpm->power_min, dtpm->power_max); ret = __set_power_limit_uw(dtpm, cid, power_limit); pr_debug("%s: power limit: %llu uW, power max: %llu uW\n", dtpm->zone.name, dtpm->power_limit, dtpm->power_max); mutex_unlock(&dtpm_lock); return ret; } static const char *get_constraint_name(struct powercap_zone *pcz, int cid) { return constraint_name[cid]; } static int get_max_power_uw(struct powercap_zone *pcz, int id, u64 *max_power) { struct dtpm *dtpm = to_dtpm(pcz); mutex_lock(&dtpm_lock); *max_power = dtpm->power_max; mutex_unlock(&dtpm_lock); return 0; } static struct powercap_zone_constraint_ops constraint_ops = { .set_power_limit_uw = set_power_limit_uw, .get_power_limit_uw = get_power_limit_uw, .set_time_window_us = set_time_window_us, .get_time_window_us = get_time_window_us, .get_max_power_uw = get_max_power_uw, .get_name = get_constraint_name, }; static struct powercap_zone_ops zone_ops = { .get_max_power_range_uw = get_max_power_range_uw, .get_power_uw = get_power_uw, .release = dtpm_release_zone, }; /** * dtpm_alloc - Allocate and initialize a dtpm struct * @name: a string specifying the name of the node * * Return: a struct dtpm pointer, NULL in case of error */ struct dtpm *dtpm_alloc(struct dtpm_ops *ops) { struct dtpm *dtpm; dtpm = kzalloc(sizeof(*dtpm), GFP_KERNEL); if (dtpm) { INIT_LIST_HEAD(&dtpm->children); INIT_LIST_HEAD(&dtpm->sibling); dtpm->weight = 1024; dtpm->ops = ops; } return dtpm; } /** * dtpm_unregister - Unregister a dtpm node from the hierarchy tree * @dtpm: a pointer to a dtpm structure corresponding to the node to be removed * * Call the underlying powercap unregister function. That will call * the release callback of the powercap zone. */ void dtpm_unregister(struct dtpm *dtpm) { powercap_unregister_zone(pct, &dtpm->zone); pr_info("Unregistered dtpm node '%s'\n", dtpm->zone.name); } /** * dtpm_register - Register a dtpm node in the hierarchy tree * @name: a string specifying the name of the node * @dtpm: a pointer to a dtpm structure corresponding to the new node * @parent: a pointer to a dtpm structure corresponding to the parent node * * Create a dtpm node in the tree. If no parent is specified, the node * is the root node of the hierarchy. If the root node already exists, * then the registration will fail. The powercap controller must be * initialized before calling this function. * * The dtpm structure must be initialized with the power numbers * before calling this function. * * Return: zero on success, a negative value in case of error: * -EAGAIN: the function is called before the framework is initialized. * -EBUSY: the root node is already inserted * -EINVAL: * there is no root node yet and @parent is specified * * no all ops are defined * * parent have ops which are reserved for leaves * Other negative values are reported back from the powercap framework */ int dtpm_register(const char *name, struct dtpm *dtpm, struct dtpm *parent) { struct powercap_zone *pcz; if (!pct) return -EAGAIN; if (root && !parent) return -EBUSY; if (!root && parent) return -EINVAL; if (parent && parent->ops) return -EINVAL; if (!dtpm) return -EINVAL; if (dtpm->ops && !(dtpm->ops->set_power_uw && dtpm->ops->get_power_uw && dtpm->ops->release)) return -EINVAL; pcz = powercap_register_zone(&dtpm->zone, pct, name, parent ? &parent->zone : NULL, &zone_ops, MAX_DTPM_CONSTRAINTS, &constraint_ops); if (IS_ERR(pcz)) return PTR_ERR(pcz); mutex_lock(&dtpm_lock); if (parent) { list_add_tail(&dtpm->sibling, &parent->children); dtpm->parent = parent; } else { root = dtpm; } __dtpm_add_power(dtpm); pr_info("Registered dtpm node '%s' / %llu-%llu uW, \n", dtpm->zone.name, dtpm->power_min, dtpm->power_max); mutex_unlock(&dtpm_lock); return 0; } static int __init dtpm_init(void) { struct dtpm_descr **dtpm_descr; pct = powercap_register_control_type(NULL, "dtpm", NULL); if (IS_ERR(pct)) { pr_err("Failed to register control type\n"); return PTR_ERR(pct); } for_each_dtpm_table(dtpm_descr) (*dtpm_descr)->init(*dtpm_descr); return 0; } late_initcall(dtpm_init); |