Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 | // SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2018 Oracle. All Rights Reserved. * Author: Darrick J. Wong <darrick.wong@oracle.com> */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_btree.h" #include "xfs_log_format.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_inode.h" #include "xfs_alloc.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_rmap.h" #include "xfs_rmap_btree.h" #include "xfs_refcount_btree.h" #include "xfs_extent_busy.h" #include "xfs_ag.h" #include "xfs_ag_resv.h" #include "xfs_quota.h" #include "scrub/scrub.h" #include "scrub/common.h" #include "scrub/trace.h" #include "scrub/repair.h" #include "scrub/bitmap.h" /* * Attempt to repair some metadata, if the metadata is corrupt and userspace * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", * and will set *fixed to true if it thinks it repaired anything. */ int xrep_attempt( struct xfs_scrub *sc) { int error = 0; trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); xchk_ag_btcur_free(&sc->sa); /* Repair whatever's broken. */ ASSERT(sc->ops->repair); error = sc->ops->repair(sc); trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); switch (error) { case 0: /* * Repair succeeded. Commit the fixes and perform a second * scrub so that we can tell userspace if we fixed the problem. */ sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; sc->flags |= XREP_ALREADY_FIXED; return -EAGAIN; case -EDEADLOCK: case -EAGAIN: /* Tell the caller to try again having grabbed all the locks. */ if (!(sc->flags & XCHK_TRY_HARDER)) { sc->flags |= XCHK_TRY_HARDER; return -EAGAIN; } /* * We tried harder but still couldn't grab all the resources * we needed to fix it. The corruption has not been fixed, * so report back to userspace. */ return -EFSCORRUPTED; default: return error; } } /* * Complain about unfixable problems in the filesystem. We don't log * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the * administrator isn't running xfs_scrub in no-repairs mode. * * Use this helper function because _ratelimited silently declares a static * structure to track rate limiting information. */ void xrep_failure( struct xfs_mount *mp) { xfs_alert_ratelimited(mp, "Corruption not fixed during online repair. Unmount and run xfs_repair."); } /* * Repair probe -- userspace uses this to probe if we're willing to repair a * given mountpoint. */ int xrep_probe( struct xfs_scrub *sc) { int error = 0; if (xchk_should_terminate(sc, &error)) return error; return 0; } /* * Roll a transaction, keeping the AG headers locked and reinitializing * the btree cursors. */ int xrep_roll_ag_trans( struct xfs_scrub *sc) { int error; /* Keep the AG header buffers locked so we can keep going. */ if (sc->sa.agi_bp) xfs_trans_bhold(sc->tp, sc->sa.agi_bp); if (sc->sa.agf_bp) xfs_trans_bhold(sc->tp, sc->sa.agf_bp); if (sc->sa.agfl_bp) xfs_trans_bhold(sc->tp, sc->sa.agfl_bp); /* * Roll the transaction. We still own the buffer and the buffer lock * regardless of whether or not the roll succeeds. If the roll fails, * the buffers will be released during teardown on our way out of the * kernel. If it succeeds, we join them to the new transaction and * move on. */ error = xfs_trans_roll(&sc->tp); if (error) return error; /* Join AG headers to the new transaction. */ if (sc->sa.agi_bp) xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); if (sc->sa.agf_bp) xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); if (sc->sa.agfl_bp) xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp); return 0; } /* * Does the given AG have enough space to rebuild a btree? Neither AG * reservation can be critical, and we must have enough space (factoring * in AG reservations) to construct a whole btree. */ bool xrep_ag_has_space( struct xfs_perag *pag, xfs_extlen_t nr_blocks, enum xfs_ag_resv_type type) { return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; } /* * Figure out how many blocks to reserve for an AG repair. We calculate the * worst case estimate for the number of blocks we'd need to rebuild one of * any type of per-AG btree. */ xfs_extlen_t xrep_calc_ag_resblks( struct xfs_scrub *sc) { struct xfs_mount *mp = sc->mp; struct xfs_scrub_metadata *sm = sc->sm; struct xfs_perag *pag; struct xfs_buf *bp; xfs_agino_t icount = NULLAGINO; xfs_extlen_t aglen = NULLAGBLOCK; xfs_extlen_t usedlen; xfs_extlen_t freelen; xfs_extlen_t bnobt_sz; xfs_extlen_t inobt_sz; xfs_extlen_t rmapbt_sz; xfs_extlen_t refcbt_sz; int error; if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) return 0; pag = xfs_perag_get(mp, sm->sm_agno); if (pag->pagi_init) { /* Use in-core icount if possible. */ icount = pag->pagi_count; } else { /* Try to get the actual counters from disk. */ error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp); if (!error) { icount = pag->pagi_count; xfs_buf_relse(bp); } } /* Now grab the block counters from the AGF. */ error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp); if (error) { aglen = xfs_ag_block_count(mp, sm->sm_agno); freelen = aglen; usedlen = aglen; } else { struct xfs_agf *agf = bp->b_addr; aglen = be32_to_cpu(agf->agf_length); freelen = be32_to_cpu(agf->agf_freeblks); usedlen = aglen - freelen; xfs_buf_relse(bp); } xfs_perag_put(pag); /* If the icount is impossible, make some worst-case assumptions. */ if (icount == NULLAGINO || !xfs_verify_agino(mp, sm->sm_agno, icount)) { xfs_agino_t first, last; xfs_agino_range(mp, sm->sm_agno, &first, &last); icount = last - first + 1; } /* If the block counts are impossible, make worst-case assumptions. */ if (aglen == NULLAGBLOCK || aglen != xfs_ag_block_count(mp, sm->sm_agno) || freelen >= aglen) { aglen = xfs_ag_block_count(mp, sm->sm_agno); freelen = aglen; usedlen = aglen; } trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, freelen, usedlen); /* * Figure out how many blocks we'd need worst case to rebuild * each type of btree. Note that we can only rebuild the * bnobt/cntbt or inobt/finobt as pairs. */ bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); if (xfs_sb_version_hassparseinodes(&mp->m_sb)) inobt_sz = xfs_iallocbt_calc_size(mp, icount / XFS_INODES_PER_HOLEMASK_BIT); else inobt_sz = xfs_iallocbt_calc_size(mp, icount / XFS_INODES_PER_CHUNK); if (xfs_sb_version_hasfinobt(&mp->m_sb)) inobt_sz *= 2; if (xfs_sb_version_hasreflink(&mp->m_sb)) refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); else refcbt_sz = 0; if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { /* * Guess how many blocks we need to rebuild the rmapbt. * For non-reflink filesystems we can't have more records than * used blocks. However, with reflink it's possible to have * more than one rmap record per AG block. We don't know how * many rmaps there could be in the AG, so we start off with * what we hope is an generous over-estimation. */ if (xfs_sb_version_hasreflink(&mp->m_sb)) rmapbt_sz = xfs_rmapbt_calc_size(mp, (unsigned long long)aglen * 2); else rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); } else { rmapbt_sz = 0; } trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, inobt_sz, rmapbt_sz, refcbt_sz); return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); } /* Allocate a block in an AG. */ int xrep_alloc_ag_block( struct xfs_scrub *sc, const struct xfs_owner_info *oinfo, xfs_fsblock_t *fsbno, enum xfs_ag_resv_type resv) { struct xfs_alloc_arg args = {0}; xfs_agblock_t bno; int error; switch (resv) { case XFS_AG_RESV_AGFL: case XFS_AG_RESV_RMAPBT: error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1); if (error) return error; if (bno == NULLAGBLOCK) return -ENOSPC; xfs_extent_busy_reuse(sc->mp, sc->sa.pag, bno, 1, false); *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno); if (resv == XFS_AG_RESV_RMAPBT) xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno); return 0; default: break; } args.tp = sc->tp; args.mp = sc->mp; args.oinfo = *oinfo; args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0); args.minlen = 1; args.maxlen = 1; args.prod = 1; args.type = XFS_ALLOCTYPE_THIS_AG; args.resv = resv; error = xfs_alloc_vextent(&args); if (error) return error; if (args.fsbno == NULLFSBLOCK) return -ENOSPC; ASSERT(args.len == 1); *fsbno = args.fsbno; return 0; } /* Initialize a new AG btree root block with zero entries. */ int xrep_init_btblock( struct xfs_scrub *sc, xfs_fsblock_t fsb, struct xfs_buf **bpp, xfs_btnum_t btnum, const struct xfs_buf_ops *ops) { struct xfs_trans *tp = sc->tp; struct xfs_mount *mp = sc->mp; struct xfs_buf *bp; int error; trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb), XFS_FSB_TO_AGBNO(mp, fsb), btnum); ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno); error = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0, &bp); if (error) return error; xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno); xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF); xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1); bp->b_ops = ops; *bpp = bp; return 0; } /* * Reconstructing per-AG Btrees * * When a space btree is corrupt, we don't bother trying to fix it. Instead, * we scan secondary space metadata to derive the records that should be in * the damaged btree, initialize a fresh btree root, and insert the records. * Note that for rebuilding the rmapbt we scan all the primary data to * generate the new records. * * However, that leaves the matter of removing all the metadata describing the * old broken structure. For primary metadata we use the rmap data to collect * every extent with a matching rmap owner (bitmap); we then iterate all other * metadata structures with the same rmap owner to collect the extents that * cannot be removed (sublist). We then subtract sublist from bitmap to * derive the blocks that were used by the old btree. These blocks can be * reaped. * * For rmapbt reconstructions we must use different tactics for extent * collection. First we iterate all primary metadata (this excludes the old * rmapbt, obviously) to generate new rmap records. The gaps in the rmap * records are collected as bitmap. The bnobt records are collected as * sublist. As with the other btrees we subtract sublist from bitmap, and the * result (since the rmapbt lives in the free space) are the blocks from the * old rmapbt. * * Disposal of Blocks from Old per-AG Btrees * * Now that we've constructed a new btree to replace the damaged one, we want * to dispose of the blocks that (we think) the old btree was using. * Previously, we used the rmapbt to collect the extents (bitmap) with the * rmap owner corresponding to the tree we rebuilt, collected extents for any * blocks with the same rmap owner that are owned by another data structure * (sublist), and subtracted sublist from bitmap. In theory the extents * remaining in bitmap are the old btree's blocks. * * Unfortunately, it's possible that the btree was crosslinked with other * blocks on disk. The rmap data can tell us if there are multiple owners, so * if the rmapbt says there is an owner of this block other than @oinfo, then * the block is crosslinked. Remove the reverse mapping and continue. * * If there is one rmap record, we can free the block, which removes the * reverse mapping but doesn't add the block to the free space. Our repair * strategy is to hope the other metadata objects crosslinked on this block * will be rebuilt (atop different blocks), thereby removing all the cross * links. * * If there are no rmap records at all, we also free the block. If the btree * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't * supposed to be a rmap record and everything is ok. For other btrees there * had to have been an rmap entry for the block to have ended up on @bitmap, * so if it's gone now there's something wrong and the fs will shut down. * * Note: If there are multiple rmap records with only the same rmap owner as * the btree we're trying to rebuild and the block is indeed owned by another * data structure with the same rmap owner, then the block will be in sublist * and therefore doesn't need disposal. If there are multiple rmap records * with only the same rmap owner but the block is not owned by something with * the same rmap owner, the block will be freed. * * The caller is responsible for locking the AG headers for the entire rebuild * operation so that nothing else can sneak in and change the AG state while * we're not looking. We also assume that the caller already invalidated any * buffers associated with @bitmap. */ /* * Invalidate buffers for per-AG btree blocks we're dumping. This function * is not intended for use with file data repairs; we have bunmapi for that. */ int xrep_invalidate_blocks( struct xfs_scrub *sc, struct xbitmap *bitmap) { struct xbitmap_range *bmr; struct xbitmap_range *n; struct xfs_buf *bp; xfs_fsblock_t fsbno; /* * For each block in each extent, see if there's an incore buffer for * exactly that block; if so, invalidate it. The buffer cache only * lets us look for one buffer at a time, so we have to look one block * at a time. Avoid invalidating AG headers and post-EOFS blocks * because we never own those; and if we can't TRYLOCK the buffer we * assume it's owned by someone else. */ for_each_xbitmap_block(fsbno, bmr, n, bitmap) { /* Skip AG headers and post-EOFS blocks */ if (!xfs_verify_fsbno(sc->mp, fsbno)) continue; bp = xfs_buf_incore(sc->mp->m_ddev_targp, XFS_FSB_TO_DADDR(sc->mp, fsbno), XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK); if (bp) { xfs_trans_bjoin(sc->tp, bp); xfs_trans_binval(sc->tp, bp); } } return 0; } /* Ensure the freelist is the correct size. */ int xrep_fix_freelist( struct xfs_scrub *sc, bool can_shrink) { struct xfs_alloc_arg args = {0}; args.mp = sc->mp; args.tp = sc->tp; args.agno = sc->sa.agno; args.alignment = 1; args.pag = sc->sa.pag; return xfs_alloc_fix_freelist(&args, can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); } /* * Put a block back on the AGFL. */ STATIC int xrep_put_freelist( struct xfs_scrub *sc, xfs_agblock_t agbno) { int error; /* Make sure there's space on the freelist. */ error = xrep_fix_freelist(sc, true); if (error) return error; /* * Since we're "freeing" a lost block onto the AGFL, we have to * create an rmap for the block prior to merging it or else other * parts will break. */ error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1, &XFS_RMAP_OINFO_AG); if (error) return error; /* Put the block on the AGFL. */ error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp, agbno, 0); if (error) return error; xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1, XFS_EXTENT_BUSY_SKIP_DISCARD); return 0; } /* Dispose of a single block. */ STATIC int xrep_reap_block( struct xfs_scrub *sc, xfs_fsblock_t fsbno, const struct xfs_owner_info *oinfo, enum xfs_ag_resv_type resv) { struct xfs_btree_cur *cur; struct xfs_buf *agf_bp = NULL; xfs_agnumber_t agno; xfs_agblock_t agbno; bool has_other_rmap; int error; agno = XFS_FSB_TO_AGNO(sc->mp, fsbno); agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); /* * If we are repairing per-inode metadata, we need to read in the AGF * buffer. Otherwise, we're repairing a per-AG structure, so reuse * the AGF buffer that the setup functions already grabbed. */ if (sc->ip) { error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp); if (error) return error; } else { agf_bp = sc->sa.agf_bp; } cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, sc->sa.pag); /* Can we find any other rmappings? */ error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap); xfs_btree_del_cursor(cur, error); if (error) goto out_free; /* * If there are other rmappings, this block is cross linked and must * not be freed. Remove the reverse mapping and move on. Otherwise, * we were the only owner of the block, so free the extent, which will * also remove the rmap. * * XXX: XFS doesn't support detecting the case where a single block * metadata structure is crosslinked with a multi-block structure * because the buffer cache doesn't detect aliasing problems, so we * can't fix 100% of crosslinking problems (yet). The verifiers will * blow on writeout, the filesystem will shut down, and the admin gets * to run xfs_repair. */ if (has_other_rmap) error = xfs_rmap_free(sc->tp, agf_bp, sc->sa.pag, agbno, 1, oinfo); else if (resv == XFS_AG_RESV_AGFL) error = xrep_put_freelist(sc, agbno); else error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv); if (agf_bp != sc->sa.agf_bp) xfs_trans_brelse(sc->tp, agf_bp); if (error) return error; if (sc->ip) return xfs_trans_roll_inode(&sc->tp, sc->ip); return xrep_roll_ag_trans(sc); out_free: if (agf_bp != sc->sa.agf_bp) xfs_trans_brelse(sc->tp, agf_bp); return error; } /* Dispose of every block of every extent in the bitmap. */ int xrep_reap_extents( struct xfs_scrub *sc, struct xbitmap *bitmap, const struct xfs_owner_info *oinfo, enum xfs_ag_resv_type type) { struct xbitmap_range *bmr; struct xbitmap_range *n; xfs_fsblock_t fsbno; int error = 0; ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb)); for_each_xbitmap_block(fsbno, bmr, n, bitmap) { ASSERT(sc->ip != NULL || XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno); trace_xrep_dispose_btree_extent(sc->mp, XFS_FSB_TO_AGNO(sc->mp, fsbno), XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1); error = xrep_reap_block(sc, fsbno, oinfo, type); if (error) break; } return error; } /* * Finding per-AG Btree Roots for AGF/AGI Reconstruction * * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild * the AG headers by using the rmap data to rummage through the AG looking for * btree roots. This is not guaranteed to work if the AG is heavily damaged * or the rmap data are corrupt. * * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the * AGI is being rebuilt. It must maintain these locks until it's safe for * other threads to change the btrees' shapes. The caller provides * information about the btrees to look for by passing in an array of * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. * The (root, height) fields will be set on return if anything is found. The * last element of the array should have a NULL buf_ops to mark the end of the * array. * * For every rmapbt record matching any of the rmap owners in btree_info, * read each block referenced by the rmap record. If the block is a btree * block from this filesystem matching any of the magic numbers and has a * level higher than what we've already seen, remember the block and the * height of the tree required to have such a block. When the call completes, * we return the highest block we've found for each btree description; those * should be the roots. */ struct xrep_findroot { struct xfs_scrub *sc; struct xfs_buf *agfl_bp; struct xfs_agf *agf; struct xrep_find_ag_btree *btree_info; }; /* See if our block is in the AGFL. */ STATIC int xrep_findroot_agfl_walk( struct xfs_mount *mp, xfs_agblock_t bno, void *priv) { xfs_agblock_t *agbno = priv; return (*agbno == bno) ? -ECANCELED : 0; } /* Does this block match the btree information passed in? */ STATIC int xrep_findroot_block( struct xrep_findroot *ri, struct xrep_find_ag_btree *fab, uint64_t owner, xfs_agblock_t agbno, bool *done_with_block) { struct xfs_mount *mp = ri->sc->mp; struct xfs_buf *bp; struct xfs_btree_block *btblock; xfs_daddr_t daddr; int block_level; int error = 0; daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno); /* * Blocks in the AGFL have stale contents that might just happen to * have a matching magic and uuid. We don't want to pull these blocks * in as part of a tree root, so we have to filter out the AGFL stuff * here. If the AGFL looks insane we'll just refuse to repair. */ if (owner == XFS_RMAP_OWN_AG) { error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, xrep_findroot_agfl_walk, &agbno); if (error == -ECANCELED) return 0; if (error) return error; } /* * Read the buffer into memory so that we can see if it's a match for * our btree type. We have no clue if it is beforehand, and we want to * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which * will cause needless disk reads in subsequent calls to this function) * and logging metadata verifier failures. * * Therefore, pass in NULL buffer ops. If the buffer was already in * memory from some other caller it will already have b_ops assigned. * If it was in memory from a previous unsuccessful findroot_block * call, the buffer won't have b_ops but it should be clean and ready * for us to try to verify if the read call succeeds. The same applies * if the buffer wasn't in memory at all. * * Note: If we never match a btree type with this buffer, it will be * left in memory with NULL b_ops. This shouldn't be a problem unless * the buffer gets written. */ error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, mp->m_bsize, 0, &bp, NULL); if (error) return error; /* Ensure the block magic matches the btree type we're looking for. */ btblock = XFS_BUF_TO_BLOCK(bp); ASSERT(fab->buf_ops->magic[1] != 0); if (btblock->bb_magic != fab->buf_ops->magic[1]) goto out; /* * If the buffer already has ops applied and they're not the ones for * this btree type, we know this block doesn't match the btree and we * can bail out. * * If the buffer ops match ours, someone else has already validated * the block for us, so we can move on to checking if this is a root * block candidate. * * If the buffer does not have ops, nobody has successfully validated * the contents and the buffer cannot be dirty. If the magic, uuid, * and structure match this btree type then we'll move on to checking * if it's a root block candidate. If there is no match, bail out. */ if (bp->b_ops) { if (bp->b_ops != fab->buf_ops) goto out; } else { ASSERT(!xfs_trans_buf_is_dirty(bp)); if (!uuid_equal(&btblock->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) goto out; /* * Read verifiers can reference b_ops, so we set the pointer * here. If the verifier fails we'll reset the buffer state * to what it was before we touched the buffer. */ bp->b_ops = fab->buf_ops; fab->buf_ops->verify_read(bp); if (bp->b_error) { bp->b_ops = NULL; bp->b_error = 0; goto out; } /* * Some read verifiers will (re)set b_ops, so we must be * careful not to change b_ops after running the verifier. */ } /* * This block passes the magic/uuid and verifier tests for this btree * type. We don't need the caller to try the other tree types. */ *done_with_block = true; /* * Compare this btree block's level to the height of the current * candidate root block. * * If the level matches the root we found previously, throw away both * blocks because there can't be two candidate roots. * * If level is lower in the tree than the root we found previously, * ignore this block. */ block_level = xfs_btree_get_level(btblock); if (block_level + 1 == fab->height) { fab->root = NULLAGBLOCK; goto out; } else if (block_level < fab->height) { goto out; } /* * This is the highest block in the tree that we've found so far. * Update the btree height to reflect what we've learned from this * block. */ fab->height = block_level + 1; /* * If this block doesn't have sibling pointers, then it's the new root * block candidate. Otherwise, the root will be found farther up the * tree. */ if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) fab->root = agbno; else fab->root = NULLAGBLOCK; trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno, be32_to_cpu(btblock->bb_magic), fab->height - 1); out: xfs_trans_brelse(ri->sc->tp, bp); return error; } /* * Do any of the blocks in this rmap record match one of the btrees we're * looking for? */ STATIC int xrep_findroot_rmap( struct xfs_btree_cur *cur, struct xfs_rmap_irec *rec, void *priv) { struct xrep_findroot *ri = priv; struct xrep_find_ag_btree *fab; xfs_agblock_t b; bool done; int error = 0; /* Ignore anything that isn't AG metadata. */ if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) return 0; /* Otherwise scan each block + btree type. */ for (b = 0; b < rec->rm_blockcount; b++) { done = false; for (fab = ri->btree_info; fab->buf_ops; fab++) { if (rec->rm_owner != fab->rmap_owner) continue; error = xrep_findroot_block(ri, fab, rec->rm_owner, rec->rm_startblock + b, &done); if (error) return error; if (done) break; } } return 0; } /* Find the roots of the per-AG btrees described in btree_info. */ int xrep_find_ag_btree_roots( struct xfs_scrub *sc, struct xfs_buf *agf_bp, struct xrep_find_ag_btree *btree_info, struct xfs_buf *agfl_bp) { struct xfs_mount *mp = sc->mp; struct xrep_findroot ri; struct xrep_find_ag_btree *fab; struct xfs_btree_cur *cur; int error; ASSERT(xfs_buf_islocked(agf_bp)); ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); ri.sc = sc; ri.btree_info = btree_info; ri.agf = agf_bp->b_addr; ri.agfl_bp = agfl_bp; for (fab = btree_info; fab->buf_ops; fab++) { ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); fab->root = NULLAGBLOCK; fab->height = 0; } cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); xfs_btree_del_cursor(cur, error); return error; } /* Force a quotacheck the next time we mount. */ void xrep_force_quotacheck( struct xfs_scrub *sc, xfs_dqtype_t type) { uint flag; flag = xfs_quota_chkd_flag(type); if (!(flag & sc->mp->m_qflags)) return; sc->mp->m_qflags &= ~flag; spin_lock(&sc->mp->m_sb_lock); sc->mp->m_sb.sb_qflags &= ~flag; spin_unlock(&sc->mp->m_sb_lock); xfs_log_sb(sc->tp); } /* * Attach dquots to this inode, or schedule quotacheck to fix them. * * This function ensures that the appropriate dquots are attached to an inode. * We cannot allow the dquot code to allocate an on-disk dquot block here * because we're already in transaction context with the inode locked. The * on-disk dquot should already exist anyway. If the quota code signals * corruption or missing quota information, schedule quotacheck, which will * repair corruptions in the quota metadata. */ int xrep_ino_dqattach( struct xfs_scrub *sc) { int error; error = xfs_qm_dqattach_locked(sc->ip, false); switch (error) { case -EFSBADCRC: case -EFSCORRUPTED: case -ENOENT: xfs_err_ratelimited(sc->mp, "inode %llu repair encountered quota error %d, quotacheck forced.", (unsigned long long)sc->ip->i_ino, error); if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) xrep_force_quotacheck(sc, XFS_DQTYPE_USER); if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); fallthrough; case -ESRCH: error = 0; break; default: break; } return error; } |