Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 | // SPDX-License-Identifier: GPL-2.0 /* * MMCIF eMMC driver. * * Copyright (C) 2010 Renesas Solutions Corp. * Yusuke Goda <yusuke.goda.sx@renesas.com> */ /* * The MMCIF driver is now processing MMC requests asynchronously, according * to the Linux MMC API requirement. * * The MMCIF driver processes MMC requests in up to 3 stages: command, optional * data, and optional stop. To achieve asynchronous processing each of these * stages is split into two halves: a top and a bottom half. The top half * initialises the hardware, installs a timeout handler to handle completion * timeouts, and returns. In case of the command stage this immediately returns * control to the caller, leaving all further processing to run asynchronously. * All further request processing is performed by the bottom halves. * * The bottom half further consists of a "hard" IRQ handler, an IRQ handler * thread, a DMA completion callback, if DMA is used, a timeout work, and * request- and stage-specific handler methods. * * Each bottom half run begins with either a hardware interrupt, a DMA callback * invocation, or a timeout work run. In case of an error or a successful * processing completion, the MMC core is informed and the request processing is * finished. In case processing has to continue, i.e., if data has to be read * from or written to the card, or if a stop command has to be sent, the next * top half is called, which performs the necessary hardware handling and * reschedules the timeout work. This returns the driver state machine into the * bottom half waiting state. */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/mmc/card.h> #include <linux/mmc/core.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/mmc/sdio.h> #include <linux/mmc/sh_mmcif.h> #include <linux/mmc/slot-gpio.h> #include <linux/mod_devicetable.h> #include <linux/mutex.h> #include <linux/of_device.h> #include <linux/pagemap.h> #include <linux/platform_device.h> #include <linux/pm_qos.h> #include <linux/pm_runtime.h> #include <linux/sh_dma.h> #include <linux/spinlock.h> #include <linux/module.h> #define DRIVER_NAME "sh_mmcif" /* CE_CMD_SET */ #define CMD_MASK 0x3f000000 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22)) #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */ #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */ #define CMD_SET_RBSY (1 << 21) /* R1b */ #define CMD_SET_CCSEN (1 << 20) #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */ #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */ #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */ #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */ #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */ #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */ #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */ #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/ #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/ #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/ #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/ #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */ #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */ #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */ #define CMD_SET_CCSH (1 << 5) #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */ #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */ #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */ #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */ /* CE_CMD_CTRL */ #define CMD_CTRL_BREAK (1 << 0) /* CE_BLOCK_SET */ #define BLOCK_SIZE_MASK 0x0000ffff /* CE_INT */ #define INT_CCSDE (1 << 29) #define INT_CMD12DRE (1 << 26) #define INT_CMD12RBE (1 << 25) #define INT_CMD12CRE (1 << 24) #define INT_DTRANE (1 << 23) #define INT_BUFRE (1 << 22) #define INT_BUFWEN (1 << 21) #define INT_BUFREN (1 << 20) #define INT_CCSRCV (1 << 19) #define INT_RBSYE (1 << 17) #define INT_CRSPE (1 << 16) #define INT_CMDVIO (1 << 15) #define INT_BUFVIO (1 << 14) #define INT_WDATERR (1 << 11) #define INT_RDATERR (1 << 10) #define INT_RIDXERR (1 << 9) #define INT_RSPERR (1 << 8) #define INT_CCSTO (1 << 5) #define INT_CRCSTO (1 << 4) #define INT_WDATTO (1 << 3) #define INT_RDATTO (1 << 2) #define INT_RBSYTO (1 << 1) #define INT_RSPTO (1 << 0) #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \ INT_RDATERR | INT_RIDXERR | INT_RSPERR | \ INT_CCSTO | INT_CRCSTO | INT_WDATTO | \ INT_RDATTO | INT_RBSYTO | INT_RSPTO) #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \ INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \ INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE) #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE) /* CE_INT_MASK */ #define MASK_ALL 0x00000000 #define MASK_MCCSDE (1 << 29) #define MASK_MCMD12DRE (1 << 26) #define MASK_MCMD12RBE (1 << 25) #define MASK_MCMD12CRE (1 << 24) #define MASK_MDTRANE (1 << 23) #define MASK_MBUFRE (1 << 22) #define MASK_MBUFWEN (1 << 21) #define MASK_MBUFREN (1 << 20) #define MASK_MCCSRCV (1 << 19) #define MASK_MRBSYE (1 << 17) #define MASK_MCRSPE (1 << 16) #define MASK_MCMDVIO (1 << 15) #define MASK_MBUFVIO (1 << 14) #define MASK_MWDATERR (1 << 11) #define MASK_MRDATERR (1 << 10) #define MASK_MRIDXERR (1 << 9) #define MASK_MRSPERR (1 << 8) #define MASK_MCCSTO (1 << 5) #define MASK_MCRCSTO (1 << 4) #define MASK_MWDATTO (1 << 3) #define MASK_MRDATTO (1 << 2) #define MASK_MRBSYTO (1 << 1) #define MASK_MRSPTO (1 << 0) #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \ MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \ MASK_MCRCSTO | MASK_MWDATTO | \ MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO) #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \ MASK_MBUFREN | MASK_MBUFWEN | \ MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \ MASK_MCMD12RBE | MASK_MCMD12CRE) /* CE_HOST_STS1 */ #define STS1_CMDSEQ (1 << 31) /* CE_HOST_STS2 */ #define STS2_CRCSTE (1 << 31) #define STS2_CRC16E (1 << 30) #define STS2_AC12CRCE (1 << 29) #define STS2_RSPCRC7E (1 << 28) #define STS2_CRCSTEBE (1 << 27) #define STS2_RDATEBE (1 << 26) #define STS2_AC12REBE (1 << 25) #define STS2_RSPEBE (1 << 24) #define STS2_AC12IDXE (1 << 23) #define STS2_RSPIDXE (1 << 22) #define STS2_CCSTO (1 << 15) #define STS2_RDATTO (1 << 14) #define STS2_DATBSYTO (1 << 13) #define STS2_CRCSTTO (1 << 12) #define STS2_AC12BSYTO (1 << 11) #define STS2_RSPBSYTO (1 << 10) #define STS2_AC12RSPTO (1 << 9) #define STS2_RSPTO (1 << 8) #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \ STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE) #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \ STS2_DATBSYTO | STS2_CRCSTTO | \ STS2_AC12BSYTO | STS2_RSPBSYTO | \ STS2_AC12RSPTO | STS2_RSPTO) #define CLKDEV_EMMC_DATA 52000000 /* 52 MHz */ #define CLKDEV_MMC_DATA 20000000 /* 20 MHz */ #define CLKDEV_INIT 400000 /* 400 kHz */ enum sh_mmcif_state { STATE_IDLE, STATE_REQUEST, STATE_IOS, STATE_TIMEOUT, }; enum sh_mmcif_wait_for { MMCIF_WAIT_FOR_REQUEST, MMCIF_WAIT_FOR_CMD, MMCIF_WAIT_FOR_MREAD, MMCIF_WAIT_FOR_MWRITE, MMCIF_WAIT_FOR_READ, MMCIF_WAIT_FOR_WRITE, MMCIF_WAIT_FOR_READ_END, MMCIF_WAIT_FOR_WRITE_END, MMCIF_WAIT_FOR_STOP, }; /* * difference for each SoC */ struct sh_mmcif_host { struct mmc_host *mmc; struct mmc_request *mrq; struct platform_device *pd; struct clk *clk; int bus_width; unsigned char timing; bool sd_error; bool dying; long timeout; void __iomem *addr; u32 *pio_ptr; spinlock_t lock; /* protect sh_mmcif_host::state */ enum sh_mmcif_state state; enum sh_mmcif_wait_for wait_for; struct delayed_work timeout_work; size_t blocksize; int sg_idx; int sg_blkidx; bool power; bool ccs_enable; /* Command Completion Signal support */ bool clk_ctrl2_enable; struct mutex thread_lock; u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */ /* DMA support */ struct dma_chan *chan_rx; struct dma_chan *chan_tx; struct completion dma_complete; bool dma_active; }; static const struct of_device_id sh_mmcif_of_match[] = { { .compatible = "renesas,sh-mmcif" }, { } }; MODULE_DEVICE_TABLE(of, sh_mmcif_of_match); #define sh_mmcif_host_to_dev(host) (&host->pd->dev) static inline void sh_mmcif_bitset(struct sh_mmcif_host *host, unsigned int reg, u32 val) { writel(val | readl(host->addr + reg), host->addr + reg); } static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host, unsigned int reg, u32 val) { writel(~val & readl(host->addr + reg), host->addr + reg); } static void sh_mmcif_dma_complete(void *arg) { struct sh_mmcif_host *host = arg; struct mmc_request *mrq = host->mrq; struct device *dev = sh_mmcif_host_to_dev(host); dev_dbg(dev, "Command completed\n"); if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n", dev_name(dev))) return; complete(&host->dma_complete); } static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host) { struct mmc_data *data = host->mrq->data; struct scatterlist *sg = data->sg; struct dma_async_tx_descriptor *desc = NULL; struct dma_chan *chan = host->chan_rx; struct device *dev = sh_mmcif_host_to_dev(host); dma_cookie_t cookie = -EINVAL; int ret; ret = dma_map_sg(chan->device->dev, sg, data->sg_len, DMA_FROM_DEVICE); if (ret > 0) { host->dma_active = true; desc = dmaengine_prep_slave_sg(chan, sg, ret, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } if (desc) { desc->callback = sh_mmcif_dma_complete; desc->callback_param = host; cookie = dmaengine_submit(desc); sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN); dma_async_issue_pending(chan); } dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", __func__, data->sg_len, ret, cookie); if (!desc) { /* DMA failed, fall back to PIO */ if (ret >= 0) ret = -EIO; host->chan_rx = NULL; host->dma_active = false; dma_release_channel(chan); /* Free the Tx channel too */ chan = host->chan_tx; if (chan) { host->chan_tx = NULL; dma_release_channel(chan); } dev_warn(dev, "DMA failed: %d, falling back to PIO\n", ret); sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); } dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__, desc, cookie, data->sg_len); } static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host) { struct mmc_data *data = host->mrq->data; struct scatterlist *sg = data->sg; struct dma_async_tx_descriptor *desc = NULL; struct dma_chan *chan = host->chan_tx; struct device *dev = sh_mmcif_host_to_dev(host); dma_cookie_t cookie = -EINVAL; int ret; ret = dma_map_sg(chan->device->dev, sg, data->sg_len, DMA_TO_DEVICE); if (ret > 0) { host->dma_active = true; desc = dmaengine_prep_slave_sg(chan, sg, ret, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } if (desc) { desc->callback = sh_mmcif_dma_complete; desc->callback_param = host; cookie = dmaengine_submit(desc); sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN); dma_async_issue_pending(chan); } dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", __func__, data->sg_len, ret, cookie); if (!desc) { /* DMA failed, fall back to PIO */ if (ret >= 0) ret = -EIO; host->chan_tx = NULL; host->dma_active = false; dma_release_channel(chan); /* Free the Rx channel too */ chan = host->chan_rx; if (chan) { host->chan_rx = NULL; dma_release_channel(chan); } dev_warn(dev, "DMA failed: %d, falling back to PIO\n", ret); sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); } dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__, desc, cookie); } static struct dma_chan * sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id) { dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); if (slave_id <= 0) return NULL; return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id); } static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host, struct dma_chan *chan, enum dma_transfer_direction direction) { struct resource *res; struct dma_slave_config cfg = { 0, }; res = platform_get_resource(host->pd, IORESOURCE_MEM, 0); cfg.direction = direction; if (direction == DMA_DEV_TO_MEM) { cfg.src_addr = res->start + MMCIF_CE_DATA; cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; } else { cfg.dst_addr = res->start + MMCIF_CE_DATA; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; } return dmaengine_slave_config(chan, &cfg); } static void sh_mmcif_request_dma(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); host->dma_active = false; /* We can only either use DMA for both Tx and Rx or not use it at all */ if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) { struct sh_mmcif_plat_data *pdata = dev->platform_data; host->chan_tx = sh_mmcif_request_dma_pdata(host, pdata->slave_id_tx); host->chan_rx = sh_mmcif_request_dma_pdata(host, pdata->slave_id_rx); } else { host->chan_tx = dma_request_chan(dev, "tx"); if (IS_ERR(host->chan_tx)) host->chan_tx = NULL; host->chan_rx = dma_request_chan(dev, "rx"); if (IS_ERR(host->chan_rx)) host->chan_rx = NULL; } dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx, host->chan_rx); if (!host->chan_tx || !host->chan_rx || sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) || sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM)) goto error; return; error: if (host->chan_tx) dma_release_channel(host->chan_tx); if (host->chan_rx) dma_release_channel(host->chan_rx); host->chan_tx = host->chan_rx = NULL; } static void sh_mmcif_release_dma(struct sh_mmcif_host *host) { sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); /* Descriptors are freed automatically */ if (host->chan_tx) { struct dma_chan *chan = host->chan_tx; host->chan_tx = NULL; dma_release_channel(chan); } if (host->chan_rx) { struct dma_chan *chan = host->chan_rx; host->chan_rx = NULL; dma_release_channel(chan); } host->dma_active = false; } static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk) { struct device *dev = sh_mmcif_host_to_dev(host); struct sh_mmcif_plat_data *p = dev->platform_data; bool sup_pclk = p ? p->sup_pclk : false; unsigned int current_clk = clk_get_rate(host->clk); unsigned int clkdiv; sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR); if (!clk) return; if (host->clkdiv_map) { unsigned int freq, best_freq, myclk, div, diff_min, diff; int i; clkdiv = 0; diff_min = ~0; best_freq = 0; for (i = 31; i >= 0; i--) { if (!((1 << i) & host->clkdiv_map)) continue; /* * clk = parent_freq / div * -> parent_freq = clk x div */ div = 1 << (i + 1); freq = clk_round_rate(host->clk, clk * div); myclk = freq / div; diff = (myclk > clk) ? myclk - clk : clk - myclk; if (diff <= diff_min) { best_freq = freq; clkdiv = i; diff_min = diff; } } dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n", (best_freq / (1 << (clkdiv + 1))), clk, best_freq, clkdiv); clk_set_rate(host->clk, best_freq); clkdiv = clkdiv << 16; } else if (sup_pclk && clk == current_clk) { clkdiv = CLK_SUP_PCLK; } else { clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16; } sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv); sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); } static void sh_mmcif_sync_reset(struct sh_mmcif_host *host) { u32 tmp; tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL); sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON); sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF); if (host->ccs_enable) tmp |= SCCSTO_29; if (host->clk_ctrl2_enable) sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000); sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp | SRSPTO_256 | SRBSYTO_29 | SRWDTO_29); /* byte swap on */ sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP); } static int sh_mmcif_error_manage(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); u32 state1, state2; int ret, timeout; host->sd_error = false; state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1); state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2); dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1); dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2); if (state1 & STS1_CMDSEQ) { sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK); sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK); for (timeout = 10000; timeout; timeout--) { if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1) & STS1_CMDSEQ)) break; mdelay(1); } if (!timeout) { dev_err(dev, "Forced end of command sequence timeout err\n"); return -EIO; } sh_mmcif_sync_reset(host); dev_dbg(dev, "Forced end of command sequence\n"); return -EIO; } if (state2 & STS2_CRC_ERR) { dev_err(dev, " CRC error: state %u, wait %u\n", host->state, host->wait_for); ret = -EIO; } else if (state2 & STS2_TIMEOUT_ERR) { dev_err(dev, " Timeout: state %u, wait %u\n", host->state, host->wait_for); ret = -ETIMEDOUT; } else { dev_dbg(dev, " End/Index error: state %u, wait %u\n", host->state, host->wait_for); ret = -EIO; } return ret; } static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p) { struct mmc_data *data = host->mrq->data; host->sg_blkidx += host->blocksize; /* data->sg->length must be a multiple of host->blocksize? */ BUG_ON(host->sg_blkidx > data->sg->length); if (host->sg_blkidx == data->sg->length) { host->sg_blkidx = 0; if (++host->sg_idx < data->sg_len) host->pio_ptr = sg_virt(++data->sg); } else { host->pio_ptr = p; } return host->sg_idx != data->sg_len; } static void sh_mmcif_single_read(struct sh_mmcif_host *host, struct mmc_request *mrq) { host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & BLOCK_SIZE_MASK) + 3; host->wait_for = MMCIF_WAIT_FOR_READ; /* buf read enable */ sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); } static bool sh_mmcif_read_block(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); struct mmc_data *data = host->mrq->data; u32 *p = sg_virt(data->sg); int i; if (host->sd_error) { data->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, data->error); return false; } for (i = 0; i < host->blocksize / 4; i++) *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); /* buffer read end */ sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE); host->wait_for = MMCIF_WAIT_FOR_READ_END; return true; } static void sh_mmcif_multi_read(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct mmc_data *data = mrq->data; if (!data->sg_len || !data->sg->length) return; host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & BLOCK_SIZE_MASK; host->wait_for = MMCIF_WAIT_FOR_MREAD; host->sg_idx = 0; host->sg_blkidx = 0; host->pio_ptr = sg_virt(data->sg); sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); } static bool sh_mmcif_mread_block(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); struct mmc_data *data = host->mrq->data; u32 *p = host->pio_ptr; int i; if (host->sd_error) { data->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, data->error); return false; } BUG_ON(!data->sg->length); for (i = 0; i < host->blocksize / 4; i++) *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); if (!sh_mmcif_next_block(host, p)) return false; sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); return true; } static void sh_mmcif_single_write(struct sh_mmcif_host *host, struct mmc_request *mrq) { host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & BLOCK_SIZE_MASK) + 3; host->wait_for = MMCIF_WAIT_FOR_WRITE; /* buf write enable */ sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); } static bool sh_mmcif_write_block(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); struct mmc_data *data = host->mrq->data; u32 *p = sg_virt(data->sg); int i; if (host->sd_error) { data->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, data->error); return false; } for (i = 0; i < host->blocksize / 4; i++) sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); /* buffer write end */ sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE); host->wait_for = MMCIF_WAIT_FOR_WRITE_END; return true; } static void sh_mmcif_multi_write(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct mmc_data *data = mrq->data; if (!data->sg_len || !data->sg->length) return; host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & BLOCK_SIZE_MASK; host->wait_for = MMCIF_WAIT_FOR_MWRITE; host->sg_idx = 0; host->sg_blkidx = 0; host->pio_ptr = sg_virt(data->sg); sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); } static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); struct mmc_data *data = host->mrq->data; u32 *p = host->pio_ptr; int i; if (host->sd_error) { data->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, data->error); return false; } BUG_ON(!data->sg->length); for (i = 0; i < host->blocksize / 4; i++) sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); if (!sh_mmcif_next_block(host, p)) return false; sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); return true; } static void sh_mmcif_get_response(struct sh_mmcif_host *host, struct mmc_command *cmd) { if (cmd->flags & MMC_RSP_136) { cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3); cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2); cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1); cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); } else cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); } static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host, struct mmc_command *cmd) { cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12); } static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct device *dev = sh_mmcif_host_to_dev(host); struct mmc_data *data = mrq->data; struct mmc_command *cmd = mrq->cmd; u32 opc = cmd->opcode; u32 tmp = 0; /* Response Type check */ switch (mmc_resp_type(cmd)) { case MMC_RSP_NONE: tmp |= CMD_SET_RTYP_NO; break; case MMC_RSP_R1: case MMC_RSP_R3: tmp |= CMD_SET_RTYP_6B; break; case MMC_RSP_R1B: tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B; break; case MMC_RSP_R2: tmp |= CMD_SET_RTYP_17B; break; default: dev_err(dev, "Unsupported response type.\n"); break; } /* WDAT / DATW */ if (data) { tmp |= CMD_SET_WDAT; switch (host->bus_width) { case MMC_BUS_WIDTH_1: tmp |= CMD_SET_DATW_1; break; case MMC_BUS_WIDTH_4: tmp |= CMD_SET_DATW_4; break; case MMC_BUS_WIDTH_8: tmp |= CMD_SET_DATW_8; break; default: dev_err(dev, "Unsupported bus width.\n"); break; } switch (host->timing) { case MMC_TIMING_MMC_DDR52: /* * MMC core will only set this timing, if the host * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR * capability. MMCIF implementations with this * capability, e.g. sh73a0, will have to set it * in their platform data. */ tmp |= CMD_SET_DARS; break; } } /* DWEN */ if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) tmp |= CMD_SET_DWEN; /* CMLTE/CMD12EN */ if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) { tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN; sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET, data->blocks << 16); } /* RIDXC[1:0] check bits */ if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID || opc == MMC_SEND_CSD || opc == MMC_SEND_CID) tmp |= CMD_SET_RIDXC_BITS; /* RCRC7C[1:0] check bits */ if (opc == MMC_SEND_OP_COND) tmp |= CMD_SET_CRC7C_BITS; /* RCRC7C[1:0] internal CRC7 */ if (opc == MMC_ALL_SEND_CID || opc == MMC_SEND_CSD || opc == MMC_SEND_CID) tmp |= CMD_SET_CRC7C_INTERNAL; return (opc << 24) | tmp; } static int sh_mmcif_data_trans(struct sh_mmcif_host *host, struct mmc_request *mrq, u32 opc) { struct device *dev = sh_mmcif_host_to_dev(host); switch (opc) { case MMC_READ_MULTIPLE_BLOCK: sh_mmcif_multi_read(host, mrq); return 0; case MMC_WRITE_MULTIPLE_BLOCK: sh_mmcif_multi_write(host, mrq); return 0; case MMC_WRITE_BLOCK: sh_mmcif_single_write(host, mrq); return 0; case MMC_READ_SINGLE_BLOCK: case MMC_SEND_EXT_CSD: sh_mmcif_single_read(host, mrq); return 0; default: dev_err(dev, "Unsupported CMD%d\n", opc); return -EINVAL; } } static void sh_mmcif_start_cmd(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct mmc_command *cmd = mrq->cmd; u32 opc; u32 mask = 0; unsigned long flags; if (cmd->flags & MMC_RSP_BUSY) mask = MASK_START_CMD | MASK_MRBSYE; else mask = MASK_START_CMD | MASK_MCRSPE; if (host->ccs_enable) mask |= MASK_MCCSTO; if (mrq->data) { sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0); sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, mrq->data->blksz); } opc = sh_mmcif_set_cmd(host, mrq); if (host->ccs_enable) sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0); else sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS); sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask); /* set arg */ sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg); /* set cmd */ spin_lock_irqsave(&host->lock, flags); sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc); host->wait_for = MMCIF_WAIT_FOR_CMD; schedule_delayed_work(&host->timeout_work, host->timeout); spin_unlock_irqrestore(&host->lock, flags); } static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct device *dev = sh_mmcif_host_to_dev(host); switch (mrq->cmd->opcode) { case MMC_READ_MULTIPLE_BLOCK: sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE); break; case MMC_WRITE_MULTIPLE_BLOCK: sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE); break; default: dev_err(dev, "unsupported stop cmd\n"); mrq->stop->error = sh_mmcif_error_manage(host); return; } host->wait_for = MMCIF_WAIT_FOR_STOP; } static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct sh_mmcif_host *host = mmc_priv(mmc); struct device *dev = sh_mmcif_host_to_dev(host); unsigned long flags; spin_lock_irqsave(&host->lock, flags); if (host->state != STATE_IDLE) { dev_dbg(dev, "%s() rejected, state %u\n", __func__, host->state); spin_unlock_irqrestore(&host->lock, flags); mrq->cmd->error = -EAGAIN; mmc_request_done(mmc, mrq); return; } host->state = STATE_REQUEST; spin_unlock_irqrestore(&host->lock, flags); host->mrq = mrq; sh_mmcif_start_cmd(host, mrq); } static void sh_mmcif_clk_setup(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); if (host->mmc->f_max) { unsigned int f_max, f_min = 0, f_min_old; f_max = host->mmc->f_max; for (f_min_old = f_max; f_min_old > 2;) { f_min = clk_round_rate(host->clk, f_min_old / 2); if (f_min == f_min_old) break; f_min_old = f_min; } /* * This driver assumes this SoC is R-Car Gen2 or later */ host->clkdiv_map = 0x3ff; host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map)); host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map)); } else { unsigned int clk = clk_get_rate(host->clk); host->mmc->f_max = clk / 2; host->mmc->f_min = clk / 512; } dev_dbg(dev, "clk max/min = %d/%d\n", host->mmc->f_max, host->mmc->f_min); } static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct sh_mmcif_host *host = mmc_priv(mmc); struct device *dev = sh_mmcif_host_to_dev(host); unsigned long flags; spin_lock_irqsave(&host->lock, flags); if (host->state != STATE_IDLE) { dev_dbg(dev, "%s() rejected, state %u\n", __func__, host->state); spin_unlock_irqrestore(&host->lock, flags); return; } host->state = STATE_IOS; spin_unlock_irqrestore(&host->lock, flags); switch (ios->power_mode) { case MMC_POWER_UP: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); if (!host->power) { clk_prepare_enable(host->clk); pm_runtime_get_sync(dev); sh_mmcif_sync_reset(host); sh_mmcif_request_dma(host); host->power = true; } break; case MMC_POWER_OFF: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); if (host->power) { sh_mmcif_clock_control(host, 0); sh_mmcif_release_dma(host); pm_runtime_put(dev); clk_disable_unprepare(host->clk); host->power = false; } break; case MMC_POWER_ON: sh_mmcif_clock_control(host, ios->clock); break; } host->timing = ios->timing; host->bus_width = ios->bus_width; host->state = STATE_IDLE; } static const struct mmc_host_ops sh_mmcif_ops = { .request = sh_mmcif_request, .set_ios = sh_mmcif_set_ios, .get_cd = mmc_gpio_get_cd, }; static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host) { struct mmc_command *cmd = host->mrq->cmd; struct mmc_data *data = host->mrq->data; struct device *dev = sh_mmcif_host_to_dev(host); long time; if (host->sd_error) { switch (cmd->opcode) { case MMC_ALL_SEND_CID: case MMC_SELECT_CARD: case MMC_APP_CMD: cmd->error = -ETIMEDOUT; break; default: cmd->error = sh_mmcif_error_manage(host); break; } dev_dbg(dev, "CMD%d error %d\n", cmd->opcode, cmd->error); host->sd_error = false; return false; } if (!(cmd->flags & MMC_RSP_PRESENT)) { cmd->error = 0; return false; } sh_mmcif_get_response(host, cmd); if (!data) return false; /* * Completion can be signalled from DMA callback and error, so, have to * reset here, before setting .dma_active */ init_completion(&host->dma_complete); if (data->flags & MMC_DATA_READ) { if (host->chan_rx) sh_mmcif_start_dma_rx(host); } else { if (host->chan_tx) sh_mmcif_start_dma_tx(host); } if (!host->dma_active) { data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode); return !data->error; } /* Running in the IRQ thread, can sleep */ time = wait_for_completion_interruptible_timeout(&host->dma_complete, host->timeout); if (data->flags & MMC_DATA_READ) dma_unmap_sg(host->chan_rx->device->dev, data->sg, data->sg_len, DMA_FROM_DEVICE); else dma_unmap_sg(host->chan_tx->device->dev, data->sg, data->sg_len, DMA_TO_DEVICE); if (host->sd_error) { dev_err(host->mmc->parent, "Error IRQ while waiting for DMA completion!\n"); /* Woken up by an error IRQ: abort DMA */ data->error = sh_mmcif_error_manage(host); } else if (!time) { dev_err(host->mmc->parent, "DMA timeout!\n"); data->error = -ETIMEDOUT; } else if (time < 0) { dev_err(host->mmc->parent, "wait_for_completion_...() error %ld!\n", time); data->error = time; } sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); host->dma_active = false; if (data->error) { data->bytes_xfered = 0; /* Abort DMA */ if (data->flags & MMC_DATA_READ) dmaengine_terminate_all(host->chan_rx); else dmaengine_terminate_all(host->chan_tx); } return false; } static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id) { struct sh_mmcif_host *host = dev_id; struct mmc_request *mrq; struct device *dev = sh_mmcif_host_to_dev(host); bool wait = false; unsigned long flags; int wait_work; spin_lock_irqsave(&host->lock, flags); wait_work = host->wait_for; spin_unlock_irqrestore(&host->lock, flags); cancel_delayed_work_sync(&host->timeout_work); mutex_lock(&host->thread_lock); mrq = host->mrq; if (!mrq) { dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n", host->state, host->wait_for); mutex_unlock(&host->thread_lock); return IRQ_HANDLED; } /* * All handlers return true, if processing continues, and false, if the * request has to be completed - successfully or not */ switch (wait_work) { case MMCIF_WAIT_FOR_REQUEST: /* We're too late, the timeout has already kicked in */ mutex_unlock(&host->thread_lock); return IRQ_HANDLED; case MMCIF_WAIT_FOR_CMD: /* Wait for data? */ wait = sh_mmcif_end_cmd(host); break; case MMCIF_WAIT_FOR_MREAD: /* Wait for more data? */ wait = sh_mmcif_mread_block(host); break; case MMCIF_WAIT_FOR_READ: /* Wait for data end? */ wait = sh_mmcif_read_block(host); break; case MMCIF_WAIT_FOR_MWRITE: /* Wait data to write? */ wait = sh_mmcif_mwrite_block(host); break; case MMCIF_WAIT_FOR_WRITE: /* Wait for data end? */ wait = sh_mmcif_write_block(host); break; case MMCIF_WAIT_FOR_STOP: if (host->sd_error) { mrq->stop->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error); break; } sh_mmcif_get_cmd12response(host, mrq->stop); mrq->stop->error = 0; break; case MMCIF_WAIT_FOR_READ_END: case MMCIF_WAIT_FOR_WRITE_END: if (host->sd_error) { mrq->data->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error); } break; default: BUG(); } if (wait) { schedule_delayed_work(&host->timeout_work, host->timeout); /* Wait for more data */ mutex_unlock(&host->thread_lock); return IRQ_HANDLED; } if (host->wait_for != MMCIF_WAIT_FOR_STOP) { struct mmc_data *data = mrq->data; if (!mrq->cmd->error && data && !data->error) data->bytes_xfered = data->blocks * data->blksz; if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) { sh_mmcif_stop_cmd(host, mrq); if (!mrq->stop->error) { schedule_delayed_work(&host->timeout_work, host->timeout); mutex_unlock(&host->thread_lock); return IRQ_HANDLED; } } } host->wait_for = MMCIF_WAIT_FOR_REQUEST; host->state = STATE_IDLE; host->mrq = NULL; mmc_request_done(host->mmc, mrq); mutex_unlock(&host->thread_lock); return IRQ_HANDLED; } static irqreturn_t sh_mmcif_intr(int irq, void *dev_id) { struct sh_mmcif_host *host = dev_id; struct device *dev = sh_mmcif_host_to_dev(host); u32 state, mask; state = sh_mmcif_readl(host->addr, MMCIF_CE_INT); mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK); if (host->ccs_enable) sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask)); else sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask)); sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN); if (state & ~MASK_CLEAN) dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n", state); if (state & INT_ERR_STS || state & ~INT_ALL) { host->sd_error = true; dev_dbg(dev, "int err state = 0x%08x\n", state); } if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) { if (!host->mrq) dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state); if (!host->dma_active) return IRQ_WAKE_THREAD; else if (host->sd_error) sh_mmcif_dma_complete(host); } else { dev_dbg(dev, "Unexpected IRQ 0x%x\n", state); } return IRQ_HANDLED; } static void sh_mmcif_timeout_work(struct work_struct *work) { struct delayed_work *d = to_delayed_work(work); struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work); struct mmc_request *mrq = host->mrq; struct device *dev = sh_mmcif_host_to_dev(host); unsigned long flags; if (host->dying) /* Don't run after mmc_remove_host() */ return; spin_lock_irqsave(&host->lock, flags); if (host->state == STATE_IDLE) { spin_unlock_irqrestore(&host->lock, flags); return; } dev_err(dev, "Timeout waiting for %u on CMD%u\n", host->wait_for, mrq->cmd->opcode); host->state = STATE_TIMEOUT; spin_unlock_irqrestore(&host->lock, flags); /* * Handle races with cancel_delayed_work(), unless * cancel_delayed_work_sync() is used */ switch (host->wait_for) { case MMCIF_WAIT_FOR_CMD: mrq->cmd->error = sh_mmcif_error_manage(host); break; case MMCIF_WAIT_FOR_STOP: mrq->stop->error = sh_mmcif_error_manage(host); break; case MMCIF_WAIT_FOR_MREAD: case MMCIF_WAIT_FOR_MWRITE: case MMCIF_WAIT_FOR_READ: case MMCIF_WAIT_FOR_WRITE: case MMCIF_WAIT_FOR_READ_END: case MMCIF_WAIT_FOR_WRITE_END: mrq->data->error = sh_mmcif_error_manage(host); break; default: BUG(); } host->state = STATE_IDLE; host->wait_for = MMCIF_WAIT_FOR_REQUEST; host->mrq = NULL; mmc_request_done(host->mmc, mrq); } static void sh_mmcif_init_ocr(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); struct sh_mmcif_plat_data *pd = dev->platform_data; struct mmc_host *mmc = host->mmc; mmc_regulator_get_supply(mmc); if (!pd) return; if (!mmc->ocr_avail) mmc->ocr_avail = pd->ocr; else if (pd->ocr) dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); } static int sh_mmcif_probe(struct platform_device *pdev) { int ret = 0, irq[2]; struct mmc_host *mmc; struct sh_mmcif_host *host; struct device *dev = &pdev->dev; struct sh_mmcif_plat_data *pd = dev->platform_data; void __iomem *reg; const char *name; irq[0] = platform_get_irq(pdev, 0); irq[1] = platform_get_irq_optional(pdev, 1); if (irq[0] < 0) return irq[0]; reg = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(reg)) return PTR_ERR(reg); mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev); if (!mmc) return -ENOMEM; ret = mmc_of_parse(mmc); if (ret < 0) goto err_host; host = mmc_priv(mmc); host->mmc = mmc; host->addr = reg; host->timeout = msecs_to_jiffies(10000); host->ccs_enable = true; host->clk_ctrl2_enable = false; host->pd = pdev; spin_lock_init(&host->lock); mmc->ops = &sh_mmcif_ops; sh_mmcif_init_ocr(host); mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY; mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO; mmc->max_busy_timeout = 10000; if (pd && pd->caps) mmc->caps |= pd->caps; mmc->max_segs = 32; mmc->max_blk_size = 512; mmc->max_req_size = PAGE_SIZE * mmc->max_segs; mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size; mmc->max_seg_size = mmc->max_req_size; platform_set_drvdata(pdev, host); host->clk = devm_clk_get(dev, NULL); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); dev_err(dev, "cannot get clock: %d\n", ret); goto err_host; } ret = clk_prepare_enable(host->clk); if (ret < 0) goto err_host; sh_mmcif_clk_setup(host); pm_runtime_enable(dev); host->power = false; ret = pm_runtime_get_sync(dev); if (ret < 0) goto err_clk; INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work); sh_mmcif_sync_reset(host); sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error"; ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host); if (ret) { dev_err(dev, "request_irq error (%s)\n", name); goto err_clk; } if (irq[1] >= 0) { ret = devm_request_threaded_irq(dev, irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host); if (ret) { dev_err(dev, "request_irq error (sh_mmc:int)\n"); goto err_clk; } } mutex_init(&host->thread_lock); ret = mmc_add_host(mmc); if (ret < 0) goto err_clk; dev_pm_qos_expose_latency_limit(dev, 100); dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n", sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff, clk_get_rate(host->clk) / 1000000UL); pm_runtime_put(dev); clk_disable_unprepare(host->clk); return ret; err_clk: clk_disable_unprepare(host->clk); pm_runtime_put_sync(dev); pm_runtime_disable(dev); err_host: mmc_free_host(mmc); return ret; } static int sh_mmcif_remove(struct platform_device *pdev) { struct sh_mmcif_host *host = platform_get_drvdata(pdev); host->dying = true; clk_prepare_enable(host->clk); pm_runtime_get_sync(&pdev->dev); dev_pm_qos_hide_latency_limit(&pdev->dev); mmc_remove_host(host->mmc); sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); /* * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the * mmc_remove_host() call above. But swapping order doesn't help either * (a query on the linux-mmc mailing list didn't bring any replies). */ cancel_delayed_work_sync(&host->timeout_work); clk_disable_unprepare(host->clk); mmc_free_host(host->mmc); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); return 0; } #ifdef CONFIG_PM_SLEEP static int sh_mmcif_suspend(struct device *dev) { struct sh_mmcif_host *host = dev_get_drvdata(dev); pm_runtime_get_sync(dev); sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); pm_runtime_put(dev); return 0; } static int sh_mmcif_resume(struct device *dev) { return 0; } #endif static const struct dev_pm_ops sh_mmcif_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume) }; static struct platform_driver sh_mmcif_driver = { .probe = sh_mmcif_probe, .remove = sh_mmcif_remove, .driver = { .name = DRIVER_NAME, .probe_type = PROBE_PREFER_ASYNCHRONOUS, .pm = &sh_mmcif_dev_pm_ops, .of_match_table = sh_mmcif_of_match, }, }; module_platform_driver(sh_mmcif_driver); MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>"); |